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Abstract. This paper presents a programming model for concurrent
object-oriented applications by which concurrency issues are abstracted
and separated from the code. The main goal of the model is to minimize
dependency between application specific functionality and concurrency
control. Doing so, software reuse can be effective and concurrent pro-
grams are more flexible, meaning that changes in the implementation
of the operations don’t necessarily imply changes in the synchronization
scheme (and vice-versa). We make an analysis of concurrent computa-
tion, review existing systems and their inherent limitations, and discuss
the fundamental problems in abstracting concurrency. Then we propose
a solution based on lessons learned with adaptive software, introducing
the concept of synchronization patterns. The result is a programming
model by which data, operations and concurrency control are minimally
interdependent.
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1 Introduction

This paper describes a new approach to concurrent object-oriented program-
ming by which synchronization schemes are expressed by a mechanism external
to the programming language itself. In fact, we separate the basic behavior of
the applications from their concurrent issues, introducing a new level of abstrac-
tion in object-oriented programming. We call this new level the adaptive level.
When programming adaptive applications, behavior is described independent
of any concurrent activities, and concurrency control is described with minimal
assumptions on the operations; then we generate a complete and correct object-
oriented program from the adaptive constructs. Doing so, the basic semantics of
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one application remains unchanged for a family of different implementations that
can run in sequential or concurrent form. Also, several synchronization schemes
can be tested without modifying the implementation of the operations. At the
same time, one particular synchronization scheie may be reused by several appli-
cations. Additionally, compatibility with the existing programming environment
is maintained, because the result of this method is an ordinary object-oriented
program. An overview of our approach can be seen in Fig. 1. The generation

of object-oriented programs from high level descriptions of their parts can be
automated.
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Fig. 1. Separating concurrency schemes from programs.

In this paper we want to address two questions. One first question is whether
concurrency can be abstracted from applications at all. Arguments may be raised
stating that some applications are inherently concurrent, and it will be impossi-
ble to separate their basic behavior from the fact that their execution includes
several competing components. We think that in all cases concurrency can and
should, in fact, be abstracted. The second question is how this abstraction can
be implemented; that is, to find a convenient high-level language, which must
be able to describe the synchronization scheme and the application algorithms
at the same time, without imposing a totally new programming model at the
object-oriented level.

1.1 Concurrency Revisited

Concurrency includes two opposite forces: collaboration and competition. On the
one hand, concurrent applications allow the existence of a set of collaborating
processes® , and this collaboration represents performance gains, high availability,
group work, etc. On the other hand, collaborating processes will eventually share
resources, and therefore conflict; as a consequence, synchronization mechanisms

® Many words have been used in the literature: heavy-weight or light-weight process,
task, thread, etc. Our concept of process includes all of those terms.
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must be provided. In many cases, defining the collaboration and the synchro-
nization schemes may be the most complex part of a concurrent application.

The issue related to collaboration is how to describe the initial and dynamic
configuration of applications. Usually the operating system (or some process
library) provides primitives for process creation; the way programmers have been
dealing with this problem is to include a call to create Process at some points in
the code - the initial configuration probably hard-wired in the first lines of code.
Methodologies for configuration have been proposed (for example, CSP [9]),
but they usually deal with the problem at a very low-level of abstraction. The
challenge is to find high level mechanisms which express initial and dynamic
configuration independent from the application itself.

Concerning competition, any application must deal with situations in which
two or more processes are accessing the same data at the same time. Again,
the operating system (or some library) usually provides primitives for mutual-
exclusion, but the direct use of those primitives tends to increase the complexity
of programs. The challenge here is to find high level constructs which express the
additional complexity introduced by competition, i.e. expressing process synchro-
nization with minimal dependencies over the other aspects of the applications.

From the process’s point of view we can identify concurrency from four dif-
ferent perspectives:

— Process-to-processor: what processes should execute in what processors.
Process-to-process: how and when processes create other processes.
Process-to-data: what data should be available and under what conditions.

— Process-to-function: what functions do processes execute and under what
conditions.

The systematic handling of these relations is a challenge, in part due to the
fact that their domains are not clearly disjoint. In order to simplify concurrent
applications, it would be extremely useful to have a mechanism for expressing
these relations independent of (or separated from) the code of the application.
This is precisely what we propose to do: abstracting concurrency from the basic
behavior of applications, so that applications are easier to program, understand
and modify. In this paper, we abstract the process-to-function relation, due to
1ts relevance to the problem of process synchronization.

1.2 Object-Oriented Programming Revisited

The benefits of object-oriented programming are widely known and need not be
repeated. What’s not so exposed 1s how object-oriented programs can be different
from procedural programs in a very nasty way. In the object world, methods are
not just what functions used to be in the procedural world. Several studies (for
example, [24, 23]) have shown that methods tend to be very small, most of
them serving as simple bridges to other methods. This is a natural consequence
of encapsulation, and is encouraged by style guidelines for good programming
[12]. Another problem is that all these little methods are explicitly attached to
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classes, introducing an implicit commitment to maintain each method’s code
dependencies on its own class and on the classes which are referred in the code.
"These characteristics have two undesirable consequences: (1) understanding each
class’s functionality is easy, but understanding programs as a whole can be very
hard; and (2) with relations between classes changing frequently, the effort to
maintain the code can be substantial.

Due to the proliferation of small methods in object-orientation, models that
were perfectly appropriate for parallel and distributed procedural computing
are not necessarily good for parallel and distributed object-oriented computing.
The complexity of the solutions proposed so far for concurrent object-oriented
programming is a consequence of this disadjustment.

1.3 Adaptive Programming

Adaptive programning [11, 13, 15, 14, 21] tries to solve the problems of object-
oriented programming by describing programs in a level above object-orientation.
Adaptive programs are defined by two building blocks: the structural block, im-
plemented by class dictionary graphs, which describes relations between classes:
and the behavioral block, implemented by propagation patterns, which describes
the operations. The building blocks are only loosely coupled with each other.
This is what makes applications adaptive: changes in one block don’t necessarily
imply changes in the other. Specialized tools produce object-oriented programs
from those building blocks. Adaptive applications are programmed from a global
perspective, and not from each class’s role in the application. In fact, the com-
plete definition of a class - the set of methods - is not made at programming time,
but it is delayed until what is called propagation time, where the appropriate
methods are assigned to the appropriate classes.

In the adaptive method, reuse is not restricted to imheritance. Although
the adaptive method makes full use of inheritance (just as it makes full use
of parametrization, and all the other primitive notions of “reuse”), it allows the
reuse of one building block for many different implementations of the other.
In other words, the same propagation pattern can be reused for different class
dictionary graphs (and vice-versa).

Our goal of abstracting concurrency from object-oriented programs can be
achieved by extensions to the adaptive method. Adaptive concurrent applica-
tions are defined by the two previous building blocks and a new one, the con-
currency block which describes the synchronization scheme between the several
processes. Synchronization schemes are implemented by synchronization pat-
terns. Object-oriented programs are automatically generated from these three
building blocks.

The remainder of this paper is organized as follows. In section 2 we survey
the most recent proposals in concurrent object-oriented programming. Section 3
discusses the conceptual problems of abstracting the process-to-function relation,
revisiting well-known examples of concurrent situations. Then, in section 4 we
present a possible implementation of our proposal, integrated in the generic line
of adaptive software. Finally, section 5 states the conclusions and future work.
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2 Directions in Concurrent Object-Oriented
Programming

Researchers have tried to merge object-oriented programming and concurrency
for many years, but so far there is no commonly accepted mechanism for con-
current object-oriented programming. Although the similarities between objects
and processes seem obvious, in part due to the notion of encapsulation, the union
between the two brings about many questions for which there exist no definitive
answers.

A recent discussion of the state of the art can be found in Agha et al. [2].
Table 1 summarizes the main characteristics of some of the most significant so-
lutions proposed so far. Those characteristics are: (1) atomicity vs non-atomicity
of objects; (2) active objects vs uniform object model; and (3) implementation
strategy: class libraries vs language extensions vs new languages.

I ” atomicity ] active objects [ implementation strategy ”
ABCL/1 [25]|| Required for Yes New language
serialized objects
CEiffel [17]|| Not required No Extensions
Eiffel [20] Yes No Extensions
Eiffel// [6 Yes Yes Extensions+library
Emerald [5 No No New language
Maude [19] Yes No New Language - Integration with
rewriting logic
POOL/T [3 Yes Yes New language
Sina [4 Not required No New language - Integration with
composition filters

Table 1. Characteristics of concurrent object-oriented languages.

Researchers who propose atomicity of objects claim that allowing only one
process at a time to execute operations on an object is a natural integration of
ohjects and concurrency [3, 6], and that it is required for provability purposes
[20]. Those who propose a more permissive solution claim atomicity is not always
required nor desired [17].

Languages that distinguish between active and passive objects associate a
special method (the body) to active objects. The body 1s usually a loop serving
requests under certain conditions. Passive objects, on the other hand, don’t have
the body and can only be accessed by one active object. This approach is a nat-
ural extension of the client/server model for object-based languages, although
lately it has been integrated with languages supporting inheritance. When ap-
plied to typical object-oriented applications, this approach may lead to severe
performance loss, because it forces many small objects to be processes. More-
over, the distinction between active and passive objects breaks the uniformity
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that exists in sequential object-orientation. In the uniform object model. activity
is trivial; that is, there are no special recipients of messages, all objects can be
accessed in the same way, simply by invoking one of their methods.

In relation to the implementation strategy, the solutions vary from the use
of class libraries to entirely new programming languages. Class libraries are very
attractive, since they do not modify the existing programming language. They
are also very flexible, because classes in those libraries can provide a clean inter-
face to low-level mechanisms (tasks, locks, semaphores, timers, etc). However,
all the synchronization issues have to be solved explicitly by the prograrmmer.
This increases the complexity of programs, and lacks to provide any kind of
systematic approach to the concurrency issues of applications. Although not
shown in table 1, some examples of handling concurrency with class libraries are
COMANDOS [22] and the Eiffel-based work in [10].

The second implementation strategy takes a sequential language and defines
some extensions to it, either by adding new keywords (as in Eiffel [20]), or by
inheritance from special classes (as in Eiffel// [6]), or even by special comments
in the code (as in CEiffel [17]). In any case, the compiler is modified, but the
programming environment is basically the same. However, it is clear that the
more extensions are defined, the more flexible programs become?.

The third implementation strategy defines new programming environments
(programming languages and support systems) explicitly designed for solving
the problems of concurrency. Some examples are shown in table 1. Another ex-
ample of this approach is the work proposed by Agha et al. [1], based on the
Actor model, which defines synchronizers - special actors that handle synchro-
nization within a group of actors. The introduction of entirely new programming
paradigms is fascinating, and can effectively solve most of the problems. How-
ever, when it implies totally new programming environments it tends not to he
accepted by a large community of programmers.

One of the serious problems detected in concurrent object-oriented program-
ming is the so-called inheritance anomaly: the synchronization scheme of one
class, in general, cannot be effectively inherited without non-trivial class redef-
initions. This phenomenon has been extensively pointed out in the literature,
and compromises severely the reuse of classes by inheritance (Matsuoka et al.
make a detailed analysis of the problem in [18]). Most proposals for concurrent
object-oriented programming presented so far, suffer, to a certain degree. from
the inheritance anomaly. We will come back to this issue in section 4.4,

The solution we propose does not impose atomicity of objects and does not
impose the existence of active objects. although the high-level language con-
structs presented here could be mapped into languages with such characteris-
tics. The main contribution of our work is concerned with the implementation
strategy. We wanted to provide a high level of abstraction without defining an
entirely new pregramming paradigm at the object-oriented level. We achieve
this by using synchronization patterns, from which object-oriented code is
generated.

* Compare, for example, [20] with [17].
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3 Abstracting Concurrent Situations

We next give some examples of typical concurrent situations and show how con-
currency can be separated from the basic behavior of these applications. At this
point, we will not use any programming language in particular, but just pseudo-
code describing the main lines. The goal is to identify the basic requirements
in abstracting concurrency, and we will do so by identifying, for each case, the
three building blocks: structural block, behavioral block and concurrency block.

3.1 The Dining Philosophers

In the classical formulation of the dining philosophers problem [7], there are N
philosophers sitting at a circular table and N forks on the table, placed between
the philosophers. Philosophers execute a never ending loop of thinking and eat-
ing; to eat they need both forks, the left one and the right one, which are shared
with their neighbors. There is the possibility of deadlock - when they all grab
the left fork at the same time and then try to grab the right fork. One widely
known solution is to make the allocation of both forks as a globally indivisible
operation. The application blocks for this problem are shown in Fig. 2.

Behavioral Block: Structural Block:
i . Philosopher knows-of:
PhllOSEpheI.does. it maht s Pk
OOFO;:ver Fork knows-of: //something
Think
Eat Concurrency Block:
Think is etracture.
// Think for a while add-structure:

Eat is Fork knows-of:
TakeForks state : State
// Eat for a while TakeForks@Philosopher is exclusive
PutForks requires:

TakeForks is left.state == FREE and
left chkUp 1‘ight.state == FREFE
right. PickUp false — repeat

PutForks is effect: o
left. Put Down left.state := TAKEN;

i i;t PutDown right.state := TAKEN;
Fork dOeS" e PutForks@Philosopher
: i : flect:

PickUpis // going up e ’ 3 '

PutDown is // going down f?ft.atate := FREE;

right.state := FREE;

Fig. 2. The dinning philosophers problem.
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Whatever function philosophers are supposed to do, it will be independent
from the fact that there are N of them doing the same thing. In other words,
when they do it may depend on external factors, but what they do is independent
of the rest. Deadlock is a consequence of configuration (in fact, if there are 2N
forks on the table, there will never be any competition).

We achieve synchronization by mutually excluding processes at operation
TakeForks, meaning that there will be only one philosopher executing this code
at one time. Moreover, to execute operation TakeForks both forks must be free.
Therefore, for synchronization purposes, we must associate a state with each
fork, so that we can determine if some philosopher is using it or not. In fact, this
state is not a basic characteristic of Fork, but just an additional information for
synchronization purposes.

The operation TakeForks must be it exclusive; moreover, it can only be ex-
ecuted when both forks are free. When this requirement cannot be satisfied,
the presented scheme decides to make an active wait. Other policies could be
used, but this one, although expensive in terms of CPU cycles, is simple and
expressive enough for demonstration purposes. The point is that the reaction to
an unsatisfied constraint is an important part of the synchronization scheme: a
default action, such as “wait until the constraints can be satisfied”, niay not be
appropriate for all situations.

3.2 The Bounded Queue

The second widely known concurrency example is the bounded queue. In the
classical formulation of this problem, clients invoke put and remove operations
over Queue objects (let’s assume, for the time being, they are LIFO queues).
Moreover, performing a put on a FULL queue or a Temove on an EMPTY queue
implies blocking the client until the state of the queue changes. The solution is
also widely known, and it follows a monitor approach [8] to each Queue object.
In this case, we can define the application blocks shown in Fig. 3.

Structural Block: Concurrency Block:
Queue knows-of: regions:
maz : Number C1 : per-object
list : ListOfObjects Remove@Queue is exclusive C'1

requires:

Behavioral Block:

list not empty

Queue does: false — wait
Put{Object o) is Put@Queue is exclusive C'1
// Insert one object in the list requires:
Object Remove() is list not full
/] Remove and return the newest false — wait

Fig. 3. The bounded queue problem.
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In the case of sequential programming, the implementation of the opera-
tions should avoid erratic situations; that is, before inserting/removing an object
to/from the queue, a test should be performed on the number of elements in the
queue. In general, functions should not rely on any concurrency scheme to pre-
vent errors. This rule is justified by the following: in case no concurrency exists,
behavioral errors can still occur, and their detection should be independent from
all the rest. The absence of those tests 1s an optimization, obvious in this case,
but not so obvious in general.

As for the synchronization scheme, only one process at a time should be trying
to modify the queue (either inserting or removing elements): remove and put are
mutually exclusive. The granularity of this exclusion is by object, that is, what’s
happening in one queue object is independent of what’s happening in all other
queue objects. This means that, independent of the particular implementations
of mutual exclusion, there must be mechanism of differentiating among several
exclusive regions. In Fig. 3, C1 is the name of the exclusive region. Removing
from an empty queue or inserting into a full queue suspends the caller by a
blocking wait (instead of a dynamic one, as in the philosophers example).

3.3 Observers

The observers example models a situation in which the execution of operations
on objects of type A is supervised by some object of type B (possibly executing
in another process). The behavior of both types of objects is independent of the
the fact that any operation on A objects must trigger some operation on some B
object. Although this is related to synchronization, it is the opposite of mutual
exclusion, because it triggers parallel executions instead of inhibiting them. This
situation can be abstracted as shown in Fig. 4.

Structural Block: Concurrency Block:
A knows-of: //something add-structure: A B
B knows-of: //something A knows-of: obs :
fl@QA
on-entry:
Behavioral Block: obs.observe(this_object, “IN F'1")
A does: on-exit:
f1(...) is ... obs.observe(this_object, “OUT F1”)
2(...)is ... f2@A
on-entry:
B does: obs.observe(this_object, “IN F2")
Observe (Object obj, String s) is on-exit:
print (obj, s) obs.observe(this_object, “OUT F2")

Fig.4. The observer problem.
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We can think of more sophisticated examples of observers. such as debuggers,
for which we could define a similar kind of interaction. The point is that in
most cases interaction between objects and processes is independent of what the
objects do, and therefore it can be abstracted, as we’ve just done in this informal
way.

3.4 Discussion

The examples seen so far allow us to identify a set of requirements related to
the problem of abstracting the process-to-function relation. In general, in the
concurrency block we need to be able to express the following:

— Additional structure: the basic application structure may need extra parts
or even new classes for synchronization purposes. This is the case of State in
the dining philosophers example.

— Additional operations: in order to achieve synchronization, it may be neces-
sary to define new methods. For example, in the bounded queue, determining
the number of elements in the list may involve a new method for class Queue.

— Mutual exclusion sets: it may be necessary to name (and therefore distinguish
between) mutually exclusive regions. Exclusion is defined on an object basis.
It would be extremely useful to be able to define exclusion in terms of groups
of abjects.

— Method identification: in all the previous examples, it is necessary to identify
which methods will be synchronized. This is the inevitable dependency of
the synchronization scheme over the application operations. However, i, is
clear that we may not need to explicitly synchronize all of those operations.

— Preconditions: it may be necessary to state a set of conditions that must
evaluate to true before operations are executed. That is the case of the
dining philosophers and of the bounded queue.

— Reaction to false preconditions: this is what defines the call semantics of the
method. A default WAIT (until preconditions become true) semantics inay not
be appropriate in all cases; instead, it may be better to return immediately
or to wait during a limited time. The synchronization mechanism must be
expressive enough to accommodate many different reactions. In the case of
the dining philosophers, we decided to make an active wait (repeat), whereas
in the bounded queue we decided for a blocking wait.

- Effects: in the observers example, we’ve seen how the execution of some
method may trigger other actions. In general, effects can be separated into
on-entry and on-exit actions; on-eniry actions will be performed as soon
as the process starts executing the operation, and on-ezit actions will be
performed just before the process finishes the execution of the operation.

4 Towards a Solution

Next we make a more formal approach to the programming model exposed
in the previous section. The solution we propose Is integrated in the generic
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line of adaptive programming described in section 1.3. Adaptive programs are
parametrized by a structural block (implemented by class dictionary graphs) and
a set of functions (implemented by propagation patterns) which involve groups
of classes without explicitly referring to all of them. We can view the role of the
adaptive tools as a function:

F : propagation patterns x class dictionary — OO program
Moving into concurrent computation, we extend this function by the following:

F': synchronization patierns x propagation patterns x class dictionary —

QOO0 program

Synchronization patterns, propagation patterns and class dictionaries arc
only minimally interdependent. The word minimelly means that the connections
between these building blocks include only the information that is absolutely nec-
essary, and ignore all that is not important for the interaction. Several examples
of minimal dependency between class dictionaries and propagation patterns can
be found in [16, 15, 14]. As for synchronization patterns, we will see how they
can be reused, and how they solve the inheritance anomaly.

4.1 Assumptions and Requirements

As we mentioned earlier, we make no assumptions about the underlying pro-
gramming paradigms associated with the particular object-oriented languages
and systems. Defining class dictionaries, propagation patterns and synchroniza-
tion patterns is independent of whatever facilities the lower levels provide. The
composition of these three building blocks will be mapped accordingly. Neverthe-
less, for some languages/systems the mapping will eventually be more restrictive
than for others. Moreover, the more restrictions that exist on the object-oriented
language, the less flexible the applications can be. For example, the expressive-
ness that we may have with synchronization patterns may be lost when gen-
erating a program in Eiffel//, since it imposes the model of active objects. In
fact, the ideal object-oriented level will make no restrictions concerning the ob-
ject/process space: object and process dimensions should be orthogonal. How-
ever, at the object-oriented level some minimal requirements must he observed:

— Object identifiers must be available; in particular, the current object identifier
must be held in some variable. This is accomplished by all widely used object-
oriented languages, and needs no further justification.

— Process identifiers must be available; in particular, the current process iden-
tifier must be held in some variable. This is not so obvious, but it is justified
by the fact that the low-level synchronization code may need to identify the
processes (for example, putting them on a waiting list and later removing
them from that list).

~ The system/language must provide some mechanism for mutual exclusion.

— The system/language must provide some mechanism for blocking/unblo. king
processes.

Note that the above requirements are very permissive. They can be satisfied
by any object-oriented language (say, C++) linked with a thread library and
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with a very simple Lock class. Since we make no assumptions on the object-
process relation we need two different identifiers. The unit of computation, that
is, the object and the thread of control, is given by the pair (obyld, procld).

4.2 Synchronization Patterns

The concurrency block identified in section 3.2 is expressed by a high-level con-
struct called synchronization pattern. Figure 5 shows the synchronization pattern
for the bounded queue problem. It follows the informal description given in sec-
tion 3.2, and uses the notation scen in previous papers [16, 15]. Keywords are in
capital letters; structure is defined in terms of additional parts and/or classes,
which can have a symbolic name inside the synchronization pattern; primitive
programming language code is placed between (@ and @) (in this case we are
using C++).

SYNC_PATTERN sync_A

ADD_STRUCTURE // additional structure
// empty
ADD_FUNC // additional operations

OPERATION int get_n_elements()
TRAVERSE FROM Queue TD ElementList
WRAPPER ElementList
SUFFIX (@ return_value = this->num_of_elements(); @)

MUTEX // mutual exclusion names
PER_DBJECT x1
SYNC // synchronization scheme

OPERATION Element *Remove()
AT Queue EXCLUSIVE x1
REQUIRES
(@ this->get_n_elements() !'= 0 @)
FALSE (WAIT)
ON_EXIT ((@ cout << ‘‘Leaving Remove’’; @))
OPERATION void Put (Element *e)
AT Queue EXCLUSIVE x1
REQUIRES
(@ this->get_n_elements() < max @)
FALSE (WAIT)
ON_ENTRY ((@ cout << ‘‘Entering Put’’; @))

Fig. 5. Synchronization Pattern for the bounded queue problem.

In general, synchronization patterns contain 4 blocks: 1) definitions for ad-
ditional structure; 2) definitions for additional operations; 3) declaration of mu-
tual exclusion names; 4) definition of the synchronization scheme. The first three
blocks correspond to the first three requirements in section 3.4. The fourth hlock
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defines the synchronization scheme in terms of mutual exclusion between oper-
ations, preconditions, reaction to false preconditions and effects. In the case of
the bounded queue, we define an exclusion named z1: for the same object, we
want to avoid the simultaneous execution of Put and Remove.

4.3 Generating an Object-Oriented Program

We now give an illustrative example on how the three building blocks of the
bounded queue application can be mapped into a C++ program. Given the syn-
chronization pattern in I'ig. 5 and the class dictionary and propagation patterns
in Fig. 6, the resulting object-oriented code for class Queue is shown in Fig. 7
(only the method Put is shown; Remove is very similar).

Queue Number .
OPERATION void Put (Element *e)

max TRAVERSE

- T FROM Queue TO ElementList
WRAPPER ElementList
el SUFFIX
Y (@ this->insert (e); @)
ElementList

OPERATION Element *Remove ()
TRAVERSE
FROM Queue TO ElementList
' WRAPPER ElementList
SUFFIX
(@ return_value = this->pop (); @)

Element

Fig. 6. Class dictionary graph and propagation patterns for the bounded queue appli-
cation.

Figure 7 1s self-explanatory. In this particular mapping into object-oriented
code, we assume that locking is possible through invocations to a special object
LockManager which blocks the requesting process until the required lock is avail-
able, but any other mechanism could be used. We also associate with each Queue
object a list of processes which are waiting to execute over the object. Note that
this mapping to C++ 1s just one of many possible mappings. However, the par-
ticular mapping that we chose can always be automated; that is, cach part of
a synchronization pattern will generate code according to a specific algorithm.
In this example, the code generation algorithm for any operation referenced in
a synchronization pattern observes the following guidelines:

— If the operation is defined as EXCLUSIVE, a local variable containing the
lock name is defined. The name contains at least the synchronization pattern
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class Queue { void Queue::Put (Element *e) {
AclivityList *_at; char lockname[50]; fock naming
ElemeniList "el; sprintf (lockname, "sync_A_x1%x", this); (PER_OBIECT x1, within sync_A)
pugiecmNumber max; . Ev@e_hz(] SJor when preconditions evaluate to false
void Put (Element *); LockManager->Lock {this_activity, lockname); EXCLUSIVE x]
Element *Remove ( ); : —— e —— — — — ——— . .
lﬂ_(th_lszg;_m,_n,ileﬂellsﬂimg)_(_! REQUIRES  (preconditions = truc)
cout << "Entering Put"; ON_ENTRY
el->Put (e}; defauls code (only this line!)
ON_EXIT
if (_al->n_elements( ) I= 0 .
_al->pop( }->Resume( ); unhlock some dctivity
LockManager—>Unlock (this_activity, lockname); over this object
;relurn;
R
Elsi( | FALSE  (preconditions = fulse)

“al>insert (this_activity); )
LockManager—>Unlock (this_activity, lockname); WAIT (forever)
this_activity—>Suspend ( );

C)
(]

Fig. 7. The resulting OO program.

name; if the mutual exclusive region was given a name (21, for example),
then that name will also be part of the lock name; if the mutual exclusion
1s defined per-object, then the lock name also includes the object unique
identifier. If the operation is not EXCLUSIVE, no lock name variable is
needed.

— For an EXCLUSIVE operation, if its reaction to a false precondition is not
QUIT, a loop is generated (while (1) {), so that when the process is resumed
(or repeats) it will try to execute the code again. If the reaction is QuIT, or
if the operation is not EXCLUSIVE, the loop is not necessary.

— Mutual exclusion is achieved by invoking the LockManager, given the process
identifier and the lock name. This invocation blocks the process until the
requested lock is available.

— The REQUIRES clause generates a test. For the true portion of the test, the
following code is generated: ON_ENTRY actions, the default code, ON_EXIT
actions, code to unblock some blocked process and code to free the mutual
exclusion lock (in this order). For the false portion of the test, the code
generator produces code that implements the required call semantics (wait,
wait for some time, etc).

4.4 Inheritance Anomaly

An important point is the relation between synchronization patterns and class
inheritance. Three situations may occur:

1 - The synchronization scheme is defined for method M of class C and M is
defined directly in class C'. This is the simplest situation, and it occurred in

the example of Figs. 5 and 6. The code generator defines M for (' according
to the algorithm explained in section 4.3.
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2 - The synchronization scheme is defined for method M of class C' and M is
inherited from a super-class of C'. This is a specialization of the synchro-
nization scheme for the inherited operation. In this case, the code generator
must redefine method M for class C.

3 - The synchronization scheme is defined for method M of class ', but a sub-
class of C', C'_sub, redefines M. This is a specialization of the operation for
the inherited synchronization scheme. In this case the code generator must
define method M for class C and also redefine method M for class C_sub.

These three situations have been identified before, in relation to the inheri-
tance anomaly that exists in most concurrent object-oriented languages [18]. The
anomaly 1s related to the inheritance mechanisms and so far there is no com-
monly accepted solution for this problem. In fact, the solutions proposed in the
literature are either very complex or very restrictive or aim for the minimization
of the anomaly rather than its elimination®. We think that solving inheritance
anomaly at the object-oriented level is not only very hard, but it may not be
the proper thing to do. For objects, the synchronization scheme is embedded
in their behavior; if a sub-class C'_sub defines more operations than its super-
class C', then it’s natural that the overall behavior of instances of C_sub may
be affected by that addition. The anomaly is not related to the objects them-
selves, but it’s a characteristic of the software model - reuse by inheritance. The
weakness associated with the anomaly appears when we try to identify “software
reuse” with “inheritance”. However, for a different concept of reuse, the inheri-
tance anomaly may not be considered a weakness, but simply a characteristic of
object-oriented languages when they try to model synchronization.

Our solution does not attempt to solve the anomaly at the object-oriented
level; on the contrary, methods may be redefined for sub-classes solely because
of synchronization needs. However, all of that is made by a code generator, and
therefore, is transparent to the programmer. Reuse is achieved at a higher level
of abstraction, as we will see next.

4.5 Reuse of Synchronization Patterns

Since synchronization patterns are based on minimal knowledge about other
building blocks of the application, their reuse can be effective. Suppose that
we want to include more functionality in bounded queue objects by defining
two new operations first and last to class Queue (or some sub-class of Queue).
These operations should either return the first and the last elements of the
queue (respectively) without removing them or return NULL if the queue is
empty. Note that these are just query operations that don’t change the state of
the object. Adding this additional functionality is as simple as defining two new
propagation patterns, and nothing else needs to be modified: queries can execute
concurrently with any other operation on the queue. Also, suppose that we want
to modify the structure and implementation of Queue objects by allowing them

® The solution proposed in (18], for example, achieves only minimization.
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to be either FIFO or LIFO. This change implies modifications both to the class
dictionary and to propagation patterns, as it is shown in Fig. 8. For subclass Fifo,
Remove must be redefined. However, the synchronization pattern is exactly the
same as the one in Fig. 5.

Lifo
R Queue Number [OPERATION void Put (Element *e)
max | L // as before
1% OPERATION Element *Remove ()
,e' // as before
Fifo ElementList OPERATION Element *Remove ()

WRAPPER Fifo
(@ return_value =
this->get_el()->removelast (); @)

Element

Fig.8. New structure and implementation for Queue objccts; the hexagon represents
an abstract class.

Inheritance anomaly does not exist at the adaptive level. In fact, defining
sub-classes with new sets of methods may involve modifications in the synchro-
nization scheme, but it will not require the redefinition of inherited operations.
At the object-oriented level, those redefinitions may occur, but they will be au-
tomatically generated. In the sequence of the example in Fig. 8, suppose that
we want to define another sub-class of Queue, QQueue, with a new method
RRemove; RRemove is similar to Remowve, but 1t cannot be executed 1mmedi-
ately after the invocation of Put. This example makes QQueue history-sensitive
and is usually considered a difficult situation to solve concerning the inheritance
anomaly. The three building blocks of the application can be seen in Fig. 9.
Although a new synchronization pattern is necessary to accommodate the be-
havior of QQueue objects, the inherited methods Remove and Put don’t need to

be redefined for QQueue.

The synchronization pattern in Fig. 9 introduces the notion of inheritance ap-
plied to synchronization patterns. In this case, synchronization pattern sync. AA
inherits from synchronization pattern sync_A (defined in Tig. 5). The effects of
inheritance here are similar to what’s usual for classes: a “sub sync-pattern”
contains all the additional structure and operations, mutex’s and synchroniza-
tion scheme of its “super sync-pattern”; however, it may include more informa-
tion and/or redefine the inherited information. The inheritance relation between
sync_AA and sync_A is a natural consequence of the situation we are trying to
model: the synchronization of QQucue objects 1s a specialization of the synchro-
nization of Queue objects.
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SYNC_PATTERN sync_AA : INHERIT sync_A
Lifo ADD_STRUCTURE -> QQueue, after_put, $int
Queue Number SYNC
max OPERATION Element *Remove()
AT QQueue EXCLUSIVE x1
el REQUIRES
Fifo ElementList (@ this->get_n_elements() != 0 @)
[ FALSE (WAIT)
ON_EXIT ((@ after_put = 0; @))
! OPERATION void Put (Element *e)
AT QQueue EXCLUSIVE x1
Element REQUIRES
(@ this->get_n_elements() < max @)
FALSE (WAIT)

QQueue

// All Prev1ous operations ON_EXIT ((@ after_put = 1; @))
// remain unchanged. OPERATION Element #RRemove ()
// This one is new. AT QQueue EXCLUSIVE x1

OPERATION Element *RRemove ()
WRAPPER QQueue
(@ return_value =
this->Remove(); @)

REQUIRES

(@('after_put) &%
(this->get_n_elements() '= 0) @)
FALSE (WAIT)

Fig.9. New structure, propagation pattern and synchronization pattern to accommo-
date QQueue objects.

5 Conclusions and Future Work

The merge of object-oriented programming with concurrency has not been smooth.
The modularity and simplicity of the object-oriented paradigm for sequential
computing breaks when it comes to parallel and/or distributed computing. Many
attempts have been made in order to find a good solution: use of class libraries
(e.g., task libraries), extensions to the sequential programming language (e.g.,
proposal by Meyer [20]) and even entirely new programming models (e.g.. Maude
[19]) arc examples of how researchers have dealt with the problem.

We have presented a new approach to the problem that stands above object-
orientation. Abstraction is achieved by using high-level language constructs which
describe programs in terms of their building blocks, namely, class dictionaries,
propagation patterns and synchronization patterns, but instead of promoting
these constructions into special system entities, we just use them to generate
the appropriate program using some existing object-oriented language. Doing
so, we gain three points: (1) abstraction and reuse of synchronization schemes
at the adaptive level; (2) flexibility of using low-level specialized classes at the
object-oriented level (locks, timers, etc); (3) compatibility with the existing pro-
gramming environment at the object-oriented level (compilers, debuggers. etc).

We are currently studying the enhancement of synchronization patterns,
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namely the possibility of incremental redefinition of sub synchronization pat-
terns, which will allow a more effective reuse of the synchronization scheme
defined for super-classes. We are also studying how to extend the definition of
mutually exclusive methods to include methods of arbitrary sets of objects.

This work is being integrated in the Demeter System”™  which is under
development at Northeastern University. The current version of Demeter/C++
supports only class dictionaries (edited with graphical interfaces) and propaga-
tion patterns (also animated with graphical interfaces). We are extending Deme-
ter to allow the development of parallel and distributed applications, by defining
the necessary programming abstractions, such as synchronization patterns.
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