Methods as Assertions

John Lamping®, Martin Abadi?

! Xerox PARC
3333 Coyote Hill Road, Palo Alto CA 94304, USA
lamping@parc.xerox.com
% Digital Equipment Corporation Systems Research Center
130 Lytton Avenue, Palo Alto, CA 94301, USA
ma@src.dec.com

Abstract. A method definition can be viewed as a logical assertion.
Whenever we declare a method as the implementation of an operation,
we assert that if the operation is invoked on objects of the appropriate
types then the method body will satisfy the specification of the opera-
tion. This view of methods as assertions is simple but general. Among its
applications are: methods defined on interfaces as well as on classes; an
elementary type system for objects that handles multi-methods; and a
mechanism for method dispatch based on the desired output type as well
as on the types of arguments. Further, these applications are compatible
with traditional execution models and implementation techniques. Logi-

cal reasoning about methods plays a role at compile time, then gets out
of the way.

1 Introduction

An object is commonly characterized as a collection of data together with asso-
ciated procedures, called methods. Each method implements an operation on
the object; an operation may have other implementations for other objects.
(Operations are called “messages” in Smalltalk [12] and “member functions”
in C++ [17].) When an operation is invoked on an object, the corresponding
method is executed. The method is found by using the name of the operation
as an index to select among the object’s methods. This “record view” of object
oriented programming describes both the common implementation techniques
of many languages, such as C++, and most efforts to explain objects in terms
of formal systems (e.g., [5, 6, 7, 15]).

An alternative view takes methods as belonging to operations, rather than
to objects. An operation comes with a collection of methods, each of which
implements the operation for different classes of argument. Multiple dispatch
is supported rather naturally: the classes of several arguments can be used as
indices to select among the operation’s methods. This “operation view” meshes
with the implementation techniques of programming languages like CLOS [3]
and Cecil [9], and with the account of object oriented programming in terms of
the A&-calculus [8].

Each view takes either operations or classes as primitive, and the other as
defined in terms of the primitive concept. Dispatch on the primitive concept

61

yields an efficient execution model. The first view takes operations as primitive:
they are just selectors with no further structure. Classes are then defined in
terms of how they handle operations. The second view takes classes as primitive.
(However, classes also have a subclass structure.) Operations are then defined
in terms of how they handle different classes of arguments.

In this paper we investigate a higher-level view according to which neither
operations nor classes are primitive, but rather are jointly described by method
declarations. Method declarations are assertions about the connections between
operations and objects:

A method declaration is an assertion that if a particular operation is
invoked in certain circumstances on objects having certain properties
then a particular procedure will correctly implement the operation.

The assertional view provides a framework for extending object oriented pro-
gramming. It allows the range of factors that can potentially affect the appli-
cability of a method to include not only the classes of the objects given as
arguments, but also which operations are supported by those classes, additional
properties declared when the objects were created, dynamic properties of the
objects, and others. While some of these extensions may require new implemen-
tation techniques, others do not. This paper explores some applications of the
assertional view that are compatible with standard implementation techniques.

Section 2 explores how the assertional view leads to a clear distinction be-
tween a notion of class (a set of objects with common properties) and a notion
of interface (a set of operations supported by a class or classes). The assertional
view allows methods to be defined not only on classes but also on interfaces.
Thus, the choice of method for an operation on an object can depend on whether
the object supports other operations.

Section 3 shows how method applicability can be treated with simple logical
reasoning. This reasoning is independent of the details of a particular model of
computation, or of the language in which method bodies are written. In partic-
ular, the reasoning is compatible with both functional and imperative models,
and with both dynamic and static typing. Further, all the reasoning can be done
at compile time; therefore, traditional execution techniques still apply.

Section 4 describes one way to embed reasoning about method applicability
in a static type system. We obtain a strongly typed language where typechecking
ensures that there will be an applicable method for every operation invocation.
The type system is quite elementary, yet suitable for supporting object oriented
programming, including multi-methods.

Section 5 presents an evaluation model. One interesting feature of this model
is that operations can be relations, with several possible outputs of different
types for the same inputs. The evaluation model allows method selection based
not only on the types of the inputs but also on the desired type of the output.

While the assertional view does not require this feature, we show how it supports
it.

62

a line object rotate operation
start: [4,5]
record end: [2,10] tate
view rotate: <method>
. class: line line: <method>
operaj::vr‘\r start: [4,5]
end: [2,10]
assertional class: line
view start: [4,5] |—<method>— rotate
end: [2,10]

Fig. 1. Three views of a line object and the rotate operation

2 Methods as Assertions

Before giving a more formal explanation of the assertional view, we motivate it
and compare it with the record view, with the operation view, and with several
proposals to extend object oriented programming.

2.1 Three Views, by Example

We first discuss the record view, the operation view, and the assertional view
in the context of an example, an imaginary graphics application. This applica-
tion deals with two kinds of objects: graphic elements, like points and lines; and
rendering devices, like displays and printers. The application should have opera-
tions on graphic elements, like translation and rotation; operations on rendering
devices, like resetting and querying the image size; and the crucial operation of
rendering a graphic element on a device, which involves both kinds of objects.
All three views deal roughly equivalently with the simple methods that are
associated with a single class of objects. Figure 1 illustrates this, with the ex-
ample of a method for rotating a line. In the record view, rotate is a primitive
selector, and the method is included in line objects as the rotate component. In
the operation view, the class line acts as a primitive selector, and the method is
included in the rotate operation, specialized to line. In the assertional view, the
method is not a component of an object or of an operation, but stands on its
own, saying that the method body implements the rotate operation on any line.

63

The fact that the rotate operation is handled on line becomes a visible property
of both line and the rotate opceration.

A well-known limitation of the record view is the poor handling of multi-
methods which, unlike the rotate method, are not associated with a single class.
For example, since a method for rendering a line on a particular display is spe-
cialized simultaneously to line and to the display type, there is no natural way to
present it in the record view: the method belongs neither to a line object nor to
a display object, but rather to their conjunction. Both the operation view and
the assertional view deal adequately with multi-methods.

Finally, the assertional view seems preferable to either of the other views in
the treatment of methods that are most naturally defined on interfaces rather
than on classes. Consider a method that implements rotation by two successive
reflections. It is correct on any graphic element that supports the reflect oper-
ation, and it could be a useful default method to supply in a library, since a
new kind of graphic element would automatically be able to handle rotations
if it could handle reflections. Applicability of the method to an object depends
not on any particular class or classes, but on what other operations the object
supports. The method is naturally defined on an interface rather than on a class.
This natural definition can be captured with the assertional view, because the
interface supported by a class is visible in the assertional view and so can be
used to determine method applicability. This does not fit well within either of
the other views, because the interface supported by a class is a relation between
the class and some operations; in the other views, such a relation is not visible
to the machinery that determines method applicability.

While we have been discussing the expressiveness of the three views, we
should also note that all three can support encapsulation boundaries. In the
assertional view, encapsulation can be enforced by restricting the capability to
make assertions about certain kinds of objects or operations. For example, the
analogue of requiring all method definitions accessing protected operations of the
line class to be lexically inside the class definition is to restrict assertions that
reference those operations to a limited lexical scope, which will be, in effect, the
class definition. A wide range of encapsulation schemes can be obtained through
scoping rules of this sort.

2.2 Work-arounds

Of course, programmers have been successfully writing programs without the
benefit of support for the assertional view. Looking at common work-arounds
can give a better sense of what expressive power comes from the assertional view.
We describe two treatments of the definition of rotation from reflection.

One work-around consists in defining an “abstract class.” The abstract class
documents the desired interface, so the rotate method can be defined on the
abstract class. Every class that supports the interface is declared to inherit from
the abstract class, and thus gets the rotate method. This work-around implies
that, for each class that supports reflect, a programmer must explicitly declare
that it supports the interface and should thus inherit the rotate method. This

64

can be a problem for moadularity—the ability to maximize independence between
different parts of a program—since a class writer must be aware of all relevant
interfaces already defined and a method writer must be aware of all relevant
classes already defined. In fact, knowing the relevant classes probably does not
even help the method writer, since most languages disallow adding parents to an
already declared class. If there is code that creates objects of that class, there is
no way to get the objects to support the new method.

A different work-around consists in defining rotate as a procedure, rather
than as an operation. Type information can encode the interface for the objects
that the procedure accepts as arguments. This work-around sacrifices the advan-
tages of object oriented programming: it becomes impossible to write new rotate
methods to handle additional cases, or to provide special handling of special
cases.

Both the record view and the operation view present a dichotomy between
operations, which support dispatch but can dispatch only on the basis of primi-
tive properties, and external procedures, which do not allow dispatch but whose
types can specify an interface for their arguments. The assertional view can be
seen as a unification that eliminates the dichotomy.

2.3 The Assertional View in Context

In procedural programming, there is a rigid link between operation invocation
and operation execution, because there is exactly one procedure to carry out each
operation. Traditional object oriented programming makes that link more flexi-
ble by allowing for several different methods that can implement an operation,
each applicable to different classes of arguments. Several proposed extensions to
object oriented programming allow additional features to affect method applica-
bility. For example, predicate classes [10] allow method applicability to depend
on dynamic properties of objects; in the DROL language [18], method applica-
bility may depend on how much time remains to complete a task. Bobrow et
al. [4] sketch a number of such extensions, including the idea of letting method
applicability depend on interfaces.

The assertional view does not limit a priori what can affect method appli-
cability, and hence it can encompass all these kinds of extensions. However, we
focus on a restricted, well-behaved use of the assertional view: exploiting the vis-
ibility of method declarations to let method applicability depend on interfaces.
This use of the assertional view does not require any change to run-time facilities
because the necessary reasoning about interfaces can be carried out at compile
time. In fact, a pre-processor could examine required interfaces, determine what
methods are applicable for various classes, and add explicit method declarations
to those classes.

In contrast, various logic programming approaches to objects {2, 13, 16] have
focused on using logical inference at the basis of program execution. In contrast,
also, Agrawal et al. [1] discuss reasoning about method applicability but do not
use the reasoning for deciding applicability.

65

The idea of treating method declarations as assertions can be seen as an
instance, in the domain of objects, of the open-semantics ideas proposed by
Dixon [11], who treats procedure declarations as assertions. This approach rec-
ognizes that the programmer has an intended meaning for each operation. Thus,

a method declaration is an assertion about an operation, rather than a definition
of the operation.

3 Method Applicability

Next we explore how one expresses that there is a method to implement an op-
eration on certain objects. Such a statement is a free-standing assertion in our
approach. Therefore, it is possible to reason about the availability and appli-
cability of a method independently of any particular language for writing the
method body, and of any execution model for running it. Thus, our explanation
is relevant to both dynamically and statically typed languages. Since method
applicability depends only on classes, not on particular objects, the necessary
reasoning about applicability can take place at compile time, whether the lan-
guage is dynamically or statically typed.

3.1 Basic Notations and Rules

In what follows, we take a class to be just a set of objects, typically a set of
objects with something in common. We allow these objects to include imple-
mentation information; two objects with identical public behavior but different
implementation could belong to different classes. We use the terms class and
type interchangeably, and use the subtype relation, z < y, to mean that every
object in the set is in the set y.

We use a single name space for operations. In an actual language, the same
name might denote different operations in different scopes, and assertions should
apply to the operations, not to the name. For simplicity, we omit this level of
indirection. We assume that to each name corresponds a single operation, with
a single specification.

We proceed fairly formally, but formal sophistication should not be a prereq-
uisite to understanding this section. We embody the assertional view in logic,
using logical constants and logical variables for classes. We introduce a rela-
tion OK to express that some primitive or method implements an operation for
certain arguments. More precisely, we write:

OK(F:zyx-- Xz, — Y)

to mean that there is a primitive or method to handle the operation F on ar-
guments of types zp,...,&,, returning an answer of type y or diverging. For
example, OK(plus:int x int — int) indicates that there is a plus primitive or
method that takes two integers and either returns an integer or diverges.

The inclusion of the output type y in the form OK(F:zy x---xz, — y) is
intended to facilitate static typechecking. For a dynamically typed language, it

66

would be reasonable to omit y and to consider only the input types. Everything
in this section still applies to that case, since y could always be taken to be the
universal type.

Our description of OK(F: xyx- - -xz,, — y) is deliberately open about whether
F should be a function. In fact, we may allow F to be a relation, with several
possible outputs of different types. In this case, OK(F:zyx:--xz, — y) means
that there is some way of handling F that returns an answer of type y or diverges.

Allowing a relation is particularly appealing in the context of a statically typed
language; we explore this option below.

While now we have notation for talking about whether an operation is han-
dled, we still lack notation for saying that a particular method or primitive is
the one to use for an operation. We write:

prim(F:z;x---xz,, —y; f)

to mean that the primitive function f implements the operation F on arguments
of types x,,..., z,, with a result of type y. Similarly, we write:

method(F: zy X X2, — ¥; vi,...,v,,.T)

to mean that the code T can implement the operation F on arguments v1,. .. v,
of types z1,..., &n. with a result of type y.
We write A B to mean that A implies B; as we explain below, we use

intuitionistic implication. The following axioms say that primitive functions and
defined methods handle operations:

prim(F:zyx---xz, —y; f) — OK(F:z1x--x2, — y)
method(F:rxy x - Xz, — y;vi,...vp.T) — OK(F:zy X -x 2,y — @)
In addition, we adopt the evident axioms for subtyping:

pHm(F:y - x 2y — 35) A gien(®h <2 Ay < ¥)
— prim(F:z\ % --xzl, —¢; f)

method(F:z1x- - xzy =y Vi i TYA A (@ S 2) A (y <)
— method(F: 21 X xzp — y; vi,...,v,. T)

OK(Fizix---xxpn = Y AN jcicp (2 Sz)A(y < Y)
— OK(F:zy x---xz, — y)

3.2 Interfaces

It is common for a method that implements an operation F to call other oper-
ations. In this case, F is handled only if the other operations are handled. We
express this dependence as part of a condition for F to be handled, using an
implication. For example, to express that there is a method for rotate if there is
a method for reflect, we write:

Va. OK(reflect: 2 — z) — OK(rotate:z — z)

67

(omitting some arguments for simplicity). This formula illustrates how to express
that there is a method for an interface, rather than for a class. It states that any
class that supports reflect also supports rotate. The condition OK(reflect: z — z)
serves as a description of the required interface. The universal quantification
then makes the declaration apply to any class that supports the interface. {The
characterization of a type by its properties is one of the main uses of bounded
quantification in other systems.)

Recall that we distinguish between types (sets of objects) and interfaces
(collections of operations that one or more types support). In this example, the
interface also corresponds to a type—there is a set of all objects for which reflect
is handled. In general, however, interfaces do not coincide with types. Rather,
they are predicates on types (possibly involving several types at once). Suppose,
for example, that the max operation is defined on any class that supports a
greater comparison operation:

Vz. OK(greater:z xz — bool) — OK(max:z xz — z)

It may be possible to compare elements of a type apple and also to compare
elements of another type orange, but not to compare an element of apple with
an element of orange. So while each of apple and orange supports greater, and

hence max, their union does not. No single set corresponds to the interface
OK(greater: 2 xz — bool).

3.3 Recursion

Recursive methods call for a more delicate treatment. Suppose, for example,
that one kind of graphic element is a composite graphic element, containing a
group of other graphic elements. It is natural to write a method for reflect on
composite graphic elements that calls the reflect operation on each component
element. The obvious description for this situation would be the formula:

Va. (P(z) A OK(reflect: & — z)) — OK(reflect: 2 — x)

Here P(z) represents whatever other requirements the method has, for example
that its argument be a composite graphic element. Unfortunately, it does not
follow from this formula that the reflect operation is supported. In fact, the
assertion 1is a tautology.

If a method calls the operation that it itself is implementing, the resulting
recursion may never bottom out. In one sense, the operation is not truly sup-
ported. However, in accord with most type systems for programming languages,
we address only the problem of ill-formed operation invocations (for partial cor-
rectness), not the problem of infinite loops (for total correctness). In other words,
we address the question of whether a program will get “no method” errors, not
whether it will diverge. Therefore, we would like to find a form of assertion that

would allow recursive definitions, yielding for example that the reflect operation
is supported.

68

One way to obtain the desired result is to presume that all recursions will
bottom out. In other words, when we try to satisfy a method’s prerequisites,
we may assume that the operation that the method defines is available. We
want a new connective, A —t+ B, to express this; informally, A -+ B should
mean “if assuming B lels us prove A, then we can conclude B.” Ilence, we
define A = B as an abbreviation for (B — A) — B in intuitionistic logic.
{Intuitionistic logic is essential here; in classical logic, (B — A) — B 15 simply
equivalent to B.) It follows from the definition that A -t B has the property:

(B— A) — ((A =+ B) — B)

which agrees with the intended meaning of A —t» B. In the context of method
assertlons, we may revise the assertion about reflect:

V. (P(z) A OK(reflect: £ — z)) == OK(reflect: z — z)

This new assertion implies Vz. P(z) — OK(reflect: 2 — 2), as desired.

The same form of assertion allows mutual recursion. Imagine two operations,
foo and bar, that return integers. Imagine further that we have mutually recursive
methods for them. If we described this situation with the formulas:

Vz. (P(x) A OK(foo: z — int)) — OK(bar: z — int)

and
Va. (P(x) A OK(bar: z — int)) — OK(foo: 2 — int)

we would fail to get the desired conclusion that foo and bar are handled. On
the other hand, A =+ B and B > A imply A and B, and hence the modified
formulas about foo and bar:

Vz. (P(z) A OK(foo: z — int)) —++ OK(bar: z — int)
and
Vz. (P(x) A OK(bar: z — int)) =~ OK(foo: z — int)

yield:
V. P(z) — (OK(foo: z — int) A OK(bar: z — int))

In short, the connective —*- captures the import of methods and allows
reasoning about what operations are supported in terms of what methods are

available, even in the presence of recursion.

3.4 Programming

In a dynamically typed system, the programmer’s declarations are interpreted
as assertions that describe the subclass structure for the class constants and that
define methods. The logical form for these assertions could be, for example:
a<b
and
Vz,y. (OK(F:zxa — y) A OK(G:b — z)) > method(H:z — y; v.T)

69

Facts about method applicability are derived from these assertions. For example,
if we have OK(F:bxa — a) and OK(G:b — b)) we obtain method(H:b — a; v.T),
and then OK(H:b — a).

Thus, the programmer always provides methods, possibly with interface as-
sumptions, but never asserts that an operation is handled without at the same
time producing a method to handle the operation. Whenever the system infers
that an operation is handled, one of the programmer’s methods is applicable.

As the next section explains, the programmer can make somewhat weaker
assertions if static typing is available.

One remaining question is what it means when one can prove that several
different methods are applicable as implementations of the same operation for
the same arguments. We consider that to be an issue of language design outside
the scope of this paper. A language analogous to C++, for example, would
probably choose the applicable method with the most stringent pre-conditions,
and give an error if there was no unique such method.

4 A Language

For the rest of this paper we consider a simple, exemplar functional language.
However, all of the previous discussion applies to other execution models, and
mutatis mutandi so do the following results.

4.1 Programs

As method bodies we use the terms generated by the following grammar:

Ti=v
|letv=TinT
| if T then T else T
| F(T,...,T)
| new(type)

This language is a first-order term language with two object oriented constructs:
operation invocation (F(T,...,T), where F is an operation name) and object
creation (new(type)). The new form takes only constant types; allowing type
variables would raise difficult issues, but fortunately this is not necessary for
most of object oriented programming as it currently occurs. The language also
includes forms for variables, local bindings, and conditionals.

4.2 Examples

In order to illustrate the use of the language, we give two small examples. We
assume dynamic typing as in Subsection 3.4.

A programmer can declare a square method on integers by asserting:

method(square:int — int; n.times(n, n))

70

‘I'his assertion implies:
OK(square:int — int)

A method for square on any type supporting the times operation requires a more
interesting assertion:

Vz. OK(times:z xz — z) -+ method(square: z — z; n.times(n, n))

The conditions for a method to be correct may include more than just what is
required for its body to typecheck. For example, the declaration

Vz. (z < number) —*~ method(square: z — z; n.times(n, n))

means that this method for square works only on numbers.
Similarly, we may consider a partial definition for points:

prim(get-x: point-impl — int; prim-get-z)
prim(set-x: point-impl Xint — point-impl; prim-set-z)
prim(get-y: point-impl — int; prim-get-y)
prim(set-y: point-impl xint — point-impl; prim-set-y)

Here point-impl is a class, possibly one of several different implementations of
points. These four lines are declarations saying that elements of point-impl have
primitive accessors prim-get-z, prim-get-y, prim-set-z, and prim-set-y. Because
of our functional model, prim-set-z and prim-set-y should return new objects
rather than side-effecting their inputs, hence their types.

The next declaration gives a method for the add operation, which takes two
points and returns a new point whose coordinates are the sums of the coordinates
of the arguments:

Vp. OK(get-x: p — int) A OK(set-x:p — p)
A OK(get-y: p — int) A OK(set-y: p — p)
— method(add: pxp — point-impl; f,s. T)

where the method body T is a straightforward sequence of operations to extract
the coordinates from the inputs, add them, and place the answers in the output:

set-x(set-y(new(point-impl),
plus(get-y(f), get-y(s))),
plus(get-x(f), get-x(s)))

The typing is written to be neutral with respect to the choice of implementation
of points. It is not written specifically on point-impl, but applies to any class with
the proper interface. However, it yields a point-impl, because the method calls
new(point-impl} in the body. The output type, thus, will in general differ from
the input type. This is a manifestation of what Kiczales has called the “make
isn’t generic problem” [14].

While the result of add is not of type p, it does support the get-x, get-y,
set-x, set-y, and add operations, as a result of being a point-impl, so it does
satisfy the interface expected of points. In some situations, a point-impl might

n

not acceptable as a result of an add operation. But that does not imply that the

“method assertion is incorrect. Below we show how method selection can depend
not only on input types but also on the desired output type, so that an alternate
method could be selected in those cases where a point-impl would not be an
acceptable output type.

The add method, just as the square method, applies not to any particular
class but to any class that obeys the appropriate protocol. Thus, behavior can
be added to an object or class after its creation. The programmer’s assertions
apply both to classes already defined and to classes yet to be defined.

4.3 Typing

In a statically typed system, reasoning about method applicability can be used
to typecheck the bodies of methods, that is, to check that a method will never
call an operation that is not handled. In order to check that methods call only
supported operations, we introduce the notation:

T:z

which is intended to mean that all operations called in T are supported and that
a result of type x can be returned, unless the computation diverges. Here z is a
type, not an interface. The context of type inference will typically provide the
information about the interfaces that z supports.

While in a dynamically typed language the programmer would make method
assertions, a typecheck is interposed in a statically typed language. The pro-
grammer asserts only that certain code is candidate to being a method; it gets

promoted to a method if it typechecks. We introduce another notation to express
this assertion:

cand(F:zy x- - x&p — y; vi,...,vp.T)

It means that the body T implements F for the specified types, provided it
typechecks. The operations invoked in T do not need to be explicitly listed as
hypothesis for this assertion, since they can be inferred. Thus, the programmer
may simply assert cand(F: z1x-- Xz, — y; vi,...,vy. T).

In order to obtain a tidy, tractable type system, we abandon the free use of
intuitionistic logic. Instead, we rely on a simple set of rules for proving judg-
ments of the form I + A. This judgment means that I' implies A. Here
I' is a list of formulas, each of one of the forms T:z, ¢ < y, prim(F:z; x
oxxy — y f)cand(Frzi XXz, — Y vi,...,vp.T), or OK(Fizy x - x
z, — y); and A is a single formula, of one of those forms or of the form
method(F: 2z x - - xz, — y; vi,...,v,.T).

We assume that each set of assumptions (on the left of +) is well formed, in
the sense that no term variable is given a type more than once in it. Correspond-
ingly, we interpret terms up to renaming of bound variables. For simplicity, we
do not include type quantification, but instead assume, from now on, that all
quantifiers are properly instantiated “by hand.”

72

The type rules are:
rAT'F A

'Sz vizk Ty
I'kFletv=SinT:y

I' + S:bool 'k Tz I'F Tazx
' if Sthen T else To: z

't OK(Fizyx- -xX2q — Y) 'kTyizy ... I'EThiz,
I'F E(Ty,....To)y

I' b new(z):z

I'Eprim(Fizyx---xz, = y; f)
I' OK(F:zyx---x2p — y)

I' + method(F:zy x- - XTp — ¥; Vi,... Vn.T)
' OK(F:izyx- x2q —)

I'F cand(F:zyx- - XZp — ¥ Vi, .. ,Vn.T)
INVOK(Fizy X X&p — Y),ViiT1, ..., Va:Zn b Ty
I' + method(F:z; x---XZp — ¥; vi,...,Va.T)

The first rule simply says that A implies A; as a special case, we have a type rule
for variables: v: z implies v: . The next two rules are the obvious ones for local
bindings and conditionals. The fourth rule is the rule for operation invocation; it
says that if the operation is handled for the argument types then the invocation
is valid and its result has the result type of the operation for those types of
arguments. The first hypothesis of this rule is itself checked by reasoning about
method applicability. The fifth rule deals with the creation form; it simply says
that new(z) has type . The sixth and seventh rules correspond to axioms of
Subsection 3.1. The final rule formalizes the semantics of cand(F: z1x- - -x&, — ¥;
V1,....Vn.T). This rule allows methods that call themselves recursively, as it lets
us assume that the operation F being defined is handled when we typecheck the
method body T.
Combining the last two rules gives the derived rule:

't cand(Fizy x - X2y — Y5 vi,....Vn. T)
IOK(F:ay - Xxn —y),vi:Z1,...,VniZa & Tiy
I+ OK(FII]X“-XIH-—»y)

which says that if there is a candidate for an operation, then the operation is
handled provided the candidate typechecks under the assumption that the oper-
ation is handled. Thus, cand(F: 21x- - -xz,, — ¥; vi,...,v,.T) implies “vy,...,v,. T
typechecks =t OK(F: 2y x - -xz, — y).”

73
In addition, we have the expected rules for subtyping:

'rez<z

'rz<y rry<z
'Fe<z

'-Tz rrz<y
Ty

Foprim(F:zy%---xXz2, = y; f)
bl <z; forallie{l.n} rry<y
I' b prim(F:z)x---xz, - ; f)

r
r

't cand(F:zy X+ X2p — Y5 V1,...,Vn. T)
I' - 2} <z; forallie{l.n} 't y<y
Ik cand(F:z)x---xzi, = ¢ vi,...,vn.T)

method(F:zy x -+ Xz, — y; v1,...,vn.T)
zi < z; forallie {1.n} 'k+y<y
method(F: 2} x---xz}, — ¢; vi,...,vp.T)

~ N
TITT

Py
3

OK(F:z1x- -xZp — y)
¢ < z; forallie€{l.n} rry<y
'+ OK(F:aix---xz, —)
It is an obvious property of this system that an expression does not neces-

sarily have a unique type, not even a principal type. For example, if I" includes

OK(F: — y) and OK(F: — z), then I' + F:yand I F F:z.

~ N
TT

4.4 Disjunctions

Disjunctive types can provide useful type information when a conditional state-
ment can return objects of two different classes, and when these classes satisfy a
common interface but have no common superclass satisfying the interface. This
subsection discusses the motivation for disjunctive types and gives an example.
It is a digression, in that we do not adopt disjunctive types in the rest of the
paper; we merely want to point out the related issues.

Suppose that there are two implementation types for points, point-impl and
other-point-impl, and that an operation distance is defined on all pairwise com-
binations of point-impl and other-point-impl:

OK(distance: point-impl x point-impl — real)
OK(distance: point-impl x other-point-imp| — real)

OK (distance: other-point-impl x point-impl — real)
OK(distance: other-point-impl x other-point-imp! — real)

74

Consider the expression:

distance(if testl then new(point-impl) else new(other-point-impl),
if test2 then new(point-impl) else new(other-point-impl))

To infer that the distance operation in the expression is handled, it does not
suffice to know that distance is handled for arguments of type point-impl and
that 1t is handled for arguments of type other-point-impl. It is also necessary to
know that distance is handled for one argument of type point-impl and one of
type other-point-impl.

With disjunctive types, the obvious type for the statement

if testl then new(point-impl) else new(other-point-impl)

is point-impl V other-point-impl. We can infer this, provided a disjunction sub-
sumes its disjuncts:

I'Faz<zVy I'ky<zVy
In the opposite direction, we take the rule:

I'F OK(Fizyx - X2i X - X&p — Y)
' OK(Fizyx - XZix - XZp — y)
I'F OK(Frzyx---xa; Vaix - xz, —y)

This rule supports the case analysis needed for the example. In particular, notice
that the rule performs a case analysis on one argument at a time. That means
that all possible combinations of arguments will be considered.

A natural alternative to using disjunctive types is to talk about the properties
that two types have in common, and then to introduce a type with just those
properties. This approach does not work because, in general, interfaces with
multi-methods do not correspond to types. In particular, we could not treat the
example of point-impl and other-point-impl.

5 Execution

So far, we have been implicitly assuming that there is some execution mechanism,
and that it is affected by the programmer’s assertions. This section formalizes
such an execution mechanism. In particular, it demonstrates how to execute an
operation with several implementations which may return results of different
types. The execution mechanism selects an implementation on the basis of the
classes of the arguments but also of the class of result needed by the context (for
the rest of the computation).

First, we present a simple, compelling, but impractical expression evaluator.
This evaluator does not rely on typechecking, and hence it is forced to guess the
types of subexpressions. Roughly, given an expression F(T;,...,T,) and a desired
result type y, the evaluator may non-deterministically try any implementation
of F suggested by an assertion of the form prim(F:zy x---xz, — y; f) or

75

cand(F:zy %+ -XZy, — y; V1,...,Vn.T), and evaluates the subexpressions Ty, ...
T, guessing that they have types z1, ..., &,, respectively.

Then, we show how type information can be related to the behavior of this
evaluator. Basically, T: z means that the evaluator will not run out of options
when applied to T to get a value of type z. The evaluator may not terminate, but
it never gets stuck. Similarly, OK(F: zx---x2, — y) means that the evaluator
will not run out of options when applied to an invocation of F with the goal of
obtaining a result of type y and with arguments of types z1, ..., z,.

Finally, we present a modified evaluator that uses the results of typechecking
to avoid dead ends. Roughly, given an expression F(Ty,...,T,) and a desired
result type y, the evaluator selects an implementation of F suggested by an
assertion prim(F: z;x- - -x&, — y; f) or method(F: z1x- - Xz, — y; vi,...,vs.T),
and evaluates the subexpressions Ty, ..., Ty, provided these have types z1, .
Z,, respectively. It never needs to explore alternative branches.

Throughout, we assume that an environment I” is given, and consists only of
assertions about primitives, candidates, and subtypings. When we write z < y,
prim(F:zyx- - -xz, — y; f), or cand(F:zy X - -XZy — ¥; v1,...,Vn.T), we mean
that the assertion is derivable from I'. Similarly, when we write E(A) + T:z,

we mean that I', E(A) F T:z; the form of I' guarantees that I', E(A) is well
formed.

bl

‘e

5.1 A Simple Evaluator

The rules for the evaluator are shown in Figure 2. The evaluator is based on
Judgments of the form:
AF Sz= val

This judgment means that the expression S reduces to val, with the bindings A
and the goal type z. The evaluator returns val if such a judgment can be proved.
It thus relies on a non-deterministic search.

The details of the values returned by the evaluator are not important. The
following basic assumptions about values and their classes suffice. We assume
that there is a function which gives the class class(val) of any value val. In order
for the evaluator to be correct, the primitives it calls upon must be correct. In
particular, they must return values of the types they were declared to return:

ifprim(F:z;x---x2, — y; f)
and class(valy) < 1, ..., class(val,) < z,
then class(f(valy,...,valy)) <y

In order for conditionals to work as expected, true and false must be the only
booleans: .
if class(val) < bool

then wal = true or val = false
Finally, in order for the execution of the new form to be able to succeed, there
must be a value of each class.

We obtain the reassuring result that, when the evaluator returns a value at
all, this value is of the requested type:

76

Avi—val, A" F viz = val if class(val) < &
A+ new(c):z = val if ¢ <z and class(val) <c

Ar Szl Ave val b Tiy= val
AFletv=SinT:y = val

A F S:bool = true AF Tiiz = val
AF ifS then Ty else Ta:z = val

A F S:bool = false At Taz = val
A F if S then Ty else Ta:z = val

AF Tiizy=>valy, -+ AF Thzp = val,
AF F(Ty,....TR):y = flvaly, ..., valy)
if prim(F: class(valy) x - - - x class(val,) — y; f)

AbF Tiizi=2valh -+ AF Thpiz, = val,
vi+—valy,...,vo = valy, F Tiy = val

AF FT1,...Th)y = val
if cand(F: class(valy) x---xclass(valn) — y; v1,...,vn.T)

Fig. 2. Rules for the simple evaluator

Theorem 1. If A + T:z = val then class(val) < z.

Proof sketch: By an easy induction on the derivation of A F T:z = val. O
In addition, we obtain a result about evaluation and subsumption:

Theorem2. If A+ T:z = val and x <y then A+ T:y = val.

Proof sketch: By induction on the derivation of A + T:x = val. We consider
the rule instance used in the last evaluation step of A F T:z = wval, and replace
it with the analogous rule instance, with y in place of z. O

Now we define what it means for the simple evaluator to get stuck, and then
prove that this does not happen in the evaluation of well-typed terms. We let
an evaluation goal be a judgment A F T:z =7, where the output value is not
specified. We say that the goal succeeds if it is possible to prove A + T:2 = val
for some val. We define stuck to be a predicate on goals A F T:x =7. We
want to say that A F T:z =7 is stuck if trying to execute T (with type =
and bindings A) by backward chaining on the rules will find that all paths are
dead ends. Conversely, if A + T:z =7 is not stuck, then trying to execute T
by backward chaining on the rules will be able to find some path that does not
dead end, even though the path may not terminate.

We define stuck inductively. In the base case, A b T:z =7 is stuck if there
is no rule capable of producing a completed judgment A F T:z = val. More
precisely, this means:

77

— A F v:z =718 stuck if either v is not bound in A or it is bound to a value
with class not a subtype of z;

— Ak new(c):z =7 is stuck if ¢ is not a subtype of z;

- AF F(Ty,...,Tp):y =7 is stuck if neither prim(F:zyx---x2, — y; f) for
any zi, ..., &, and f, nor cand(F:z;x---xz, — y; vq,...,v,.T) for any z;,
e, &y and vy,. .., v, T

Inductively, A F T:z =7 is stuck if each rule that could produce a completed
judgment A F T:z = val has some stuck antecedent. We omit the details.

We observe that the evaluation of well-typed terms does not get stuck. In
order to state this observation more precisely, we define a function for extracting
a type assignment from variable bindings:

E(vy + valy, ... vy — valy) = vy:class(valy), . . ., vy,: class(val,,)
We have:
Theorem 3. If E(A) F T:z, then A F T:z =7 is not stuck.

Proof sketch: We assume that A F T:z =7 is stuck and derive a contradiction
by induction on the proof that A F T:z =7 is stuck. We show that there is
some instance of a rule that can produce A F T:z =7, and such that all its
antecedents typecheck and its side conditions are satisfied. The antecedents of
the rule determine evaluation subgoals, and by induction hypothesis these are
not stuck, and hence A T:z =7 is not stuck. The argument that there is such
an instance of a rule is by cases on the proof of E(A) F T:z; the last few steps
of the proof provide the information required to identify the instance. O

3.2 A More Practical Evaluator

As the proof of Theorem 3 suggests, type information could be used to inform
the evaluator about which path to try. A more practical evaluator, shown in
Figure 3, takes advantage of type information to choose only paths that are
guaranteed not to dead end. The new rules differ from the old ones only in that
they include some type conditions. Therefore, if the practical evaluator returns
an answer, the original evaluator can also return that answer.

The practical evaluator can be efficient because all the type conditions can
be checked at compile time. The additional conditions do not cause the evaluator
to get stuck on terms that typecheck:

Theorem 4. If E(A) b T:z, then A b T:z =7 is not stuck.

Proof sketch: The proof is essentially the same as that of Theorem 3. The only
restriction of the simple evaluator is the appearance of type conditions, which
hold for the rule instances used in the proof of Theorem 3. O

Further, thanks to typechecking, the evaluator need try only one execution
branch to avoid getting stuck. It can use the information provided by typecheck-
ing to choose appropriate output types for evaluating subexpressions. Since the
subexpressions typecheck, their evaluations do not get stuck, and their results
can be used to complete the evaluation.

78

Avis val, A" b viz &> val if class(val) < z
A F new(c): z &> val if ¢ <z and class(val) < ¢

Al S:ize val Avival F Tiye val
Abletv=SinT:ye> val
if E(A) F S:z and E(A),v:iz + T:y

A F S:bool & true AF Tiiz e val
AL if S then T, else Ts:z & val
if E(A) + S:bool and F(A) + Ti:z

A+ S:bool &> false AF Taizr e val
A F if S then T, else To:z & val
if £(A) F S:bool and E(A) F Ta:z

AbF T valy - AF Toiz, o val,
AFFKTy...Th)y e f(valy, ..., val,)
if prim(F: class(valy) x - - - x class(val,) — y; f)
and E(A) F Tyiizy, ..., E(A) F Tpizn
and OK(F:z; x---xzp — y)

AbFTiizi e va - AF Tpizn e val,
vi—waly,. .., vy — val, b T:y o> val
AR FTy,....Th):y o> val
if method(F: class(val;) x-- -xclass(valy,) — y; vi,...,v,.T)
and E(A) F Tyizy, ..., E(A) F Thiz,

and OK(F:z1 %+ X3, — y)

Fig. 3. Rules for a more practical evaluator

6 Conclusion

A method declaration can naturally be viewed as an assertion that the method
body implements the operation in the appropriate circumstances. This view can
lead to a simple, modular system for expressing and reasoning about object
oriented programs. The system allows methods to be defined on interfaces and
handles multi-methods.

This paper has only tried to motivate the treatment of methods as assertions
and to show that it can be given a correct formalization. Many issues remain
to be explored. Technically, it seems interesting to consider more powerful type
systems and to widen the range of properties that assertions can express. Mat-
ters of language design also deserve consideration. In particular, a programming
language based on the assertional view should provide convenient support for
modularity, within a sound methodology.

79

Acknowledgments

Luca Cardelli, Mike Dixon, Georges Gonthier, and Gregor Kiczales have helped
clarify these ideas. Dixon and Kiezales commented on earlier dralts of this paper.

References

10.

11.

12.

13.

14,

. AGRAWAL, R., DEMicHIEL, L. G., AND LiNDsAY, B. G. Static type checking of

multi-methods. In Proceedings of the Conference on Object-Oriented Programming
Systems, Languages, and Applications (1991), ACM. Also published in SIGPLAN
Notices, 16(11) (1991), pp. 113-128.

. ANDREOLI, J.-M., AND PAREscHI, R. Linear objects: logical processes with built-

in inheritance. In Proceedings of the Seventh International Conference on Logic
Programming (1990), D. H. D. Warren and P. Szeredi, Eds., MIT Press, pp. 495-
510.

. BoBrow, D. G., DEMICHIEL, L. G., GABRIEL, R. P., KEENE, S. E., KiczALEs,

G., AND MoON, D. A. Common Lisp object system specification. Sigplan Notices
23, Special Issue (1988).

. BoBrow, D. G., GaBRIEL, R. P., AND WHITE, J. L. CLOS in context: the shape

of the design space. In Object Oriented Programming: The CLOS Perspective,
A. Paepcke, Ed. MIT Press, 1993, pp. 29-61.

. CANNING, P., Cook, W., HiL, W., MITCHELL, J., AND OLTHOFF, W. F-

bounded quantification for object-oriented programming. In Functional Program-
ming and Computer Architecture (1989).

. CARDELLL, L. A semantics of multiple inheritance. Information and Computation,

76 (1988).

. CARDELLIL, L., AND WEGNER, P. On understanding types, data abstraction and

polymorphism. Computing Surveys 17, 4 (1985).

. CASTAGNA, G., GHELLL, G., AND LONGO, G. A calculus for overloaded functions

with subtyping. In ACM Conference on LISP and Functional Programming (1992).
Full paper to appear in Information and Computation.

. CHAMBERS, C. The Cecil language: Specification and rationale. Tech. Rep. 93-03-

05, Department of Computer Science, University of Washington, 1993.
CHAMBERS, C. Predicate classes. In Proceedings of the European Conference on
Object-Oriented Programming (1993).

DixoN, M. Embedded Computation and the Semantics of Programs. PhD thesis,
Stanford University, 1991. Also published as Xerox PARC technical report SSL-
91-1.

GOLDBERG, A., AND ROBSON, D. Smalltalk-80: The Language and its Implemen-
tation. Addison-Wesley, Reading, MA, 1983.

Hopas, J. S., AND MILLER, D. Representing objects in a logic programming
langnage with scoping constructs. In Proceedings of the Seventh International
Conference on Logic Programming (1990), D. H. D. Warren and P. Szeredi, Eds.,
MIT Press, pp. 511-526.

KiczaLes, G. Traces (a cut at the “make isn’t generic” problem). In Proceedings
of International Symposium on Object Technologies for Advanced Software (1993),
S. Nishio and A. Yonezawa, Eds., JSST, Springer- Verlag, pp. 27-43. Lecture Notes
in Computer Science 742.

15.

16.

17.

18.

80

PIERCE, B. C., AND TURNER, D. Object oriented programming without recursive
types. In ACM Symposium on Principles of Programming Languages (1993).
SHAPIRO, E., AND TAKEUCHI, A. Object oriented programming in Concurrent
Prolog. New Generation Computing 1 (1983), 25-48.

StroUSTRUP, B. The C++ Programming Language, Second Edition. Addison-
Wesley, 1991.

TAkasHIO, K., AND Tokoro, M. DROL: An object-oriented programming
language for distributed real-time systems. In Proceedings of the Conference

on Object-Oriented Programming: Systems, Languages, and Applications (1992),
pp. 276-294.

