Modeling Object-Oriented Program Execution

Wim De Pauw, Doug Kimelman, and John Vlissides

IBM T.]. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598 USA

{wim, dnk, vlis}ewatson.ibm.com

Abstract. This paper describes a way of organizing information about an
object-oriented program’s execution. The context is our system for visual-
izing that execution. The critical constraints are completeness, compactness,
and efficient retrieval. We describe our design and how it meets these con-
straints.

1 Introduction

Much is known about how to characterize programs statically. Contemporary
programming languages embody countless lessons learned over nearly a half
century of modern computing. It's clear that a language must balance expres-
siveness and simplicity, abstraction and specificity, flexibility and robustness.
The proportions can vary according to need, but programming language design
is necessarily a compromise between conflicting goals.

We can think of a programming language as defining a vast space of legal
programs relatively few of which are of any practical use. To define a space
we must have orthogonal dimensions. In the case of structured programming
languages we might devote one dimension to data structures, another to control
flow, and another to procedural decomposition. A contour in the resulting space
defines a unique combination of data structures, control flow constructs, and
procedures that characterize a specific program. Other programming models
might define the space in different terms. For example, classes, inheritance, and
polymorphism provide orthogonal bases for object-oriented languages.

In general, programmers use a language to map their ideas into a contour
representing a viable program in the space, one that solves their problem. From
this perspective, programming tools like compilers, browsers, and editors exist
to realize, visualize, change, or otherwise manipulate the mapping into the
program space. Tools for manipulating the program complete a feedback loop
that lets a programmer view and modify the mapping to suit his needs. Figure 1
illustrates how one maps his conceptual understanding into a program in the
space defined by a programming language.

The feedback loop’s effectiveness determines how quickly and easily one can
compose a useful program. The path along the loop has four key components:

1. A person’s conceptual understanding of a problem.
2. A space in which to express the problem and its solution.
3. A model of the problem in the expression space.

Fig. 1. Mapping conceptual relationships into the program space

4. Tools for viewing and manipulating the model in the expression space. We
call this activity navigating the expression space.

In this perspective the development process begins and ends with one’s
understanding of a problem, but that doesn’t mean one must understand the
problem completely before proceeding further. Such understanding is neither
mandatory nor attainable in practice, simply because proving the completeness
of a set of requirements is infeasible for most real-world problems. Without a
guarantee of completeness, one cannot be assured that an analysis is viable prior
to its use in the design process.

That argues against separating design and analysis and treating them as
independent activities. In reality they are closely related and should be done
concurrently and iteratively. Hence program development—that is, navigating
the expression space—is inherently an iterative process. The mark of good tools
is that they are useful for design, implementation, and analysis. We eliminate
artificial distinctions between these activities when we think of tools in terms
of navigating the expression space.

This perspective is also useful because it has a direct analog in characterizing
the dynamic aspects of a program. A program’s dynamic behavior is just as im-
portant to its design, implementation, and refinement as its static specification.
This is especially true of object-oriented programs, where the gulf between sta-
tic specification and run-time behavior is particularly wide. But while much is
known about the static aspects of programs, much less is known about charac-
terizing and manipulating their dynamic aspects. An understanding of dynamic
aspects is critical for building tools that let one visualize, change, or otherwise
manipulate a program’s dynamic behavior.

Fig. 2. Mapping conceptual relationships into the execution space

Figure 2 shows a feedback loop analogous to that of Figure 1 but character-
izing a program’s dynamic rather than static aspects. The path along the loop
has the same four components we introduced for the static case, but their inter-
pretation is different. Here, conceptual understanding concerns the program’s
run-time behavior as opposed to its static structure. People often think in these
terms, so this analogy should be obvious.

The other three components, however, have no analogs to current languages
and tools. For example, the orthogonal criteria that make up the dynamic ex-
pression space include time, the call stack, and, in the case of object-oriented
programs, message sends and method binding. The model in the expression
space comprises a succession of events that characterize the program’s exe-
cution. There are no established techniques for capturing such information.
Consequently, few tools exist for navigating this space compared to tools for
navigating the static space.

We have sought to address these three components of the loop by

- defining an event space for characterizing the dynamic aspects of programs,
- modeling the event space in concrete terms, and
- building tools for navigating the event space.

In this paper we describe our approach to characterizing the dynamic behavior
of object-oriented programs. The primary goals of our approach are threefold:

1. Completeness. Capture as much information as possible on significant aspects
of a program’s execution, minimizing information loss.

166

2. Compactness. Use as little storage as possible to hold the captured informa-
tion.

3. Efficient retrieval. Arrange execution information for easy and quick access
so that navigation tools can operate with minimal overhead.

This work is the cornerstone of a system we have built for visualizing the
execution object-oriented programs [11]. We support C++ programs currently,
but the design could be easily retargeted to other object-oriented languages. The
system comprises an architecture for building visualization applications and a
prototype implementation. We have developed numerous dynamic views that
present different aspects of a program’s execution in object-oriented terms. The
infrastructure described in this paper plays an important part in making these
views possible and effective.

We start by defining the event space more specifically. We then describe how
we model this space, including the tradeoffs we have made to achieve the goals
of completeness, compactness, and efficient retrieval. Next we demonstrate the
model’s utility by showing how several visualization tools use the model to
generate their displays. We conclude with a review of related work, a summary
of this work, open issues, and our plans for the future.

2 The Event Space

We can characterize a program’s execution as a succession of interesting events.
The frequency and granularity of events depends on the level of detail we want
to capture. For example, characterizing a program’s execution at the instruction
level would produce a flood of events that will be difficult to store, manage, and
interpret. On the other hand, collecting only a few coarse-grained events gives
us little insight into the program’s execution.

Choosing an appropriate level of abstraction is therefore critical to charac-
terizing program execution accurately. Objected-oriented programmers think in
terms of classes, instances, inheritance, messages, methods, and so forth. Inter-
esting events in this context might include object construction and destruction,
message sends, method invocation and return, among others. By capturing pro-
gram execution in terms of these artifacts, we obtain a close match between our
run-time characterization and the programmer’s mental model of the program.

We organize these artifacts into a four-dimensional space (Figure 3) having
axes for classes, instances, methods, and time. Each increment along the class
axis corresponds to a class in the program. The classes are arranged in order
of instantiation. Likewise, increments along the instance axis refer to instances
in the program. The method axis reserves two increments per method in the
program, one for entrances into the method and another for exits from the
method. The time axis defines a program-independent variable that measures
execution progress.

Thus a point in the space is described by the coordinate quadruple

(class, instance, method, time)

167

classes

Fig. 3. Canonical four-dimensional event space

Each point corresponds to an event during program execution. The program
generates a stream of these events as it runs, thereby forming a contour in the
space. We populate the space by noting four important events:

1. A construction event marks a class’ instantiation via a construction method.

2. A destruction event marks the destruction of an instance via a destruction
or finalization method (if any).

3. An enter event records method entry resulting from a message send to an
instance of a class.

4. A leave event records method exit.

The canonical four-dimensional space is a convenient metaphor for repre-
senting and analyzing an object-oriented program'’s execution. We can extract
information by traversing or projecting one or more dimensions of the space in
different combinations to produce subspaces. We can reconstruct the call stack
and compute message frequency, instance and method lifetimes, and conven-
tional profiling statistics. Moreover, by coupling the information in the space
with static program information, we can analyze class and instance relationships
to determine the degree to which classes rely on code inheritance, for example,
and how activity is distributed within aggregate objects. Such computations are
fundamental to tools for navigating the event space.

3 Modeling the Event Space

The canonical space is a useful conceptual model, but a straightforward imple-
mentation would be impractical for two reasons. First, a typical program can
generate many hundreds of thousands of construction, destruction, enter, and
leave events. Storing every such event in the space would be prohibitively ex-
pensive. Second, the space is organized for generality and as such is suboptimal

168

for retrieving two common kinds of information: differential and integral. In
this section we describe how we model the canonical space to address these
problems.

3.1 Differential and Integral Information

It is commuon for visualization tools to update their appearance on every event.
Events arrive al a rapid rale, perhaps many thousands per second, so event
processing overhead must be kept to a minimum. Obviously it isn’t possible
to scan the entire event space on each event to determine its impact on the
tool’s display presentation. Thus it must be possible to ascertain differential
information, thal is, the specific incremental change since the last event.

Consideratool that displays a graphical representation of the total number of
invocations on every instance. If the tool stores this information implicitly in the
graphics it displays, then only differential information (e.g., “another message
foo sent to instance z”) is required to update the appropriate graphic(s) on each
message send. Providing differential information of this sort is simple enough:
simply deliver events to tools as they arrive.

In contrast to differential information, integral information is cumulative in
nature. Examples of integral information include the number of times an object
received a particular message (e.g., “total sends to instance z: 23”), how often
an object sent a message to another object, and how many times a class has
instantiated objects of another class. We would need information like this to
construct a different graphical representation halfway through a run. Acquiring
these statistics over time generally requires a traversal over part or all of the
canonical event space. A more efficient organization is required to make these
queries more efficient.

3.2 Call Frames

Rather thanstoring each event explicitly as in the canonical event space, we store
combinations of events in objects called call frames. Different combinations offer
varying trade-offs between modeling accuracy and efficiency. Our goals were
to store execution information compactly and allow fast retrieval of integral
information.

Developers of object-oriented programs often need to trace patterns of com-
munication between objects. For example, suppose we want to discover who
allocated a given instance. We can find out by searching the event space for
the object that produced the construction event for that instance. At any time 7
(except in functions such as C++’s main function or static member functions),
a method f of class ¢ executes for a receiver instance ¢ of class c. We express this
with the notation

cui. .t f (1)

denoting an instance-method combination. ¢ and ¢ usually refer to the same
class unless f is an inherited method. For example, if we have an object my 1ist

169

of the class List, we can express an invocation of the next () method on this
object as follows:
List imylist.List :: next ()

If we consider the stack of method calls where each stack frame! records an

instance and a function, then combination (1) will represent the top of the stack
at time 7.

If we want to know at some point which method is executing on an object,
then we need the information recorded in a combination like (1). For example,
to determine which construction method created my 11 st, we should look for
all matching combinations (1) for which ¢ = mylist and f is a construction
method.

Now suppose combination (1) was produced by a message from another
instance I of class C as a result of executing method F from class 7" at 7 - 1:

C=:1.T:F (2)
If “—" means “calls,” then we can write the full message send as
C:ul . T:F-—scurv.tuf 3)

This is an example of a call frame. At time 7, combination (2) is just below
combination (1) on the stack.

Call frames contain the information we need to trace and compile statistics
on message sends. Returning to our example, suppose the object mylist is
owned by an instance mytable of class HashTable. Invoking a printAll ()
method on mytable might cause mytable to invoke the next () method on
mylist:

HashTable :mytable . HashTable: printall () —
List nmylist . List : next () 4)

If we want to find out how often the HashTable class’ printAll () method
calls List’s next () method, we count the occurrences of call frame (3) for
which T' = HashTable, F = printAll(),t = List, and f = next (). Note
how a call frame holds information spanning two consecutive pointsin time: the
invocationof the caller C :: I . T :: F and the invocation of the calleec :: 7. ¢ :: f.
In contrast, combinations like (1) represent a single invocationc:: ¢ .2 :: f.

3.3 Storing Call Frames

We recover call frames from the event stream and store them as the program
runs. However, storing every call frame separately would still be expensive both
in space and in time, especially when computing queries for integral informa-
tion. Instead we store only unique call frames and the accumulated number of

L' A conventional stack frame is not the same as a call frame. A stack frame records a
function call and its actual parameters, whereas a call frame stores a superset of this
information, as we explain below.

170

occurrences of each. This approach greatly reduces storage and integral query
costs at the expense of differential information.

For every possible call frame (3) we store a count of occurrences in an eight-
dimensional matrix. We express a look-up into this matrix with the notation

E(C,I,T,F,C,i,t,f) (9)
For example, matrix entry
E(HashTable,mytable,HashTable, printAll (),
Lint,mylist,List, next ())

would store the number of occurrences of call frame (4) above. Whenever a new
event arrives, we update E by incrementing the value for the corresponding
call frame (5) by one.

mytable|printAll()|mylistinext ()} 7

HashTableHashTable Zist | List | 30

gy

Fig. 4. Internal organization of eight-dimensional call frame matrix

E is normally very sparse, because relatively few combinations of class
names, instances, and methods are possible. Moreover, few of all possible caller-
callee pairs make sense given the program'’s static structure. To exploit these
properties, we implement the matrix as a two-level hash table (Figure 4). The
first level of this data structure is a hash table organizing the information in
terms of classes. Given values C, T, ¢, and t, the entry E. ,(C, T, c, t) stores the
accumulated number of call frames having the form of (3) above but with I, F,
¢, and f left unspecified. The number reflects the total number of messages sent
from all instances of one class to all instances of another. In our example,

E..(HashTable,HashTable, List, List)

stores the number of times HashTab1e objects sent a message from within any
of their own (i.e., uninherited) methods to any List object (thereby invoking
any uninherited List method).

171

For each nonzero E. ,(C, T, ¢, t) there is a second-level hash table E; ;. Given
values I, F, ¢, and f, then entry E; ;(I, F,1, f) stores the accumulated number
of call frames (3) above. The sum of all entries in E; ; equals the count stored in
Ec,t(C, T, c, t)

E; ; provides finer-grain information on call frames for specific instances
of C and ¢ and for specific methods of T and ¢. In our hash table example the
second level hash table for

FE.:(HashTable, HashTable, List, List)

contains more specific information about the instances and methods involved
in the communication between the HashTable and List classes. For example
entry

’

E;:(mytable,printall (),mylist,next())

stores the total number of messages sent from the mytable instance within
HashTable's printAll () method fo mylist, thereby invoking the next ()
method from the List class.

34 Queries

The two-level structure is well-suited to tools that let the user navigate from
a macroscopic perspective of the program’s execution to a more microscopic
one. Specifically, instances almost always outnumber classes by a wide margin.
Therefore it is usually appropriate to navigate the event space at the class level
initially to avoid swamping users with information. From this level a user is in
a good position to request more detailed information at the method or instance
levels. Because a user already has certain classes in mind when making method
or instance queries, the two-level hashing ensures these are as fast as queries at
the class-level.

While the eight-dimensional matrix model allows highly specific queries,
most tools require less specific information, especially when the user works
at a macroscopic level. Thus queries on the eight-dimensional matrix usually
include one or more wildcards. For example, to determine how many times the
List class’ next () method has been called by HashTable’s printall (),
we would search FE for all the call frames that match

C=Il=c=i=x

T = HashTable

F =printall()

t=List

f = next ()
The sum of the values from all matching frames gives the number of calls from
HashTable'sprintAll () to List’snext ().

Another common query involves searching call frames for specific fields as
opposed to simply adding up the values from matching call frames. Suppose

172

we want to determine which object created another object myobject from class
List. We must search E for the call frame satisfying

C=I=T=F=x
¢c=t=List

1 = myobject
f=List ()

where f = List () corresponds to the construction method. The call frame
whose C, I, T, F fields match the query’s will have ¢, 1, ¢, f fields that reveal the
creator of this object.

Now suppose that List is a subclass of class Persistent. In this case we
might want to know if a particular List object ever uses a method inherited
from Persistent. This information can help us assess quantitatively how
much code inheritance is exploited in a program. A query specifying

C=I=T=F=i=f=x
¢=List

t = Persistent

will give us the call frames that show which inherited methods are invoked on
which instances and by whom.

It is also possible to trace the complete set of outgoing messages for a par-
ticular class. A query specifying

I=T=F=c=1=t=f=x
C=1List

reports the call frames of all messages produced by the List class. Conversely,
we can find the set of incoming messages with a query specifying

C=1=T=F=1=t=f=x

¢ = List

4 Visualizing the Event Space

Our model of the event space provides a basis for a variety of navigation tools.
We have developed a set of dynamic views that let a user visualize different parts
of the event space. The views are based on a software architecture that supports
rapid development of visualization applications. We describe the architecture’s
design, implementation, and application elsewhere [11]. Here we show how
several views use the event space model for display and navigation.

173

41 Visualizing Communication

The inter-class call cluster provides a dynamic overview of communication
patterns between classes. Figure 5 shows a snapshot of this view during a pro-
gram's execution. This view shows class names as floating labels. The amount
of communication between instances of two classes determines the distance
between their labels. The view is animated so that the more communication
there is between classes, the more their labels gravitate towards each other and
cluster together. Classes that communicate infrequently repel each other.

Fig. 5. Inter-class call cluster

This view also indicates the current call stack by showing the classes of
methods on the call stack. A blue path leads from the label : :main through
each of these classes. The last segment of the path, leading to the currently

174

active class, is red. In Figure 5 the thread of control goes from : :main, through
Objective, ConstraintSolver, ConstraintSystem, QOCARep, and ObjectiveRep,
and finally to the currently active class Terms.

The inter-class call cluster focuses attention on the most active and most
cooperative classes at any moment. These classes provide a good starting point
for more detailed study either for optimization or understanding the structure
of an application—clustered classes, for example, are likely to be tightly coupled
or from the same subsystem [14]. The number of classes in a cluster is typically
small, on the order of ten classes or fewer, probably because systems with
broader interactions are exponentially more complex and are less likely to be
developed in the first place.

This view uses an iterative, force-based node placement algorithm. Two
kinds of forces work on each floating node. First, every pair of nodes experiences
a repulsive force that is inversely proportional to the distance between them.
Second, every pair is also affected by an attractive force proportional to the total
number of messages sent between the corresponding classes.

When this view is displayed initially, it must determine the number of mes-
sages exchanged so far between every pair of classes. Since information about
instances or member functions is not required for this view, it suffices to query
E.; for all the possible call frames at the class level only:

C=T=c=t=+x

A query with these parameters will return the total number of messages between
any pair (T, t) of classes. Once the view has accumulated query results for every
combination of classes, then it can start the node placement algorithm to position
its class name labels. From then on, the view extracts differential information
directly from the event stream. The view uses this information to update its
appearance incrementally as the program executes.

4.2 A Closer Look at Communication

While the inter-class call cluster offers insight into the dynamic messaging
behavior of the program, the inter-class call matrix (Figure 6) gives cumulative
and more quantitative information. Classes appear on the axes in the order in
which they are instantiated. Base classes always appear closer to the origin than
their subclasses. A colored square in this visualization represents the number
of calls from a class on the vertical axis to a class on the horizontal axis. The
color key along the bottom indicates relative number of calls. Colors range from
violet, denoting fewer calls, to red, denoting more calls.

The inter-class call matrix offers a different perspective of the information
shown in the inter-class call cluster. Consequently, the inter-class call matrix
makes the same kinds of integral queries and differential updates. An addi-
tional feature of this view is its “zooming” capability, which lets a user see more
detailed information on demand. When a user clicks on the square for a class A
on the left and a class B at the bottom, another view appears, the inter-function

Fig. 6. Inter-class call matrix

call matrix. This subview displays the frequency of calls from individual meth-
ods of A to methods of B. Figure 7 shows the subview produced by clicking on
a square in Figure 6.

To get the details of calls from methods of A to methods of B, the inter-
function call matrix queries E with the following values:

C=I=F=c=i=f=+x%
T=A
t=2B
The model reports the cumulative number of calls between any pair of methods
F and f from classes A and B, respectively. Once the inter-function matrix

reflects the current values, it makes differential updates whenever A sends a
message to B.

4.3 Insight from Instances

The preceding visualizations emphasize the display of relationships between
classes. Focusing on instances can reveal program dynamics at finer levels of
granularity.

176

ZS‘JM,‘, e
i
Bov i

i E
e

¥ ; : 3 Gonil e
A i TR i i A

i " , & i s h’"”"f‘;"ff
G

il

.

o

! i : PR
s ¢ et o : s e
) Z A

ot P Y r fot:

Fig. 8. Histogram of instances

177

The histogram of instances (Figure 8) displays all instances of each class.
Rows of small colored squares form the bars of the histogram. Each bar repre-
sents all instances of the class whose label appears to its left. Again, a square’s
color indicates the number of messages an instance has received. Colored
squares appear and disappear as objects are instantiated and destroyed. White
squares indicate objects that have been destroyed; these squares will be reused
by newly created instances. This visualization lets us see how many instances
exist at a given time and their level of messaging activity. It also shows relative
object lifetimes and anomalies such as undesired copy constructor calls in C++
that are manifest as extremely short-lived objects.

We determine the current set of instances of a class A using a query with the
values

C=1=T=F=1=x%
c=t=A
f=A()

where A() is the construction method. Differential information keeps the view
updated thereafter as instances are created and destroyed.

Like the inter-class call matrix, the histogram of instances can also furnish
more detail about the instances it depicts. For example, clicking on a particular
instance a of class A produces a subview that displays three sets of information:

1. The messages that this instance received, from whom, and how often.
2. The messages that this instance sent, to whom, and how often.
3. The creator of this instance.

The subview presents this information textually in the current implementation.
Figure 9 shows its output. Clicking on an entry in the subview highlights the
corresponding instance square(s) in the histogram of instances.

Objcr:t.xv. . i : In:.(} cAlled by Object.tv H I
Objaective: : 304780484. Objectzve :DoMakeRep(ExXpRep* rep) called by Obj
Objective::804780484.0bjective: : setRep(ExpRep* e} called by Objectivf

q -

Fig.9. Subview from the histogram of instances

To collect information on the messages received by aninstance a, the subview
queries E with the parameters

C:I:T:F:t:f:*

178

Cc =

t=a
The t and f fields in matching call frames indicate the message received, and
the C and I fields identify the sender.

To compute the second set of information, where a is the sender, the query
parameters become

1' F:C:i:t:f:*
C=4
I=a

and the ¢ and ¢ fields of matching call frames indicate the receiver.
To determine who created a, we look at the C and I of call frames that match

C=I=T=F =x%

c=A
1 =a
t=A
f=A(

where A() is the construction method.

4.4 Multiple Perspectives

An important feature of our visualization system is its support for inspecting a
phenomenon from multiple perspectives. For example, the inter-class call clus-
ter and matrix views display essentially the same information. Yet the cluster
view conveys more of the dynamism of object communication, whereas the ma-
trix view'’s stability makes detailed comparisons easier. By presenting the same
information in more than one way, we exploit our various cognitive aptitudes
more effectively.

The histogram of instances allowed us to examine the allocation of each
instance separately. A broader way to look at allocation patterns is provided by
the allocation matrix (Figure 10). It plots the classes that allocate new objects
versus the classes they instantiate. This view shows allocation dependencies
and the most frequently allocated objects at the class level. We can use this
information to pinpoint the sources of allocations and subsequently reduce
storage and construction costs in the application being visualized. The allocation
matrix collects allocation data via the query parameters

C=z=]l=T=F=c=t1=t=+x
f=X()

for all construction methods X () in the program.

179

e
N
SeEETa

AR

1ew

o

r
WM%U“ & Jﬂ.‘é,‘w
FromtAnanony

Moy

i
s

Rl

s

1X

ion matri

Allocat

Fig. 10.

tion matrix subv

Alloca

Fig.11.

180

The allocation matrix provides a zooming capability as well. For example,
clicking on the (Term, Factors) square in Figure 10 will produce the subview
shown in Figure 11. The subview displays the allocation patterns of Factors
instances by Term instances, with details at the method level. The view shows
us how many instances of Factors were created by methods of Term, and which
construction methods were used. In general, the necessary query parameters
are

]
Cdb"“

C
T

t
f

| !

B()

where A is the allocating class, B is the class that is instantiated, and B() is B's
construction method.

5 Related work

Many have recognized the need for monitoring and visualizing program execu-
tion as an adjunct to traditional language-oriented tools [7, 2, 10, 8]. Most work
has centered on visualizing non-object-oriented languages, as we discuss else-
where [11]. Relatively little has been reported on execution modeling, especially
for object-oriented languages.

Perhaps closest to this work is that of Snodgrass [13], who presents a method
for monitoring program execution in which a user expresses all aspects of
navigation—the events of interest, the modeling criteria, and presentation—
with expressions in a relational algebra. The set of events is stored in a “concep-
tual database” that can be “queried” for execution information. The key differ-
ence between this approach and ours is that queries in Snodgrass’ system must
be specified before execution starts, and no information is ever actually stored.
The choice of event data to collect and process is entirely query-dependent.
Specifying the queries up-front makes it possible to compute the queries as
the program executes; hence the database is “conceptual” and not real. This ap-
proach necessitates repeated executions until the user can narrow to the relevant
points in the program.

Domingue [5] proposes visual representations of both behavioral and per-
formance aspects for rule-based programs. His monitoring system measures
time (for performance monitoring) and counts rules (for generating behavioral
visualizations) to provide a complete picture of the program. An interesting as-
pect of this work is its ability to navigate from coarse-grain views to finer-grain
views showing individual rule firings.

Bruegge, Gottschalk, and Luo [3] describe an object-oriented framework for
dynamic analysis of distributed programs. The focus of this work is on how to
collect and distribute the streams of events coming from different nodes. The
events are then interpreted in real time through one or more views. However,

181

the programs being monitored arc not themselves object-oriented, and there is
no repository for event information that can be queried to construct new views
for navigation.

Systems for visualizing the execution of object-oriented programs have con-
centrated more on presenting execution information than on organizing and
storing it. The GraphTrace systemby Kleyn and Gingrich [9] is a tool for visual-
izing the execution of programs written in Strobe, an object-oriented language
based on CommonlLisp [12]. Visualization is done in two passes. First, the sys-
tem constructs structural views called “graphs” that represent object invocation
graphs or method invocation graphs. The graphs are animated in the second
pass by highlighting the invocation path, thereby depicting execution behavior.
Graphlrace does not include mechanisms for navigating the large quantities
of data generated during execution, and query capabilities are limited to in-
specting the attributes of individual objects. These drawbacks are common to
contemporary object-oriented visualization systems [6, 4, 1].

6 Conclusion

Aprogram’s dynamic aspects arejust as important to its development as its static
specification. Like traditional programming environment tools that navigate
the static specification space, tools for navigating the execution space need
a semantic basis. Object-oriented concepts like classes, instances, messages,
and methods offer a sound basis not just for static modeling but for dynamic
modeling as well. In a sense these concepts are more important to dynamic
modeling, because they offer a way of managing the vast amount of information
that can characterize even a simple program'’s execution.

The model we have described here reflects but one set of design choices
for characterizing the execution of object-oriented programs. Our overriding
goal has been to capture execution information as accurately as possible with
reasonable storage and execution costs. We have had to make inevitable com-
promises to achieve this goal, but the result is general and flexible enough to
support a variety of visualizations. We have described four in this paper; others
are described elsewhere [11], and more are under development.

Several aspects of this work merit further attention. The model as it is im-
plemented currently stores integral information only as far as the instance level.
No information is accumulated on an object’s instance variables, for example.
A third hashing level could cache this data, thereby providing quick access to
additional information of potential interest to programmers. Moreover, we only
store information currently; there is no support for changing run-time values and
thereby affecting execution. Such a capability would be useful in testing “what-
if” hypotheses during debugging, for example. We also plan to explore query
optimization techniques to further reduce modeling overhead. Through these
efforts we hope to improve our model of object-oriented program execution and
consequently the visualization tools that depend on it.

182

Acknowledgments

We thank Richard Helm for his seminal contributions both in the model and in
implementing the various visualizations.

References

10.

11.

12.

13

14.

H.D. Bocker and J. Herczeg. Browsing through program execution. In INTERACT
'90, pages 991-996. Elsevier Science Publishers B.V. (North Holland), 1990.

M.H. Brown and R. Sedgewick. Techniques for algorithm animation. I[EEE Software,
2(1):28-39, 1985.

- B. Bruegge, T. Gottschalk, and B. Luo. A framework for dynamic program analyz-

ers. In Object-Oriented Programming Systems, Languages, and Applications Conference,
pages 65-82,1993.

. Ward Cunningham and Kent Beck. A diagram for object-oriented programs. In

Object-Oriented Programming Systems, Languages, and Applications Conference, pages
361-367,1986.

J. Domingue. Compressing and comparing metric execution spaces. In INTERACT
90, pages 997-1002. Elsevier Science Publishers B.V. (North Holland), 1990.

V. Haarslev and R. Méller. A framework for visualizing object-oriented systems. In
ACM OOPSLA/ECOOP 90 Conference Proceedings, pages 237-244,1990.

. CF. Herot, G.P. Brown, R.T. Carling, M. Friedell, D. Kramlich, and R M. Baecker.

An integrated environment for program visualization. In H.J. Schneider and A. J.
Wasserman, editors, Automated Tools for Information Systems Design, pages 237-259.
North Holland Publishing Company, 1982.

D.N. Kimelman and T.A. Ngo. The RP3 program visualization environment. The
1BM Journal of Research and Development, 35(6), November 1991.

M.E Kleyn and P.C. Gingrich. Graphtrace—understanding object-oriented systems
using concurrently animated views. In Object-Oriented Programming Systetns, Lan-
guages, and Applications Conference, pages 191-205, 1988.

B.A. Myers. Visual programming, programming by example, and program visual-
ization: A taxonomy. In ACM CHI '86 Conference Proceedings, pages 59-66, Boston,
MA, April 1986.

Wim De Pauw, Richard Helm, Doug Kimelman, and John Vlissides. Visualizing
the behavior of object-oriented systems. In Object-Oriented Programming Systems,
Languages, and Applications Conference, pages 326-337,1993.

Reid Smith, Paul Barth, and Robert Young. A substrate for object-oriented interface
design. In Bruce Shriever and Peter Wegner, editors, Research Directions in Object-
Oriented Programmiing. The MIT Press, 1987.

R. Snodgrass. A relational approach to monitoring complex systems. ACM Transac-
tions on Computer Systems, 6(2):157-196, May 1988.

Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing Object-Oriented
Software. Prentice Hall, Englewood Cliffs, New Jersey, 1990.

