Atomic Object Composition

Rachid Guerraoui

Département d’lnformalique
Ecole Polytechnique Fédérale de T.ausanne
CH-1015 Lausanne, Suisse

Abstract. A worthwhile approach to achieve transaction atomicity within
object-based distributed systems is to confine concurrency control and
recovery mechanisms within the shared objects themselves. Such objects,
called atomic objects, enhance their modularity and can increase trans-
action concurrency. Nevertheless, when designed independently, atomic
objects can be incompatible, and il combined, do not ensure transac-
tion atomicity anymore. It has been shown that atomic objects can be
incompatible when they assume different Global Serialization Protocols

(GSPs).

We deal with the incompatibility problemn by introducing a property of
atomic objects’ specifications, named o—atomsicity, which is orthogonal
to the GSP. Objects that guarantee this property achieve transaction
atomicity, whatever the GSP may be. Such objects are compatible, not
only with each others, but also with atomic objects that guarantee previ-
ously defined GSP-dependent properties, i.e., static atomicity, dynamic
atomicity or hybrid atomicity. This is very desirable since most of exist-
ing object-based distributed systems rely on these properties. To show
how o—atomiciiy can be ensured, we propose a generic implementation
within an object-oriented framework, which we illustrate through a sim-
ple banking application.

1 Introduction

One of the basic claim underlying object-orientation is that of object composi-
tion {26]. Objects are modular software components that can be designed and
tested independently, and then combined within the same application. While
this claim has been supported in a sequential context, much still to be done in
concurrent and distributed contexts [20]. In this paper we discuss the problem
of composing objects in the context of transaction-based distributed systems.

1.1 Atomic Objects

To preserve the consistency of distributed systems despite concurrent accesses
and failures, it is helpful to compose applications out of atomic activities called
transactions [11,21]. Atomicity (in the sense of [32]) means that incomplete trans-
actions appear as having no effects, and complete transactions appear as exe-
cuting sequentially according to a Serialization Order (SO), determined by some

119

Global Serialization Prolocol (GSP). A worthwhile approach to achieve transac-
tion atomicity is to confine concurrency control and recovery mechanisms within
the shared objects themselves. Such objects, called atomic objects [29], enhance
their modularity since they can be designed and tested locally, and can increase
transaction concurrency by providing appropriate mechanisms to their use and
semantics [1,2,3,6,14,15,19,22,25,27,30,31,33]. Nevertheless, when designed inde-
pendently, atomic objects are sometimes incompatible, and when combined, do
not ensure transaction atomicity anymore [32].

1.2 The Incompatibility Problem

Weihl has discussed the incompatibility problem and pointed out its deep re-
lation with GSPs [32]. He grouped GSPs in three classes: static GSPs that de-
termine SOs according to timestamps assigned to transactions at creation time,
e.g., in [24]; dynamic GSPs that determine SOs during transaction execution,
e.g., in [7]; and hybrid GSPs that determine SOs according to timestamps as-
signed to transactions at commit time, e.g., in [13]. Weihl showed that objects
are incompatible if they assume GSPs belonging to different classes. For exam-
ple, an object which schedules transactions according to timestamps assigned to
them at creation (assuming a static GSP) is incompatible with an object which
schedules transactions according to a two phase locking protocol [7] (assuming a
dynamic GSP). When used together, these objects do not ensure atomicity any-
more. As a consequence, applications cannot be composed out of atomic objects
that assume GSPs belonging to different classes.

Since in most of existing object-based distributed systems, atomic objects
assume particular GSPs (static, dynamic, or hybrid), their compatibility is lim-
ited. In this paper we propose a way to specify atomic objects, so that they do

not assume any particular GSP, i.e., they are compatible with any other atormic
object.

1.3 Composing Atomic Objects Through O—atomicity

We present a property of objects’ specifications named o—atomicity which is
orthogonal® to the GSP. Roughly speaking, an object which guarantees

o—atomicity assumes that there exists some GSP (whatever it may be) and
schedules transactions so that they appear to execute in the SO, determined by
the GSP. We show that o—atomicity is sufficient to achieve transaction atomicity,

and that, given only the assumption of the existence of some GSP, o—atomicity
is also necessary.

1 Hence its name orthogonal-atomicity.

120

As long as atomic objects guarantee o—atomicity:

~ They are compatible not only with each others, but also with objects that
assume particular GSPs. In other words, atomic objects that guarantee
o—atomicily can be reused in most of existing object-based distributed sys-
tems {3,8,12,17,22,33].

They can be designed independently and provide their own concurrency con-
trol and recovery mechanisms. To increase transaction concurrency, objects
with high risks conflict can for example provide semantic-based pessimistic
mechanisms, whereas objects with low risks conflict can provide optimistic

mechanisms [1,2,6,13].

- They ensure transaction atomicity whatever the GSP may be. This enables to
substitute a GSP by another without affecting the objects. Such a modularity
feature is very convenient since the optimality of the GSP is application-
dependent {19,32], and it would be worthwhile to modify it according to the
application evolution.

To show how o—atomicity can be guaranteed, we propose a generic imple-
mentation of an abstract atomic class. We show how to customize this implemen-
tation within subclasses of which objects guarantee o—atomicity. We present two
examples of such subclasses: a subclass of which objects guarantee o—atomicity
through a pessimistic concurrency control, and a subclass of which objects guar-
antee o—atomicity through an optimistic concurrency control. To illustrate the
feasibility of this implementation, we describe a simple banking application com-
posed of bank-account objects from different subclasses.

The remainder of the paper is organized as follows. Section 2 describes our
computational model and defines objects’ specifications and transaction atomic-
ity. Section 3 defines o—atomicity and presents its characteristics through three
main theorems: sufficiency, relation with GSP-dependent properties, and neces-
sily. Section 4 presents an abstract atomic class, and describes subclasses that
provide adequate mechanisms to guarantee o—atomicity. Section b summarizes
our main contribution and suggests some complementary work. Appendix I and
Appendix II contain the theorems’ proofs and the algorithms’ details.

2 System Model

This section describes our model and defines atomic objects’ specifications and
transaction atomicity. As in [13,14,31,32), our definition of atomicity is based

on serzal specifications of atomic objects, and integrates both recoverability, and
serializability [4].

We consider a system compound of atomic objects (called simply objects in
the following, and noted O, O1, 02, ..0m) and transactions (noted 7, T'1, 72, .Tn).

121

Objects and transactions are called components. Transactions are sequential
monolithic? processes communicating through shared objects. A transaction in-
vokes an operation on an object®, receives the matching reply, invokes another
operation etc. The transaction ends either by committing or aborting. In both
cases, invoked objects are notified about the transaction outcome through spe-
cific operations commit() and abori()*. When a commit() (resp. abort()) oper-
ation for a transaction 7 is invoked on an object O, 1" is said to commit (resp.
abort) at O. A transaction is ferminated when it commits or aborts at all objects
it has invoked.

2.1 Histories

To depict computations, we use the simple event-based model presented in
Weihl’s thesis [29]. This model is quite intuitive and has been successfully used
in various works on atomic objects [13,14,19,31,32]. It represents computations
as finite sequences of events called histories (noted H, H1, H2,..Hk). Events are
either an operation invocation of an object, or a reply to an invocation. Each
event involves exactly one transaction and one object.

For our purpose (i.e., to define o—atomicity), we consider histories that con-
tain only terminated transactions. We assume that a transaction is not allowed
to commit at some objects and abort at others [11}; a transaction waiting for
a reply (pending transaction) cannot commit; and a transaction cannot invoke
any operation after it commits. We say that a history H tnvolves a component
C' (object or transaction), if some event in H involves C'. Given {C1,..Ck} a set
of components involved in a history H, we note H{c1, ¢} the subsequence of H
containing all events involving components in {C1,..Ck}. We say that a history
1s local to an object if it involves only this object; a history is global if it involves
at least two objects; a history is failure-free if all the involved transactions com-
mit; and a history is sequential if events involving different transactions are not
interleaved.

Example 1 (history): Figure 1 (a) shows a history /{ representing a bank
transfer. H involves a transaction 7', and two bank-account objects O1 and 02,
providing balance(), deposit() and withdrawal() operations. T invokes deposit(5)
on O1, withdrawal(5) on 02, and then commits at both O1 and O2. Figure 1 (b)
shows the history H (o1}, which is local to O1, and figure 1 (¢) shows the history
Hiozy, which is local to O2.

Events in H are:
— < deposit(h), T,01 >: T invokes deposit(5) on O1.

2 Nested transactions in the sense of [9,18] are not considered here,
® We will also say that the transaction invokes the object.

* These operations are assumed to be provided by the objects, and invoked by trans-
action managers.

122

(a) H = (b) Hiop =
<deposil(5),T, 01> <deposit(5), T, Ol >
<ok, T,O1> <ok.T. 01>

<commil(), T,0I>
Cwithdrawal(5), T, Q2>
<ok, T, 02> (€ My -
<commit(), T, O1> <withdrawal(5), T, 02>
<commit(), T, 02> <ok.7,02>
<commit(), T, 02>

Fig.1. Histories

— < ok, T,01 >: O1 returns a positive reply ok to T
< withdrawal(b),T,02 >: T invokes withdrawal(b) on O2.
< ok, T,02 >: O2 returns a positive reply ok to T.
< commit(),T, 01 >: O1 is notified about the commit of T".
< commit(),T, 02 >: O2 is notified about the commit of T'.

|

|

|

|

2.2 Serial Specifications

A specification of an object is a set of local histories involving the object. The
specification describes how the object interacts with the transactions that invoke
it. The serial specification of an object O, noted O.serial, describes how O
interacts with transactions that perform sequentially in a failure-free way (i.e.,
they all commit). Such a specification contains all local sequential failure-free
histories involving the object, and compatible with its semantic®.

Definition 1 (serially possible history): A history H 1is serially
possible® if for each object O, involved by H, Ho} € O.serial.

Example 2 (serial specification): Consider a bank-account object O
which returns a positive answer to a withdrawal() if there is enough money
in the balance, and returns a negative answer otherwise. Figure 2 (a) shows a
local history H1 that belongs to O.serial, whereas figure 2 (b) shows a history
H?2 that does not. H2 is not compatible with the semantic of O, because O
refuses withdrawal(5) (i.e., returns no), although it is supposed to have enough
money after deposit().

2.3 Atomicity

We consider atomicity in the sense of [13,14,19,31,32,33]. A transaction is atomic
if it appears to execute in an all-or-nothing, and isolated manner’. An atomic his-
tory is one of which all transactions are atomic. Informally, given commiited(H)

® See [32] for how to derive a serial specification from an object state machine
representation.

® This notion is similar to the notions of acceptabilityin [31] and legality in [14].

T This definition encompasses both recoverability and serializability [4].

123

(a) HI = (b) H2 =
<deposit(5),T1, 0> <deposil(5), T, 0>
<ok, T, O> <ok,Tl,0>
<commil(),T1, 0> <commit(), T1, 0>
<withdrawal(5), T2, 0> <withdrawal(5), T2, 0>
<ok, T2,0> <no,T2,0>
<commit, T2, O <commil, T2, 0>

Fig.2. 111 is compatible with the semuntie of () whereaa H2 is nat

the set of all the commiited transactions involved by a history H, H is atomic
if the transactions of committed(H) appear to perform in a sequential way, i.e.,
they can be executed in a sequential way and have the same effects. We give a
precise definition of atomicity through hypothetical sequential failure-free histo-
ries. Given a history H, and a total order v, called a serialization order (SO),
on committed(H), we introduce perm(H,v) as the sequential failure-free history
made of H'’s events involving committed(H)’s transactions in the SO v. We then
define atomicity as follows:

Definition 2 (atomicity): A history H is atomic if there exists
a SO v on committed(H) such that perm(H,v) is serially possible.

The fact that perm(H,v) is serially possible means that the transactions of
committed(H) can be executed in the SO v, and have the same effects. H is
sald to be atomic in the SO 7.

Example 3 (atomicity): Figures 3 (a) and 3 (d) show two global his-
tories H1 and H2 involving two bank-account objects O1 and O2, and two
transactions 7’1 and T'2. Intuitively, H1 is atomic because the transactions
of committed(H), i.e., T1 and T2, can be executed in the SO (72;71) and
have the same effects. More accurately, H1 is atomic in the SO (72;T1) be-
cause perm(H1,(T2;T1)) is serially possible, i.e., perm(H1,(T2;T1))j01y €
Ol.serial. and perm(H1,(T2;T1))j02y € O2.serial (figures 3 (b) and 3 (c)).
H?2 is not atomic because neither perm(H2,(72;T1)) nor perm(H2,(T1;72))
is serially possible, t.e., perm(H2,(12;T1)}101) & Ol.serial, and
perm(H2,(T1;T2))02) € O2.serial (figures 3 (e)) and 3 (f)).

2.4 Behavioral Specifications

The behavioral specification of an object O, noted O.behavior, is a set of histories
that describes how O behaves in case of concurrency and failures®.

Definition 3 (possible history): A history H is possible if for
each object O involved by H, H{p) € O.behavior.

8 It is obvious that the behavioral specification of an object contains its serial
specification.

124

(@) HI =

<withdrawal(5), T2, 02~
<Withdrawal{5),71,01>

(b) .
perm(H1 (T2,T1))

o1}
Sudepusit(0) T2 Ol
<ok, 12,01

<ok, T!, 01> <eommitl), T2, O1'»

<ok, T2, 02> <withdrawal(5),T1, 01 >
<deposil(5), T1, 02> <ok, T1,01>

<ok, TI, 02> <commiy(),T!,01>

<deposil(5),T2, 01>)
perm(HI (T2,T1)) {02}=

<withdrawal(5), T2, 02>
<ok, T2, 02>

<commit(), T2, 02>
<deposit(5),T1, 02>

<ok, Tl, 02>
<commit(),T1, 02>

<ok, T2,01>

<commit(), T1, 01>
<commil(), T1, 02>
<commit(), T2, 01>

<commil(), T2, 02>

(d) H2 =)
perm(HZ,(TZ.TI)J{OH =
<withdrawal(5),T2,02> . <deposit(5), T2, 01>
<no,T2,02> <ok, T2, 01>
<withdrawal(5),T1, O1> <commit(), T2, 1>
<no,T1,01> <withdrawal(5),T1, 01>

<no,T1, 01>

<deposit(5), T1,02> <commit(), T1,01>

<ok, Tl, 02>
<deposit(5), T2, 01>

)
perm(H2,(T1;T2)) 02~
<0k, T2,01>

<deposit(5),T1, 02>
<ok, T1,02>
<commit(), T1, 02>
<withdrawal(5), T2, 02>
<no,T2,02>
<commit(), T2, 02>

<commit(), T1,OI>
<commit(), T1, 02>
<commit(), T2, 01>
<commit(), T2, 02>

Fig.3. Hl is atomic whereas H2 is not

Our goal is to draw a property of objects’ behavioral specifications which en-
sures that all possible histories are atomic®. Such a property must require more
than the atomicity of local histories (see the example below). In fact, objects
must ensure the atomicity of local histories according to some common SO.

Example 4 (possible history): Figure 3 (d) shows a global history H?2
which is not atomic although local histories are so. The local history H2;01} is
atomic in the order (71;7°2) but not in the order (72;71) (i.e.,

perm(H2,(12;T1)){01}y & Ol.serial'®), whereas H2;p9) is atomic in the or-

% This would imply that all transactions are atomic.
1% Note that perm(H (o}, v) = perm(H, Yo}

125

der (72;T1) but not in the order (T1;72) (ie., perm(H2,(T1;T2));002} ¢
02.serial). Therefore, to ensure atomicity, O1 and O2 must avoid such a history
(1.e., H2 must be impossible). On the contrary, figure 3 (a) shows a history H1
which is atomic because local histories (i.e., H2{01} and H2{p9}) are atomic
according to a common SO, i.e., (T2;T1).

The global protocol in charge of establishing a common SO is noted GSP
(global serialization protocol). To ensure atomicity, objects must follow the same
GSP. Weihl has distinguished (in [32]) three classes of GSPs: static GSPs that de-
termine SOs according to timestamps assigned to transactions al creation, e.g.,
in [24); dynamic GSPs that determine SOs during transaction execution, e.g.,
in [7]; and hybrid GSPs that determine SOs according to timestamps assigned
to transactions at commit time, e.g., in [13]. Given this classification, he defined
three properties of objects’ behavioral specifications: static atomicity, dynamic
atomacity and hybrid atomicity. Objects that guarantee static atomicity (resp.
dynamic atomicity and hybrid atomicity) assume a static GSP (resp. a dynamic
GSP and a hybrid GSP). Objects are incompatible if they guarantee different
GSP-dependent properties.

[n the following, we introduce a property of objects’ behavioral specifications,
named o—atomicity (orthogonal atomicity), which enables to ensure atomicity,
whatever the GSP may be'!.

3 The O—atomsicity Property

In this section we define the o—atomicily property and we present its charac-
teristics through three theorems.

3.1 Definition of O—atomicity

We assume that there exists some GSP, whatever it may be, which determines for
each history H in the system, a SO, noted 7[H], on all the transactions involved
by H. We note 7[H] ommitted(mr), the restriction of 7[H] to committed(H).

Definition 4 (o—atomicity): The behavioral specification O .behavior
of an object O, satisfies the o—atomicity property if each local
history H in O.behavior, is atomic in the SO T[H] committed(H)-

Example 5 (o—atomicity): Consider a bank-account object O such that
O.behavior satisfies o—atomicity. Assume H1 is a local history involving O, and
two transactions 7'l and 72 (figure 4 (a)), such that the GSP establishes that
Tl —;g1 T2 (T'1 must be serialized before 72). H1 belongs to O.behavior
since it 1s atomic in the order (7'1;72), i.e., perm(H1,(T'1;T2)) is serially pos-
sible (figure 4 (b)). H1 would not belong to O.behavior if the GSP established
that 72— gy; T'1, because H1 is not atomic in the order (12;71), ie.,
perm(H1,(T2;T1)) is not serially possible (figure 4 (c)).

1 Without assuming any particular GSP.

126

(a) HI =

<depaosit(3), T2.(0>

(b)
perm(HI1,(T1,172)) =

<withdrawal(5), T1, O>
<no, T!, 0>

(c)

perm(HI1,(T2,T1)) =
<deposit(3), T2,0>

<ok, T2, 0> <ok, T2,0>
<withdrawal(5),T1, 0> <commit(}), T1, 0> <deposil(2),T2,0>
<no, T1,0> <deposi(3), T2,0% <ok, 14,0
<deposit(2),T2,0> <ok, T2,0> <commit(), T2, 0>

<ok, T2,0> <deposit(2), T2, 0> <withdrawal(5), T1, 0>
<commit(), T1, O> <ok, T2,0> <no, T1,0>

<commit(), T2, 0>

<commit(), T2, Q>

<commil(), T1, O>

Fig.4. H1 belongs to the behavioral specification of O only if T1 is serialized before T2

3.2 Characteristics of O—atomicity

The following theorem implies that o—atomicity is a sufficient condition to
achieve history atomicity.

Theorem 1 (sufficient condition): if each object’s behavioral
specification satisfies o—atomicity, then every possible history is
atomic.

Proof outline: we show that if H is a possible history, then it is atornic
in the SO T[H]committedcr) (see Appendix I).

Since o—atomicity does not rely on any particular GSP, this theorem means
that objects which guarantee o—atomicity, ensure history atomicity!? whatever
the GSP may be. Such objects can thus be designed and tested within applica-
tions relying on different GSPs, and then reused within the same application.
The most efficient GSP can be chosen according to the application’s seman-
tic [19,32]. The GSP can be changed for another, e.g., according to the evolution
of the application, without affecting the objects.

The following theorem points out the compatibility relation between
o—atomicity and GSP-dependent properties, i.e., static atomicity, dynamic atom-
icity, and hybrid atomacity.

Theorem 2 (relation with GSP-dependent properties): if each
object’s behavioral specification satisfies either o—atomicity, or
static atomicity (resp. o—atomicity or dynamic atomicity, o—atomicity
or hybrid atomicity), then every possible history is atomic.
Proof outline: we show that every possible history H is atomic in the
SO 7[H]committed(sry determined by the static (resp. dynamic or hybrid)
GSP (see Appendix I).

This theorem implies that atomic objects which guarantee o—atomicity are
compatible, not only with each others, but also with objects which guarantee

2 O—atomicity is thus a local atomicity propertyin the sense of [32].

127

GSP-dependent properties, i.e. stalic atomucity, dynamic atomacity, or hybrid
atomicity. Note that these objects must all guarantee the same GSP-dependent
property!3. The theorem is quite intuitive since static atomicity (resp. dynamic
atomicily, or hybrid alomicily) implies history atomicity assuming a static (resp.
dynamic, or hybrid) GSP, whereas o—atomicity imply history atomicity, what-
ever the GSP may be.

The tollowing theorem implies Lthat, given only the assumption of the exis-
tence of some GSP, n—atomicily is also a necessary candition to achieve history
atomicity.

Theorem 3 (necessary condition): If o—atomicity is not satis-
ficd by an objeet’s behavioral spectfication, then there exisis a
possible history that is not atomic.

Proof outline: we suppose that there exists an object of which the be-
havioral specification does not satisfy o—atomicity, and we show that we
can build a global possible history that is not atomic (see Appendix I).

This theorem means that there is no property of objects’ specifications weaker!*
than o—atomicity, which, based only on the assumption of the existence of a
GSP, suffices to ensure the atomicity of global histories.

4 An Abstract Atomic Class

In this section we propose examples of how to implement objects that guarantee
o—atomicity. We consider an object-oriented framework (in the sense of [28]):
objects are instances of classes and classes are organized in an inheritance hier-
archy. An object O, instance of a class A, is said to be derived from a class A’ if
A is a subclass of A’. We describe an abstract class, named AtomicObject, which
provides the basic state variables and operations of a generic implementation.
From this class, we derive a subclass of which objects guarantee o—atomicity
through a pessimistic concurrency control, and a subclass of which objects guar-
antee o—atomicity through an optimistic concurrency control. To illustrate these
implementations, we describe a simple banking application composed of objects
from the two subclasses. To point out the GSP orthogonality of o—atomicity,
we will first assume a static GSP, then a dynamic GSP.

4.1 Basic State Variables and Operations

The state variables provided by the basic abstract class AtomicObject are: a log
of invocations and a set of transactions’ identifiers lists. For an object O, derived
from AtomicObject, the log, noted Logo, contains accepted invocations, i.e., invo-
cations for which O has performed the invoked operations (we note T(inv) the in-
voking transaction). The status of an invocation inv in Logo, noted status(inv),

'3 Because the GSP-dependent properties are incompatible with each others.
" In the sense that it allows more histories.

128

is either active if T'(inv) 1s not terminated yetl, or commaitied if T'(inv) is com-
mitted. The set of transactions’ identifiers lists is used to maintain dependencies
between transactions. For each transaction 7', of which an invocation has been
accepted by O, a dependency list, noted Do (T), is created.

The main operations provided by the class AtomicObject are abort(), ask-
commil(), and commit() invoked by transaction managers, and access() and
order() invoked internally by objects. These operations are defined for an object
O, derived from AtomicObject, as follows:

— order(1,1;): This operation implements the GSP. It is internally invoked
by O to know the SO between any pair of different transactions (T4, 7T'j):
order(T,Tj) = true means that 7% is serialized before T'j; order(T4,Tj) =
Jalse means that T'j is serialized before T'%; order(T,Tj) = unknown means
that the SO is yet unknown. Since every subclass of AfomicObject inherits
the operation order(), all objects derived from AtomicObject follow the same
GSP. Changing the GSP comes down to change the implementation of the
operation order() within the class AtomicObject (see examples below (4.5)).

— abort(T}): This operation is invoked on (}, when a transaction 7', that invoked
0, is aborted. O discards the effects of 7' by performing appropriate reverse
operations'®, and deletes its invocations and its dependency list.

— ask-commit(T): This operation is invoked on O when a transaction 7', that
invoked O, is about to commit. O returns ok if every transaction in Do(7') is
committed and serialized before T'; O returns no if there exists a transaction
in Do(T") which is either aborted or serialized after T'; otherwise O delays
the operation ask—commit() (until the notification of another transaction
termination), since some transactions in Do(T) are not yet terminated, or
their SO with 7 is still unknown.

— commat(T): This operation is invoked on O when a transaction T, that in-
voked O, is committed. O changes the status of 1’s invocations in its log
(from active to commat).

— access(inv): This operation is the core of the concurrency control algorithm.
It is internally invoked by O every time a transaction 7(inv) invokes O.
The access() operation is based on three predicates: aCond(), wCond(), and
cCond(). aCond() is evaluated for each invocation inv, and represents the
condition under which T'(4nv) must be aborted; wCond() is also evaluated for
each invocation inv, but represents the condition under which 7T'(énv) must
be delayed (until a termination notification); cCond() is evaluated for every
pair of invocations (inv,inv’) (where inv’ is an invocation in Logo), and

5 We assume here that each operation has a corresponding reverse operation, e.g., the
reverse operation of deposit(z)is withdrawal(z).

129

represents the condition under which 7T'(inv’) must be added to Do(T'(inv)).
Customizing the generic concurrency control implementation comes down to
define the three predicates within subclasses of AtomicObject.

Given the three predicates aCond(), wCond(), and cCond(), the access()
algorithm is the following:
access(inv)

{ .

awatt ;= true,

while (await)
{
if (aCond(inv)) then aboré(T (inv));
if (wCond(inv)) then wait(T(inv));
else await := false;

}

Vino' € Logo
if (cCond(inv, inv') = true) then add(T(inv'), Do(T(inv)));
}

4.2 Atomic Subclass with Pessimistic Concurrency Control

The class PessAtomicObject is built by inheriting the state variables and opera-
tions from the basic class AtomicObject, and by defining the predicates aCond(),
wCond() and cCond() as follows:

- aCond(inv) = (Finv’ € Logo1 such that
((T(inv) # T(inv")) A (order(T (inv), T(inv')) = true));

- wCond(inv) = (Finv’ € Logo; such that
((T(inv) # T(inv")) A ((order(T(inv), T(inv')) = unknown) V (status(inv') =
active))));

- ¢Cond(inv, inv’") = false.

Broadly speaking, an object O1, instance of PessAtomicObject, aborts a
transaction T(énv) if T(inv) cannot be performed in the SO (T(inv) arrives
too late). T'(inv) is delayed if the SO is yet unknown, or if T'(inv) can interfere
with another transaction which invoked O1; otherwise, inv is accepted. (The
resulting algorithm is described in Appendix II)

Theorem 4 (o—atomicity): every object of the class PessAtomu-
cObject guarantees the o—atomicity property.

Proof outline: we show that the object forces, a priort, a sequential ex-
ecution of the invoking transactions in the SO given by the operation
order() (see Appendix II).

130

4.3 Atomic Subclass with Optimistic Concurrency Control

The class OptAtomicObject is built by inheriting the the state variables and

operations from the basic class AtomicObject, and by defining the predicates
aCond(), wCond() and cCond() as follows:

- aCond(inv) = (Jinv’ € Logoy such that
((T'(inv) # T(inv')) A (order(T(inv), T(inv")) = true)));

- wCond(inv) = false;

- cCond(inv, inv') = (((T(inv) # T(inv"))
A((status(inv) = active) V (order(T(inv), T(inv')) = unknown)))

An object 02, instance of OptAtomicQbject, accepts every invocation inv
unless T'(inv) arrives too late. Therefore, inv can be accepted although an invo-
cation inv’, of another transaction is still active, or the SO between T'(inv) and
T(inv') is yet unknown. Nevertheless, at the invocation of ask—commit(T(inv)),
02 requires T'(inv') to commit and to be serialized before T'(inv); otherwise
T'(inv) is aborted. (The resulting algorithm is described in Appendix IT)

Theorem 5 (o—atomicity): every object of the class OptAtomi-
cObject guarantees the o—atomicity property.

Proof outline: we show that the object ensures, a posteriori, a sequential
execution of the invoking transactions in the SO given by the operation
order() (see Appendix II).

4.4 A Simple Banking Application

To illustrate the proposed implementations, we describe a simple banking ap-
plication where a transaction 7'1 executes a funds transfer from a bank-account
object O1 to a bank-account object O2, while another transaction 72 executes a
funds consultation of O1 and 02. O1 is derived from PessAtomicObject and O2
1s derived from OptAtomicObject'®. Figure 5 (a) depicts a non-atomic history
H1, whereas figure 5 (b) depicts an atomic one H2. In the following we show
how O1 and O2 guarantee that only H2 is possible. To illustrate the GSP or-
thogonality, we consider first a static GSP, and second a dynamic GSP.

Static GSP: Suppose the SO is known statically, upon transaction creation,
Le., the operation order() within the abstract class AtomicObject implements a

1% In [10], we give more details on bank-account subclasses of PessAtomicObject and
OptAtomicObject. We describe concrete implementations of these subclasses within
an object-based distributed system. In both subclasses, we increase concurrency
by taking into account the bank-accounts’ semantics. More precisely, we refine the
predicates aCond(), wCond() and cCond() by considering the commutativity of two
deposit() executions, and the commutativity of two balance() executions.

131

(a) HI = () H2 =
<withdrawal(5),T1, 01> . <withdrawal(5), T1,01> .
<ok,T1,01> <ok,T1,01>
<balance(), T2, 02> <deposit(5),Ti, 02>
<5,72,02> <ok, TI,02>
<balance(),T2,01> <balance(), T2, 02>
<0,72,01> <10,72,02>
<deposit(5), T1, 02> <balance(), T2, 01>
<ok, T1,02> <0,72,01>
<commit(),Ti, 01> <commit(), T1, 01>
<commit(), T1,02> <commit(),T1, 02>
<commit(), T2,01> <commit(), T2, O1>
<commit(), T2, 02> <commit(), T2, 02>

Fig.5. Transfer and consultation histories

static GSP. Each transaction holds a timestamp which is assigned to it at the
time of creation. The timestamps reflect the SO. Hence, when a transaction T°
invokes an operation on an object, the latter knows the SO between T' and any
transaction of which an invocation has already been accepted by O. H1 is not
possible: (1) if the SO is (72;T1), O1 will accept < withdrawal(5),71,01 >,
and will abort 72 when receiving < balance(), 72,01 >, since T2 will arrive
too late; (2) if the SO is (T'1;72), O2 will accept < balance(),T2,02 >, and
then will abort T'1 when receiving < deposit(5),7'1,02 >, since T'1 will ar-
rive too late. 2 is possible if the SO is (17'1;72) (sequential execution). If the
SO is (T2;T1), O2 will accept < deposit(5),T1,02 >, then will abort T2 as
< balance(),T2,02 > will arrive too late.

Dynamic GSP: Suppose now the SO is determined dynamically, accord-
ing to how transactions invoke operations on objects, i.e., the operation order()
within the abstract class AtomicObject implements a dynamic GSP. An object
knows the SO between two transactions T% and 7'j if either they are both com-
mitted or T has committed and T'j invokes the object later. H1 is not possible:
O1 will delay < balance(),T2,01 >, waiting for 7’1 to commit whereas 02 will
require 72 to commit before allowing T'1 to do so; this situation will lead to
a deadlock and one of the transactions will be aborted (we suppose here that
deadlocks are detected and resolved by aborting transactions). H2 is possible:
O1 will accept < withdrawal(5),T1,01 >, will delay < balance(), 72,01 >
(and block T'2), and then will resume 72 at the commit time of 7'1.

132

5 Concluding Remarks

In this paper, we dealt with the problem of composing atomic objects in the
context of transaction-based distributed systems. More precisely, we discussed
how to specify atomic objects, so that they can be combined with any other
atomic object, and ensure transaction atomicity. Atomic objects can be incom-
patible when they assume different GSPs. When combined, such objects do not
ensure transactlon atomicity anymore. Starting from this observation, we pro-
posed a property of objects’ specifications, named o—atomicity, which ensures
transaction atomicity, whatever the GSP may be. Broadly speaking, an object’s
behavioral specification satisfies the o—atomicity property, if each of its local
histories is atomic in the order determined by the GSP. O—atomicity represents
exactly what must be ensured by an atomic object, which assumes only that
there exists some GSP (without assuming any particular one).

O—atomicity enhances atomic object compatibility. It enables atomic objects
to be designed and tested within various applications relying on different GSPs,
and then reused within the same application. Within an application, a GSP can
be changed for a more efficient one, e.g., according to the application’s semantic,
without affecting atomic objects. Furthermore, atomic objects that guarantee
o—atomicity are compatible, not only with each others, but also with objects
that guarantee GSP-dependent properties. This is very desirable since most of
existing transaction-based systems rely on these properties [3,8,12,17,22 33]. Our
work can be viewed as a generalization of [19], where Ng proposed a way to de-
sign atomic objects, without assuming any particular GSP. Whilst he proposed
a particular pessimistic mechanism, we considered a more general specification
framework, that enables pessimistic and optimistic implementations.

We believe that designing efficient concurrency control and recovery algo-
rithms that ensure o—atomicity, is an important issue to be addressed before
o—atomicily can be practically applied to object-based distributed systems. In-
deed, the aim of the algorithms proposed in the paper was rather to show the
feasibility of our approach. An interesting, and complementary, question, is how
to modify existing algorithms that ensure GSP-dependent properties, so that
they ensure o—atomicity. Such a facility would be of great help in federative dis-

tributed systems, where a major problem is how to safely combine pre-ezisting
components [5].

Acknowledgments

I .am very grateful to Jean Ferrié, Benoit Garbinato, Oscar Nierstrasz, André
Schiper, Bill Weihl, Gerhard Weikum, and Jeannette Wing for their helpful

comments.

133

References

1. R. Agrawal, M. Carey and M. Livny - Concurrency Control Performance Modelling:
Alternatives and Implications - ACM Transactions on Database Systems - Vol 12,
Num 4 - 1987.

2. M.S. Atkins and M.Y. Coady - Adaptable Concurrency Control for Atomic Data
Types - ACM Transactions on Computer Systems - Vol 10, Num 3 - 1992.

3. B.R. Badrinath and K. Ramamritham - Semantic-Based Concurrency Control: Be-
yond Commutativity - ACM Transactions on Database Systems - Vol 17, Num 1 -
1987.

4. A.J. Bernstein, V. Hadzilacos and N. Goodman - Concurrency Control and Recovery
in Distributed Database Systems - Addison Wesley - 1987.

5. Y. Breibart, H. Garcia Molina and A. Silberschatz - Overview of Multidatabase
Transaction Management - The VLDB Journal - Vol 1, Num 2 - 1992,

6. P.K. Chrysanthis, S. Raghuram and K. Ramamrtitham - Extracting Concurrency
From Objects: A Methodology - ACM Proceedings of the SIGMOD International
Conference on Management of Data - pp 108.117 - 1991.

7. K.P. Eswaran, J.N. Gray, R.A.Lorie and I.L. Traiger - The notion of consistency
and predicate locks in a database system - Communications of the ACM - Vol 19,
Num 11 - 1976.

8. R. Guerraoui, R. Capobianchi, A. Lanusse and P. Roux - Nesting Actions through
Asynchronous Message Passing: the ACS protocol - Proceedings of the European
Conference on Object Oriented Programming - LNCS, Springer, pp 170.184 - 1992,

9. R. Guerraoui - Nested Transactions: Reviewing The Coherency Contract - Proceed-
ings of the International Symposium on Computer and Information Science - pp
152.160 - 1993.

10. R. Guerraoui - Towards Modular Concurrency Control for Distributed Object Ori-
ented Systems - IEEE Proceedings of the International Workshop on Future Trends
in Distributed Computing Systems - pp 240.247 - 1993.

11. J.N. Gray - Notes on database operating systems - In Operatings Systems: An
Advanced Course - LNCS, Springer, pp 393.481 - 1978.

12. M.P. Herlihy and J. Wing - Avalon: language support for reliable distributed sys-
tems - JEEE Proceedings of the International Symposium on Fault-Tolerant Com-
puting - pp 89.95 - 1987.

13. M.P. Herlihy and W.E. Weihl - Hybrid Concurrency Control for Abstract Data
Types - ACM Proceedings of the Symposium on Principles of Database Systems -
pp 201.220 - 1988.

14. M.P. Herlihy - Apologizing Versus Asking Permissions: Optimistic Concurrency
Control for Abstract Data Types - ACM Transactions on Database Systems - Vol
15, Num 1 - 1990.

15. T. Hirotsu and M. Tokoro - Object-Oriented Transaction Support for Distributed
Persistent Objects - IEEE Proceedings of the International Workshop on Object
Orientation in Operating Systems - 1992.

16. S. Mehrotra, R. Rastogi, H.F. Korth and A. Silberschatz - The Concurrency Con-
trol Problem In Multidatabases: Characteristics And Solutions - Technical Report
91-37, Department of Computer Science, Univ of Texas at Austin - 1991.

17. M. Mock, R. Kroeger and V. Cahill - Implementing Atomic Objects with the Relax
Transaction Facility - Computing Surveys - Vol 5, Num 3 - 1992.

18. J.E.B. Moss - Nested Transactions: An Approach to Reliable Distributed Comput-
ing - MIT Press, MA - 1985.

134

19. T.P. Ng - Using Histories to Implement Atomic Objects - ACM Transactions on
Computer Systems - Vol 7, Num 4 - 1989.

20. O. Nierstrasz and M. Papathomas - Viewing Objects as Patterns of Communicating
Agents - ACM Proceedings of the International Conference on Object-Oriented
Programming Systems, Languages and Applications - pp 38.43 - 1990.

21. C.H. Papadimitriou - The Theory of Database Concurrency Control - Computer
Science Press - 1987.

22. G.D. Parrington and S.K. Shrivastava - Implementing Concurrency Control in
Reliable Distributed Object-Oriented Systems - Proceedings of the European Con-
ference on Object Oriented Programming - LNCS, Springer - pp 233.247 - 1988.

23. Y. Raz - The Principle of Commitment Ordering - Proceedings of the International
Conference on Very Large Data Bases - pp 292.312 - 1992.

24. D.P. Reed - Naming and Synchronization in a Decentralized Computer System -
Ph.D Thesis, MIT - 1978.

25. P.M. Schwarz and A.Z. Spector - Synchronizing Shared Abstract Data Types -
ACM Transactions on Computer Systems - Vol 2, Num 3 - 1984.

26. D. Tsichritzis - Object Composition - Centre Universitaire d’Informatique, Univ
of Geneva - 1991.

27. K. Wakita and A. Yonezawa - Linguistic supports for development of distributed
organizational information systems in object-oriented computation frameworks -
ACM Proceedings of the International Conference on Organizational Computing
Systems - pp 185.198 - 1990.

28. P. Wegner - Dimensions of Object-based Language Design - ACM Proceedings of
the International Conference on Object-Oriented Programming Systems, Languages
and Applications - pp 168,182 - 1987.

29. W. E. Weihl - Specification and Implementation of Atomic Data Types - Ph.D
Thesis, MIT - 1984.

30. W. E. Weihl and B.H. Liskov - Implementation of Resilient, Atomic Data Types -
ACM Transactions on Programming Languages and Systems - Vol 7, Num 2 - 1985.

31. W. E. Weihl - Commutativity-based Concurrency Control for Abstract Data Types
- IEEE Transactions on Computing - Vol 37, Num 12 - 1988.

32. W. E. Weihl - Local Atomicity Properties: Modular Concurrency Control for Ab-
stract Data Types - ACM Transactions on Programming Languages and Systems -
Vol 11, Num 2 - 1989.

33. W. E. Weihl - Linguistic Support for Atomic Data Types - ACM Transactions on
Programming Languages and Systems - Vol 12, Num 2 - 1990.

135
Appendix I

Theorem 1 (sufficient condition): when satisfied by each object’s
behavioral specification, o—atomicity implies that every possible his-
tory is atomic.

Proof: Consider a possible history H (i) (we note 7[H] the SO (established by
the GSP) of the transactions involved by H, and we note T[H]committed(a) the re-
striction of 7[H] to committed(H)). Assume that, VO involved by H, O.behavior
satisfies o—atomicity (ii).

1: By definition 2, assumption (i)=> YO involved by H, Hyoy € O.behavior (1).
2: By definition 4, assumption (i1) = VO involved by H, H{oy is atomic in the
order T[H{O}]committed(H{o)) (2)

3: By definition 3, (2) = YO involved by H, perm(H oy, T[H{o}]commmed(;{(o})) €
O.serial (3).

4: Since Perm(H{o} » T[H{O}]committed(}i(o})) = P€7‘m(H) T[H]committed(H)){O}1
then by definition 1, (3) = perm(H, 7[H].ommitted(m)) is serially possible (4).
5: By definition 3, (4) = H is atomic (in the order T[H]committeda(a))- O

Theorem 2 (relation with GSP-dependent properties): if each
object’s behavioral specification satisfies either o—atomicity, or static
atomicity (resp. dynamic atomicity, or hybrid atomicity), then every possi-
ble history is atomic.

Proof: Consider a possible history H (i), and assume that A is the set of objects
involved by H of which behavioral specification satisfy o—atomicity (ii), and A’
is the set of objects involved by H of which behavioral specification satisfy static
atomicity (iii) (resp. dynamic atomicily, or hybrid atomicity).

1: By definition 2, assumption (i) = YO € (A U A’), H{oy € O.behavior (1).
2: By reformulating the definition of static atomicity (resp. dynamic atomic-
iy, or hybrid atomicity), given in [32], (assumption (ii) and (1)) = 3 T1[H4),
a SO (determined by a static (resp. dynamic or hybrid) GSP) of the trans-
actions involved by Hy4, such that VO; € A, H{p,) is atomic in the order
TI[H{OJ-})]commit!ed(H(o])) (2)

3: By definition 3, (2) = VO; € A, perm(H{Oj},TI[H{OJ}]C,,mm,-md(H{oJ_})) €
0; .serial (3).

Using the same static (resp. dynamic or hybrid) GSP, we can extend the SO
T1{H 4] (of the transactions invoking objects in A), so that to obtain a SO 7[H],
of the transactions invoking also objects in A’.

4: By definition 4, (assumption (iii) and (1)) = VO; € A’, H{o,} is atomic in
the order T[H{Ol,}]comm,-“ed(g(o‘.)) (4).

5: By definition 3, (4) = VO, € A’ | perm(H{O‘},T[H{O,-}]committed(H(o'})) €
O;.serial (5).

6: ((3) and (5)) = YO € (AU A), perm(H{oy}, [H {0} committed(H o)) €
O.serial (6).

7: By definition 1, (6) = perm(H, T[H]committedy) 18 serially possible (7).

8: By definition 3, (7) = H is atomic (in the order T[H]committed(ar))- O

136

Theorem 3 (necessary condition): If o—atomicity is not satisfied
by an object’s behavioral specification, then there exists a possible
history that is not atomic.

Proof: Suppose that there exists an object O, such that O.behavior does not
satisfy

o—atomicity (1).

1: By definition 4, assumption (i) = JH 1€ O.behavior, such that H1 is not
atomic in the order T[H 1] (1) (where 7[H1] is the SO determined by the GSP;
we note T'1,T2..T'n the series of the transactions of committed(H1), in the order
T[chommitted(Hl)])~

2: By definition 3, (1) = perm(H 1, 7[H 1] committearn)) € O.serial (2).

Now assume another object Oc representing a counter, such that Qc.behavior
satisfies o—atomicity (ii). Oc provides an incrementation operation that returns
its current value. We can build a local history H2, involving the transactions
of committed(H1), such that r[H2] = T[H Leommittea(sr1)] (H2 is the sequential
failure-free history involving the transactions of committed(H1), in the order
T[H2]; H2 = perm(H2, r[H?2]) (figure 6). An important characteristic of H2 and
the counter semantic is that the only order v, such that perm(H2,v) € Oc.serial
is 7[H2] (i11).

3: By definition 3, assumption (iii) = the only order v in which H?2 is atomic,
is the order 7[H2] (3).

4: By definition 4, (assumption (ii) and (3)) = H?2 belongs to Oc.behavior (4).
5: By definition 2, ((1) and (4)) = (H1U H2) is a possible history (5).

6: By definition 3, ((2) and assumption (iii)) = (H1U H2) is not atomic (6)
(because the only order 7, such that perm((H1UH2),v)o. € Oc.serial is T[H2],

whereas
perm(H1,7[H2]) & Oc.serial).
7: (H1U H2) is thus possible and not atomic. O

H2 =

<increment(), TI, Oc>
<1,T1,0c>
<increment(), T2, Oc>
<2,72,0c>

<increment(), Tn, Oc>
<n,Tn, Oc>
<commit(),T1, Oc>
<commit(), T2, Oc>

<commit(), Tn, Oc>

Fig.6. A counter history

137
Appendix IT

Theorem 4 (o—atomicity): every object of the class PessAtomicQb-
ject guarantees the o—atomicity property.

An object O, instance of the class PessAtomicObject, has the following ac-
cess() algorithm:

access(inv)

{

awatl 1= true;
while (await)

if (3inv’ € Logor such that
{{(T(inv) # T(inv")) A (order(T(inv), T(inv')) = true)))
then abort(T(inv));
if (Jinv’ € Logo: such that
((T(inv) # T(inv'))A
((order(T(inv), T(inv')) = unknown) V (status(inv’) = active))))
then wait(T(inv));
else awart := false;

}

Proof of theorem 4: Assume O1 is an instance of PessAtomicObject.
1: When O1 receives an invocation inv from a transaction T'(inv), O1 checks
whether there exists an invocation inv’ in Logoi, of a different transaction
T(inv'), such that inv’ is still active, i.e. status(inv’) = active. In this case
T(inv) is delayed until a termination invocation (commit or abort) arrives at
O. Therefore, Ol delays interfering transactions and forces a strict sequential
execution (1).
2: if T(énv) invokes O1 after a transaction T(inv') serialized before it (T(inv)
comes too late), T(inv) is either delayed if inv’ is still active, or aborted if iny’
is already committed. As a result, O1 schedules transactions according to the
SO given by the operation order() (2).
3: ((1) and (2)) = YHoi€ Ol.behavior, H{p1} corresponds to a serial execu-
tion of transactions in the SO T[Ho1}] (3).
4: (3) = VH{o1) € Ol.behavior, Hip1y is atomic in the SO T[H{ony]. O

138

Theorem 5 (o—atomicity): every object of the class OptAtomicObject
guarantees the o—atomicily property.

An object 02, instance of the class OplAtomicObject, has the following ac-
cess() algorithm:

access(inv)

{

if (Jinv’ € Logos such that
((T'(inv) # T(inv')) A (order(T(inv), T'(inv')) = true)))
then abort(T(inv));
Yiny' € Logos
if ((T(inv) # T(inv')) A ((status(inv) = active)
V(order(T(inv), T(inv')) = unknown)))
then add(T(inv'), Doz(T(inv));

}

Proof of theorem 5: Assume O2 is an instance of OptAtomicObject.
1: O2 accepts every invocation inv, unless it has already accepted an invocation
inv’, of a transaction T'(inv’), that is serialized before T'(inv); in which case
T'(inv) is aborted (it arrived too late).
2: When 02 accepts an invocation inwv, after it has accepted an invocation inv'
which is still active, O2 requires that, at commit time, 7'(¢nv") should have com-
mitted and serialized before T'(inv). If T'(inv") comes to invoke O2 later, T'(inv’)
will be attached a contradictory termination condition which might not be sat-
isfied at commit time. In this case, both T'(inv) and T'(inv’') will be aborted.
Therefore, out of order and interfering transactions will be aborted (a poster:-
ort).
3: ((1) and (2)) = VH{ps€ O2.behavior, H{oay corresponds to a serial exe-
cution of transactions in the SO 7[Ho2] (3).
4: (3) = YH{pay € O2.behavior, H{psy is atomic in the SO T[H{o2]. O

