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Abstract

Based on a name-passing calculus and on its typing system the paper
shows how to build several language constructors towards a strongly-typed
object-oriented concurrent programming langnage. The basic calculus in-
corporates the notions of asynchronous labelled messages, concurrent ob-
jects composed of labelled methods, and a form of abstraction on processes
allowing in particular to declare polymorphic classes. We introduce a no-
tion of values as name-expressions, and show how to create subclasses
of existing classes. A systematic translation of the derived constructors
into the basic calculus provides for semantics and for typing rules for the
new constructors.

Introduction

Concurrent objects constitute a convenient tool to describe concurrent and dis-
tributed computations. Types enforce a discipline in the usage of the program-
ming language constructors that not only provides for partial-correctness. but
also helps in writing clear programs. Furthermore, a type for a program often
gives some indication on the correct usage of the program. Nevertheless, most
object-oriented concurrent programming languages possess no flexible notion of
types, leaving to runtime the detection of protocol errors.

The calculus of objects aims at capturing fundamental notions present in
concurrent objects. Programs are built from names and labels by means of a
few constructors, namely asynchronous labelled messages. objects composed of a
collection of labelled methods, concurrent composition, and an operator enabling
to create a new name and use it in some defined scope. Notions of agents and
variables over agents increase the flexibility of the calculus. Agents are processes
abstracted on a series of names. They provide for recursion and, through an ML-
like let constructor. allow to declare an agent once and use it several times in a
given process.
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TyCO grows from the basic calculus of objects and its monomorphic typing
system [17], by introducing recursive types [2, 14, 16], and a form of predicative
polymorphism [3, 15]. Then, we incorporate datatype declarations, and values
constructed from these declarations, in the style of ML [9], Miranda [13], and
Haskell {6). Further values are the application of values to values, and a form of
name abstraction. Together, these constitute name-expressions evaluating to a
name in a given context or continuation. A general form of encoding values into
core-TyCO is presented, and admissible rules for the new constructors derived.

Core-TyCO possess a primitive notion of objects but not of classes. Making
use of the let-constructor we show how to declare polymorphic classes and how
to instantiate objects from classes. A notion of behaviour inheritance, by ex-
tending or replacing methods in classes, is also presented. It is shown how to
translate classes and subclasses into core-TyCO; typing rules for these construc-
tors are presented.

The paper can be best divided into two main parts: the presentation of core-
TyCO and its typing system in Sections 1 and 2; and the development of the
various derived constructors in Sections 3 to 9. Section 10 contains comparisons
with related work and some concluding remarks.

1 The Calculus of Objects

Processes are built from an infinite set of names, an infinite set of variables over
agents, and a set of labels. Names are denoted by a,b,..., and also v, z.y.....
Sequences of names of the form z; --- ,. for n > 0, are abbreviated to 2. We
assume names are pairwise distinct in sequences Z and y. Agent-variables are
denoted by X.Y,.... and labels by 1,11,1l5,.... The set of processes is given
by grammar

P = a<l:v | a>[ly: A& &l ALl | P.Q | 2| P
| X(v) | A(z) | let X=AinP

where P, Q. ... denote processes and the labels l;,....l,, for n > 0, are pairwise
distinct. The set of agents is given by grammar

A o= ()P | rec X.A

where A, A;, As,... denote agents.

Processes of the form at>M are called objects where a is the location (or
identifier or address) of the object, and M represents a (finite, possibly empty)
unordered collection of methods labelled by pairwise distinct labels. In a method
of the form {:(Z) P, the sequence of names Z represents the formal parameters,
while process P represents the body of the method.

Messages are processes a<l{ : 0 where a is the target and [: v the communication
of the message. Label [ selects one particular method in the target object, while
v constitutes the actual contents of the message. Intuitively, the result of the
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interaction of a message a<1l; : ¥ and an object a>[l; : A1&--- &l : An] is the
process P; with names in &; replaced by those in v. if A; = (z;) P;.

Concurrent composition P.Q denotes the process composed of P and @ run-
ning in parallel. Processes of the from |z|P allow to create a new name z and to
use it in a scope restricted to process P. We abbreviate a process |z1]- - P
to |2y -+ z,| P, or to |Z|P.

Agents can be of two forms: simply abstracted processes (&) P, or recursively
abstracted agents rec X.A. If A is an agent of the form (&) P, then A(%) denotes
the process P with names in & replaced by those in #. In this case. we call A(v)
an instance of A. Similarly, an applied agent-variable X (@) behaves as A(v). if
X is bound to A by a recursive agent or a let declaration. A process of the form
let X = A in P assigns agent A to X, and allows to use A multiple times in
process P via X.

Tn

Scope restriction |z|P and agents (Z) P are the name binding operators in the
calculus, binding the free occurrences of z and & in the respective bodies P. The
set of free names in a process P or agent A, notation fn(P) or fn(A), is defined
accordingly. We assume the usual notion of multiple substitution of names v for
the free occurrences of names # in a process P, notation P{#/z}, defined only
if the lengths of & and # match, and the names in & are pairwise distinct.

We also have bindings for agent-variables. Recursively defined agents and
let-declarations constitute the agent-variable binding operators: rec X.A binds
X in agent A. and let X = A in P binds X in process P. The set of free agent-
variables in a process and in an agent is defined accordingly. Then, P[X := A]
denotes the result of replacing the free occurrences of agent-variable X by agent
A in process P.

Structural congruence over processes simplifies the treatment of reduction.
Following Milner [8], we define = to be the smallest congruence relation over
processes generated by the following rules.

1. P=Q if P is a-convertible to @

2. PQ=Q.Pand (P,Q).R=P.(Q.R)

3. M = N if M is a permutation of N

4. |z|P,Q = |z|(P.Q) if z & In(Q)

5. ((&) P)(v) = P{v/z} if the lengths of & and ¥ match
6. rec X.A = A[X :=rec X.A]

7. let X = Ain P = P[X := 4]

Message application constitutes the basic communication mechanism of the
calculus, representing the reception of a message by an object, followed by the
selection of the appropriate method and the instantiation of the method’s body.
Let C be the communication /; : @ of some message, and let M be the methods
[lh : A1& -+ &, : Ay of some object. The application of C' to M, notation
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M e C. is the process P{9/%;}, provided that 1 < ¢ < n and the lengths of v and
T; match.

The following definition of reduction relies on fact that every process can be
systematically transformed into a structur al congruent process of the form || P
where P denotes the concurrent composition of messages, objects, and apphed
agent-variables. One-step reduction. notation P — @, is the smallest relation
generated by the following rules.

P=P P-Q Q=¢Q
Pl_)QI

CoMM |&|(a<C.a>M, P) — |z|(M e C, P)

STRUCT

2 Typing Assignment

Simple types are built from an infinite set of type variables, and the set of labels
introduced in the previous section, by means of a record constructor. We use
t.t'... to range over type-variables, a,/3... to range over types, and a, [3 to
represent finite sequences of types. The set of types is given by grammar

a u= ot | (1.l @yl

where l1, ... .1, are pairwise distinct labels. Type [l1: @1,...,ln: &n] is intended
to denote some collection of names identifying objects containing n methods
labelled with {1,....l,. and whose arguments of method I; belong to types in ¢;.

Type assignments to names are formulas z: a, for z a name and « a type.
While we assign types to names, to processes we assign typings. Typings, denoted
T,A...., are sets of type assignments where no name occurs twice. If z =
Z1 -+ Ty is a sequence of pairwise distinct names and & = ay -+ - @, a sequence
of types, we write : & for the typing {z1: oq....2n: an}, and ' 3: @ for
T'U &: @&, provided names in & do not appear in T'.

We say typings I' and A are compatible, notation I' < A, if a = # whenever
z:a € T and z: B € A. Compatible typings can be combined by a simple
set-union operation.

Type assignments to agent-variables are formulas X: &. for X an agent-
variable and & a sequence of types. Bases. denoted B.B',..., are sets of type
assignments to agent-variables where no agent-variable occurs twice. Similarly
to typings, we write B- X : & for BU{X: &}. provided X does not appear in B.

Typing assignments to processes are statements P > I', whereas type assign-
ment to agents are statements A > & TI. We write B = P » T (respectively
BF A b &,T) if statement P > T (respectively A > &,T') is provable from basis
B using the axioms and rules of the typing assignment system TA described
below. Whenever B - P b T, for some basis B and typing I', we say P is typable
and call I' a well-typing for P under basis B. The typing assignment system TA



104

is composed by the following axioms and rules for processes

MsG Bt a<ly:o o {0: dq,a: [li: dq,.... 00 G} (> 1)

(a: [ly: dq,y.nndps @) X Ty x--- X Tpyn > 0)
B}'Albdl,rl B}-Anbd,l‘n

0
M OB anlh Ak &l A b {a [ daer il ] JUT, U GT,
BFP s T -2:a BFPoT BFQo A

S C =

P BrEPeT OMP T BT POsTUA (T=4)
BFAval B-X:aFPosA BFP b T i

LET

Briet X—Am P o TUA L XA  ABs

and the following axiom and rules for agents
VAR B - X:atF X v &,0

B+-U»b» aT B-X:aFAbv> aT

XU a R
APP BT UG s Tus e XU P BFrec XA > aT

where, in the APP-rule, U stands for an agent or an agent-variable.

There are many meaningful processes that cannot be typed in the simple
typing assignment system. Processes representing natural numbers and lists are
two examples of a more general class of processes containing recurring name
structures that cannot be typed in TA. To type such processes we introduce
a new type constructor pt.a denoting the infinite tree solution of the equation
t = a [2, 14, 16]. In this way, the set of recursive types is defined by adding to
the syntax of simple types a production ut.c. for any type variable ¢t and any
recursive type a.

If « is a type, denote by «* its associated infinite tree. An interpretation of
recursive types as infinite trees naturally induces an equivalence relation ~ on
recursive types, by putting a ~ § if a* = p~. The recursive typing assignment
system TA , is obtained by adding rule = to TA, and by replacing the MsG-axiom
by the MSGH-aXiom.1

BFPv>T z:«
BrPovrT-z:p

(a=g)

MsG, Blra<dli:v b a:BU:6 (Br[l:d,... .0l &)

We introduce a further extension to the monomorphic type system that allows
to abstract a sequence of types on a particular type-variable, and to apply a type

IThe Msac,-axiom allows to type messages whose target is contained in the message's
communication, as in a<!:a.
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to an abstracted type. Types for agents now fall into two classes: sequences of
simple types, and polymorphic types constructed using V. Monomorphic types,
denoted 7,7',. .., are just sequences of (simple or recursive) types. Polymorphic
types are given by the following grammar.

o = 17 | Vio

As a consequence of the definition, universal quantifiers can only occur at the
top level of types. A polymorplic type of the form Vt;.... .Vt,.7 is abbreviated
to ¥ty - -+ t,.7, where t1,...,t, are the bound variables in the type. We assume
the usual notion of substitution of a type a by the free occurrences of a type-
variable t in a polymorphic type a. denoted by ola/t]. A type-variable occurs
free in a typing [' (respectively basis B) if it occurs free in some type in I’
(respectively B).

The polymorphic typing assignment system TA v is defined by the rules in
TA,, with the monomorphic type ¢ in rules LET and VAR (but not OBJ, MsG,,
ABs. AppP or REC) replaced by the polymorphic type o, by allowing polymorphic
types in bases (but not in typings), and with the addition of the following rules.

B T . B+ X b Yto.T
V-INTRO E% (t not free in T" or B) V-ELIM Br X Dba[a;ft]. T

We conclude this section with a brief overview of some important properties of
the typing assignment system (see references [14. 15, 16, 17] for developments).
Subject-reduction ensures that a typing for a process does not change as the
process is reduced. As a corollary, typable processes do not encounter errors
at runtime. We say a process P contains a possible runtime error if it may
be reduced to a process Q of the form |u@|(a>M,a<C. f’), and the message
application M ¢ C is not defined, or when ((#) P)(#) occurs in  and the lengths
of Z and # do not match.

System TA (and hence systems TA, and TA,v) does not possess a simple
notion of principal types. Nevertheless, this can be recovered by introducing
constraints on the types a type-variable may be substituted for. in the form of
Ohori’s kinds [11], and by a small adjustment in the MsG-axiom (14, 17].

3 Datatype Declarations and Constructed Data

In order to build interesting programs based on the calculus proposed in the
preceding sections, the first task we have to face is to construct data we can
compute with. Taking advantage of labels, we introduce the notions of datatype
declarations and constructed data. similar to those provided by functional pro-
gramming languages such as ML [9]. Miranda [13], and Haskell [6]. The data
considered here is ephemeral in the sense that it only lasts one “use™; persis-
tent data can be obtained by means of recursion, but for the sake of simplicity
we ouly consider the ephemeral case. In the sequel, to make actual programs
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more natural, we write agent declarations as X(z) = P, and assume that scope
restriction extends as far as possible to the right.

Boolean values can be defined as instances of the two agents below.

True(b) = br>[val: (reply-to) reply-to<true]
False(b) = b>[val (reply-to) reply-to<ifalse]

An object instance of True accepts a single message val and replies true stating
“I am the truth value true,” and similarly for instances of False. A boolean value
is then an object capable of receiving a message val containing a name capable
of receiving at least messages true and false, captured by the type below.

Bool %' [val: [true. false, . . .]]

Following the same reasoning, lists can be built from two constructors, Nil
and Cons, both accepting a single message val.

Nil(1) = I>[val (reply-to) reply-to<inif]
Cons(| head tail) = I>[val: (reply-to) reply-to<icons: head tail]

Lists are objects capable of receiving a single message val and replying either
nil or cons: head tail, for head an element of the list and tail a list, captured by
the type

List % Vt.pu.[val: [nil, cons: tu,...]]

which we may as well write
List(t) % [val: [nil, cons: ¢t List(t),...]].

This method of defining datatypes is so useful that we introduce a powerful
abbreviation by simply writing the datatypes Bool and List as follows.

Bool = [true, false]
List(t) = [nil, cons: t List(t)]

Similarly, natural numbers can be built from constructors zero and succ,
through the declaration Nat = [zero, succ: Nat].

How do we build actual data out of type declarations? In general, constructed-
values are built according to the grammar

con == a | I(con)
for ¢ a name, [ a label, and con a sequence of zero or more constructed-values.

Constructed-values are translated into a name v in a given context (or continu-
ation) P, through the encoding

[P = Plajt]
[(@mlP = [enlafol(L(vi), P)
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where L is the agent-variable associated with label I by the encoding of some
datatype declaration. Now, whenever we have an occurrence of a name in a
non-binding position, we may as well have a constructed-value. In particular,
we allow constructed-values to appear at the location of objects con >M, as
arguments to instantiate agents X (con) or A(con), and at the target and conteunts

of messages con<l: con. Using the above encoding for constructed-values. part
of the translation of processes with values into core-TyCO processes is as follows.

{con>M} = [econ],o>{M]}
{X(con)p = [eon]s X(v)
{eon<il:con} = [con con]ypv<i:o

Notice that {P[ translates a general process P into a core-TyCO process,
whereas [con], P translates a value con. a name v and a process P iuto a core-
TyCO process. For example, a message

list-ops<imap: f cons(a cons(b nil))

is translated into the following process (recall that scope restriction extends as
far as possible to the right).

[n|Nil(n), |c'|Cons(c’ b n), |c|Cons(c a ¢'), list-ops<amap: f c.

The encoding into core-TyCO not only provides for the semantics of
constructed-values, but also allows to derive an admissible system of typing
assignment rules. Since constructed-values stand for names and we assign types
to names, we should as well assign types to constructed-values. But because
constructed-values may contain free names we must also type these names.
Therefore, typing statements to constructed-values are formulas con > «,T',
for « a type and T’ a typing. We write B | con > «,I is statement con b . T
is derivable from basis B using the system of admissible rules below.

BFconb> & BF Lo [val: [I: &,...]]
BF i(con) o val: [I: d....]].T

NaME Brz b a,z:« ConN

4 Case Expressions
Case expressions further simplify the writing of programs. Similarly to

constructed-values, a case-expression evaluates to a name in a given context,
and can be used wherever a non-binding name can.

case exp<l:exp of [ly:z1=>ezp & ... &z, =>exp,]

A case-expression of the above form evaluates to exp; with z; replaced by the
names in the reply to message u<l:ur, where r is a newly created name, and u
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and % are the names resulting from the evaluation of expressions ezp and ezp,
respectively. Case expressions can be readily translated into core-TyCO.

[case ezp<l:ezp of [I;:z1=>ezp & ... &z, = ezp )], P =
lezp explau|riuval:ar, r>[ly 1 (zq) [eapr |, P& . . . &l (2 [ezpn]u P] (7 fresh)

Omitting label val and ‘<’ in message I<ival, a message of the form

iodprint:(case | of [nil: = true & cons: _ _ = false])
is translated into the following process.

|r| I<avakr, r>[ nil: |t| True(t), io<print:t
&cons: (_ ) |f| False(f), io<iprint:f]

Similarly to constructed values, typing assignments to case-expressions are
formulas ezp > a,I'. The typing rule below can be derived from system TA and
the encoding of case-expressions.

ITxAxT1x...xTh.n>0)
Btexp > [l:ally: ag.....0,: a,]].T BlFexzpbv a, A
Btexpy v 8,11 21: Btexp, > 8.1, 1, a,

CASE —
Bt case exp<l:exp of [l;:z1=exp1&...] » B,TUAUT U---UT,,

Suppose that objects not and or reply with a val message when invoked with
a val message. Assuming ‘<’ to be right-associative. and omitting labels val, we
can simply write

not < or < b b’
instead of the more verbose form
case not<lval(case or<ival: b b’ of [val x = x]) of [val: y = y]
In general. we use the syntax
exp<l: exp

as an abbreviation for

case ezp<l:exp of [val: z=>x]

Conditional expressions are just particular instances of case-expressions. An
expression of the form

if ezp then ezpelse exp,

is simply an abbreviation for

case ezp of [true = ezp1& false = exps).



109

5 Functional Objects and Patterns

In this section we introduce a further derived constructor that allows to write
function-like processes, postponing until the next section the last form of name-
expressions. Functional methods are methods replying the result of the evalua-

tion of a name-expression. The writing of such methods can be simplified to
L:i=>l": exp
to be translated into the following method.
{l:a=lezpy = L@ [ezploral’:v

In this way, by omitting labels val, processes implementing the not and the
xor function. and part of an object implementing operations on lists can be
coded as follows.

not>[ x = if x then false else true]
xor>[ x y = not < or < x ]

list-opst>| null: x = case x of [nil. = true & cons: _ _ = false]
&map: ...]

We can take advantage of labels and case-expressions, to define patterns
like those in the functional programming languages ML, Miranda, and Haskell.
For example, not not function can be defined using pattern-matching by the
following expression.

notl>[ true = false
| false = true]

The longer arrow ‘=" and the separator ‘|" prevent the object from being
confused with one with two methods true and false.

Functional objects as defined above can only be invoked once. In particu-
lar we cannot write recursive functions since calls in the body of a functional
method result in messages whose target does not exist anymore. The problem
can be easily fixed with replication. A replicated process of the form !P rep-
resents as many copies of P as needed, running in parallel, captured by the
structural congruence rule !P = P.!P [8].2 For the encoding to work properly.
constructed-values passed as arguments and used more than once in the body
of the abstraction must be replicated. By using replication and patterns we can
write the list map function as follows.

Nist-opst>[ map: _ nil = nil
| f cons(h t) = cons(f<h list-ops<imap: f t)

2A process !P can be coded as (rec X.(e) (X, P))e. for X fresh and ¢ the empty sequence
of names. The encoding is known to preserve typings [15].
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It should be possible to encode nested patterns as well. Compiling pat-
terns into case-expressions is a well-studied subject [7] and the techuiques known
for functional programming languages with pattern-matching can be transposed
to TyCO.

6 Name Abstraction

This section introduces the last form of name-expressions. An expression
fn = l(exp)

represents an object with a single vaflabelled functional method. When invoked
with actual arguments @, the object replies I: 9. where v is the result of evaluating
exp with z replaced by . For example, if | is a list of boolean values, by omitting
labels val, we can negate every element of the list by sending a message

|r| list-ops<imap: (fn x = if x then false else true) | r

which should return a message r<val. I', with I’ the location of the new list. The
encoding into core-TyCO uses that of functional methods.

[fn &= (@)} P = folton{val:a=1: G P

The typing rule for name-abstraction is depicted below.

Bt épo a.T-i:p
BV fni=I(éip) » [val: g[I: a....]].T

NAME-ABS

Notice that constructed-values can be seen as particular cases of name-
abstractions, where the sequence Z of abstracted names is empty. For example.
the constructed-value cons(h t) can be seen as a name-abstraction of the form
fn = cons(h t). The resulting encodings are not exactly equal but should behave
similarly: the typing rules agree.

This completes the presentation of name-expressions, composed of names.
name-application (as case-expressions) and name-abstraction (and in particular
constructed-values). Name-expressions constitute a new category in the syntax
of processes; the associated typing rules can be incorporated in the typing system
of core-TyCO through minor changes to rules OBJ, MsG,, and APP.

To make clear the real applicative behaviour of name-expressions. abbreviate
type [val: a[val: B....]] to @ — 3. Then the particular form of the CasE-rule
for expressions ezp<exp becomes

BFexp > a— 3.T BFexp v & A
Bt exp<iexp > B, TUA

and that of the NAME-ABs-rule for expressions fn 2= exp becomes the following.

BlFexpov g -2:a
BFfni=erp > a— (.17
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Notice the similarity between the rules above and those of the simply typed
A-calculus. A rule similar to the particular case of the CAsg-rule appears in
Pierce, Rémy. and Turner [12].

7 Branch Statements

Communication in TyCO is via asynchronous message passing. It is often the
case that processes must wait for a reply before continuing execution. Syn-
chronous invocation of methods is achieved by creating a new name to be sent
together with the message. The sender process then “waits™ at this name for
the reply. So, for example. a process that synchronously invokes method val of
an object x representing a list, and then branch into process P or Q according
to the reply, may be written as follows.

|reply-to|x<ival-reply-to, reply-tor>[nil: P & cons: (h t)Q]
Such a template is used so often that we may define a new constructor
branch a; <l :94,...,a,<4l,:7, into M,
for M a collection of methods, to be translated into the following process.
[rlar<aly:iyr, ... an<ly:0,r. T M (r fresh)

This more general form is useful when we need to pool a number of servers
and pick the first reply. ignoring further replies. Obviously, expressions can be
used instead of names; the corresponding encoding is not difficult to derive.
Notice that the encoding of case-expressions uses a branch-process. The forms
are interrelated: case for expressions, and branch for processes.

8 Classes of Objects

Classes provide for abstraction on particular names in objects, and define a
template from which executable objects can be instantiated. Objects are usu-
ally recursive and possess a distinguished name, self, commonly known as the
object’s identifier or location or even mail-address. As such we can define a class
constructor of the form

class Classname(var; - - -var,) = M
to stand as an abbreviation for

rec Classname(self var; - - - var, ) = self > M.

To ensure the persistence of objects instances of classes, each method in M
must recursively call Classname by means of a process Classname(self var} - - - var’, )
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somewhere in the code of the method. The fact that names varj, ... var, are not
necessarily vary, .. .,var, provides for a disciplined form of assignment where all
local variables are assigned at the same time, in a way remiuiscent of the "be-
come” operation in the actor model [4].

Methods in M need not recur with Classname(self var] - --var; ). They may
not recur at all (in which case the “existence” of the instance objects terminates).
or they may instantiate one or more self-located objects of different classes, the
only restriction (imposed by the typing system) being that all objects located
at the same name are of the same type.

Since class is a derived constructor, we may deduce an admissible rule that
allows to type a class without having to expand its definition. The following rule
follows from rules OBJ, ABs and REC.

B-X:BaF M v B.T-self &: i

C
LASS BT class X(3) = M » fa.T

Then we may abstract, by means of the V-INTRO-rule, the monomorphic type
B on some type variables t (not free in T or B) to obtain a polymorphic type
V.3 for the class.

So, how do we instantiate classes to obtain objects? Since classes are just
particular cases of agents, we have two alternatives given by the syntax of core-
TyCO. If we only need a particular instance of the class, then the code

(class Classname(var, - --var,) = M)(obj arg; - - - argy)

instantiates an object located at name obj with local variables args. ... arg,. If.
on the other hand, more than one instance is needed, then we use

let class Classname(var; - - - var,) = M in P

where P represents “the rest of the program.” In particular, we allow P to
instantiate as many copies of Classname as needed. through processes of the
form Classname(obj arg; - - - arg, ). Instance objects need not have the same type
as the class, but else may have different types instances of a polymorphic type
for Classname. In this way, we can define a class Stack, polymorphic on the type
of the elements stored in the stack, and instantiate in P objects representing
stacks of integers, of boolean values or even stacks of stacks of some type. The
rest of the program P may also contain subclass declarations, as we shall see in
the next section.

As an example, suppose we want to define a class of stacks providing opera-
tions push and pop, and that we use list elems to store the elements in the stack.
Such a class can be defined by a declaration

class Stack(elems) = M
where M comprises method push placing a new Cons cell at the head of the list.

push: (elem) Stack(self cons(elem elems))
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and a method pop intended to retrieve the element at the head of the list. We
have to decide the action to be taken when pop is invoked on an empty stack.
Among many possibilities we can ignore the message, re-send the message to
self (creating a kind of busy-waiting), or reply empty. The last alternative is
depicted below.?

pop: (reply-to) branch elems
into [ nil: reply-to<empty, Stack(self nil)
&cons: (head tail) reply-to<ivalhead, Stack(self tail)]

It is easy to prove that a type for class Stack is
Vt. [push: t, pop: [empty. val: t....]| - List(t)

where t is the type of the elements of the stack, [push: t, pop: [empty, val: t,...]]
is the type of name self. and List(t) is the type of name elems. In particular, this
type says that a caller to pop must be ready to receive at least a message val
with a name of type ¢, and a message empty.

9 Sub-classing

In this section we deal with the notion of sub-classing as a form of inheritance
by behaviour reuse. Only minor changes to the code of a super-class are needed
to ensure that recursive calls within the super-class are translated into calls to
the subclass. Apart from these changes the code of the super-class is inherited
“as it is” by the subclass.

We handle two forms of sub-classing: adding new methods and replacing
existing methods. Both forms may be accompanied by the addition of new local
variables. A possible syntax for sub-classing a class by extending its collection
of methods is

subclass Subclass(z) extends Class by M

where Subclass and Class are agent-variables. Such a declaration is in fact a
derived form for
class Subclass(§z) = N'&M

whenever we have a declaration class Class(§) = N, and where N’ is obtained
from N by replacing occurrences of recursive calls of the form Class(?) by
Subclass(91).

Since subclass is just a derived constructor, no new semantics is needed; the
semantics of a subclass is just the semantics of the associated newly defined
class. This may involve copying the whole code of the super-class into the
subclass (with minor adjustments to recursive calls) but avoids dynamic lookup
of methods and seems more realistic in a concurrent and distributed environment,
where there may be many subclass instances executing in parallel.

3 If using ephemeral value constructors, when the stack is empty we cannot recur with
Stack(self elems), since after evaluation elems does not exist as an object anymore.



114

So, to modify class Stack by adding a method top. we can simply write the
fallewing declaration.?

subclass TopStack extends Stack by
[top: (reply-to) branch elems
into [ nil: reply-toJempty, TopStack(self nif)
&cons: (head tail) reply-to<ivakhead,
TopStack(self cons(head tail)}]]

To describe the typing rule for subclasses we need a concatenation operation
on record types. If @ and 3 are record-types with disjoint labels, then &g is
the record type containing all the components of o and 3. The following rule is
not admissible from the system of typing rules defined so far. but can be easily
obtained from the CLaAss-rule. and an induction on the length of derivations.

BFXovpa B-Y:paykMo o T-selfg: g'y

B
XTENDS - B cubclass Y (7) extends X by M b (5%0' )y, T

As noted before, the Y-INTRO-rule may be used to abstract the type of the
subclass. From basis {TopStack: [top: [empty.val: t,...]]-List(¢)} we can deduce
that method top has a type [empty.val: t....]. Hence, by the EXTENDS-rule
followed by the V-INTRO-rule we have that TopStack is of type

Vt. [push: t, pop: [empty.val: t....], top: [empty.val: t....]] - List(t).

Replying empty to a pop invocation on an empty stack may be an unaccept-
able solution, but we can’t just “drop™ method pop when the stack is empty.
for danger of runtime errors. An alternative is to explicitly buffer callers to pop
{and thus making them wait for the replies) and release these callers on push.
Although we could get away with a single class. we present a solution with two
mutually recursive classes, thus showing that objects may “become”™ instances
of a different class.

So, we have two classes: EmptyStack and NonEmptyStack. The EmptyStack
maintains a list wait of names waiting for replies to pop.> The code for push
tests wait, eventually releasing one process with the just arrived element.

class EmptyStack(wait) =
[ pop: (reply-to) EmptyStack(self cons(reply-to wait))
&push: (elem) branch wait
into [nil. NonEmptyStack(self cons(elem nif))
$zcons: (head tail) head<ivalelem, EmptyStack(self tail)]]

Class NonEmptyStack is obtained from class Stack by replacing method pop.
In general, the syntax to declare a subclass by updating a collection of methods
is the following.

subclass Subclass(Z) updates Class by M

“fIn both the nif/ and the cons case we have to rebuild elems, cf. footnote 3.
°A list does not implement the fairest solution but is sufficient for illustration purposes.
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Again, this constructor is just a derived form for
class Subclass(§z) = N' + M

whenever we have a declaration class Class(y) = N, and where N’ is obtained
as in the extends case. “+” is an overwriting operator on collections of methods
(and also on record types) such that M + N contains all the methods in N plus
those in M whose labels do not appear in N. In this way, NonEmptyStack may
be defined as follows.

subclass NonEmptyStack updates Stack by
[pop: (reply-to) branch elems
into [nil: EmptyStack(self cons(reply-to nif))
&cons: (head tail) reply-to<val head,
NonEmptyStack(self tail)]]

The UPDATES-rule. the typing rule for the new constructor. is obtained from
the EXTENDS-rule, by replacing operator “&™ by *+", this time as an operator on
record types. It is easy to prove that types for EmptyStack and NonEmptyStack
are respectively,

Vt. [push: t.pop: [val: t....]] - List([val: t....])
Vt. [push: t, pop: [val: t,...]] - List(t)

revealing that name self has exactly the same type in both classes, and that the
type of wait is indeed a list of objects capable of receiving values of type t.

10 Comparison with Related Work

Walker showed how to describe a semantics for concurrent object-oricnted pro-
gramming languages by a systematic translation of the constructors in a POOL-
like language into the w-calculus [18]. We follow the opposite approach: given
a name-passing calculus. build high-level constructors present in functional and
concurrent object-oriented programming languages.

Pierce. Rémy. and Turner proposed a programming language based on the
w-calculus [12]. Values in their work are built from tuples and value application.
We go further in allowing general values constructed from datatype declarations,
as well as a form of name-abstraction. Furthermore we present a systematic
method of translating values into the basic calculus. The cited language allows
to pass agents over names. a concept we did not develop.

While it is possible to encode TyCO into the m-calculus (and vice-versa) [17].
labelled sums yield a much more elegant description of methods, with a direct
counterpart in the type system. Both cited works [12, 18] assign each method
in an object a different name, and multiplex all these names into a single name,
This makes the invocation of a method a tree-way protocol. against a one-way

in Ty CO.
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Nierstrasz’s proposed a name-passing calculus featuring communication of
tuples and function application as primitives [10]. As demoustrated by Pierce.
Rémy, and Turner, as well as the present work, function application can be
cleanly incorporated in pure name-passing calcull.

Abadi and Cardelli recently proposed a basic calculus supporting builtin ob-
jects. and method invocation and override [l] Although no form of concurrency
is present, the calculus shares with TyCO the notions of builtin objects com-
posed of labelled methods, and that of labelled method invocation. Builtin in
that calculus and derived in TyCO. method override produces a modified copy
of the initial object or class.

To my best knowledge there is no proposal of subclassing in the process-
calculi framework. Behaviour subclassing, albeit quite simple, is in line with
concurrent and distributed systems. Copying (at declaration or instantiation
time) the code of the super-class into the subclass avoids dynamic lookup of
methods making executable objects self contained. The typing rules for sub-
classes reuse the type of a super-class, avoiding having to deduce that type again.

The interplay between processes and expressions is delicate. The present
work achieves a good balance by allowing any non-binding occurrence of a name
in the core-calculus to be a substituted for a general name-expression. The price
we pay for this duality is having, for example, case-expressions and branch-
processes. Further study on the behaviour of name-expressions is called for.
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