Object-Oriented Computations
in Logic Programming

Andrea Omicini and Antonio Natali

DEIS, Universita di Bologna
Viale Risorgimento, 2
40136 — Bologna (ITALY)

{aomicini, anatali}@deis.unibo.it

Abstract. When interpreted as a model for strucluring programs and
organizing computations, the object-oriented paradigm can be thought as a
set of abstractions independent of the host language. By generalizing the
notion of object state configuration with respect to that embedded in
languages based on assignment, this paper explores a relational approach
to object-oriented programming. An object-oriented model based on the
notion of object as structured logic theory, is introduced, allowing instance
creation and configuration as well as computations with partially
configured objects. The model is founded on an abductive framework rooted
in the basic class/instance model of O-OP, which reconciles dynamic object
creation with the declarative reading of LP. Mecta-level constraints provide
the computational support for the abstract model based on abduction. A
simple first-order logic language implementing this model is presented,
along with some examples of object-oriented logic computations dealing
with intra- and inter-object constraints and with partially specified
instances.

Keywords: Integration of object-oriented and logic paradigms, state
configuration, partially configured instances, abduction, meta-level
conslraints.

1 Introduction

The usual perception of what computing with objects means, involves notions like
object identity, message passing, class, inheritance, encapsulation, and so on. Many
diffcrent definitions have been proposcd, trying to capture the essentials of the
object-oriented paradigm [1,2]. However, these proposals sometimes fail to properly
distinguish between what should be considered characteristic of the object-oriented
approach and what comes from the linguistic paradigm of choice. As an example,
object-oriented and logic paradigms should not be considered as two opponents in the
programming arena: instead, object-oriented imperative languages could actually be
compared to object-oriented logic languagcs, so as (o point out the advantages and the
disadvantages of the two approaches.

Since the features of both objcct-oriented and logic programming have great impact
from a softwarc engincering perspective, the integration of the two paradigms is a
subjcct of widespread interest. From the object-oriented side, logic languages offer
several, well-known advantages with respect to traditional languages: the main one

195

lics in their dual semantics (declarative and procedural), making logic languages
particularly cffective in bridging the gap between specification and coding. From a
logic viewpoint, the object-oriented metaphors seem particularly suited to overcome
the main drawback of logic languages in the design and development of large
applications, namely the lack of mechanisms for organizing logic programs.

Thus, in the ficld of logic programming scveral attempts have been made to
integrate the two models (3, 4, S, 6, 7, and many others]. Many of the differences
between the various proposals amount to a diffcrent pereeption of what
“object-oricnted” means.

In this paper, the object-oriented paradigm is interpreted as a model for structuring
programs and organising computations. An objcct-oriented program structures the
application domain by statically classifying its clemcnts in a taxonomy. An
object-oricnted computation consists of a collection of independent elements of the
application domain, cach belonging 10 a class, which can be explicitly referred to by
means of a name, and which communicatc by message passing. An object may
evolve in response to the messages it receives and its state encapsulates part of the
overall state of the computation. Conscquently, the result of an object-oriented
computation can be delined as the final configuration of the state of the involved
objects. Instance state configuration is then the intended result of any object-oriented
computation.

Object stale is also the most critical point when integrating objects in logic. While
object statics (program structuring) can casily be captured in a logic framework,
object dynamics seems (o forfeit the declarative reading of logic languages. In fact, the
proposals capturing the notion of mutable object state in a logic framework generally
miss the fundamental connection between declarative and procedural semantics [5, 6,
8].

On the other hand, object-oricnted languages based on assignment force a
misleading interpretation of the very notion of object state. First of all, the state of an
instance has 1o be completely specificd for the instance to be used in a computation.
As a result, stalc configuration in a traditional object-oriented language consists
basically of an initialization phase, where an object is assigned a null statc which has
actually 10 precede any claboration involving the object. During a computation,
objects reach their final configurations by mcans of subscquent steps of modification
by assignment, each onc also introducing problems of state consistency. Then, the
notion of state configuration is often confused with that of state modification, since
any form of statc configuration has first to rcly on variable assignments, then on state
modification.

Actually, the issuc of state modification is strictly related Lo time-dependent
application domains. An object state changes when it is intended to represent a
mutable clement of the application domain at different moments. Thus, the notion of
object state should be kept distinct from that of mutable state. In particular, the
concepl of state configuration is essential to understand the distinction: configuring an
object state lcads to a given state specification. Whenever the object is intended to be
a mutable object, a re-configuration of its statc may be necded.

The traditional approach to the state issuc is then somehow unsatisfactory. In
particular, what is lacking is a notion ol statc consistency. State configuration by
assignments is not necessarily an atomic operation, and suitable programming
techniques have (o be used in order to guarantee the preservation of state consistency.
As a result, proposals such as that of [9, 10] were meant to introduce constraints in

196

object-oriented programming by allowing programmers to specify different kinds of
relations that hold in the application domain.

In fact, when state configuration issue is concerned, programming languages based
on relations rather than functions, and on variable unification rather than variable
assignment, offer a radically diffcrent perspective. Unification allows directionality in
variable assignment to be dropped, and introduces the notion of write-once variable,
An approach based on relations and unification permits in principle working with
partially specified objects, where object propertics can be naturally expressed in the
form of (intra- and intcr-object) constraints. Object state configuration may then take
place incrementally, via the introduction of new relations (new constraints)
concerning the object itself. The introduction of a new relation represents an atomic
siep of state configuration. State consistency can then be guarantecd by checking
whether a newly introduced relation is consistent with respect to the previous ones.

The main goal of this paper is then 10 show how an object-oricnted logic language
dealing with instance statc configuration could be built, starting from Prolog or, more
generally, from any CLP(X) language. A multiple-theory logic framework with (static
and/or dynamic) composition of thcorics is the most natural, as well as the most
satisfactory approach when dealing with object representation in a logic language [11,
7, 12]. In particular, Contextual Logic Programming (CtxLP in the following) is our
paradigm of choice for structuring logic programs. First of all, CtxLP has a clear
model-theoretic semantics, which can be used to clarify the notion of object as logic
theory [11]. Moreover, as shown in [13}, multiple interpretations available for
contexts make CixLP suitable to express a wide spectrum of different concepts,
ranging from the notion of binding environment to that of current line of reasoning.
In addition, our CixLP model is well scttled in a stable, efficient implementation
[14], which represents an ideal basis for further developments.

Needless to say, only a rather limited notion of object can be reproduced in the
CixLP model, since it cannot deal with instance creation and configuration. In this
paper, then, we aim to show how a multiple-theory logic language can be extended so
as to allow fully object-oriented computations by means of two key ideas: abduction
and meta-level constraints. Abduction is exploited so as to perform program extension
in a declarative way. Meta-level constraints allow objects with partial configured state
to be dealt with. As a result, the proposcd model provides instance creation and state
configuration, and deals with computations involving partially configured objects. At
the same time, the full declarative reading of logic programming is maintained.

This paper is organized as follows. Scction 2 discusses the notion of object and
object-oricnted computation in a logic programming framework. The abstract model
based on abduction (Scction 3) and the computational modcl based on meta-level
constraints (Scction 4) arc then discussed with reference to a simplified framework
(multiple labelled theorics with no thcory composition) in order to avoid
complicating the exposition with unnceded technical details. Section 5 presents a
simple language based on the extended CtxLP model, along with some examples of
computations dcaling with (partially configurcd) logic objects. Finally, Scction 6 is
devoted to conclusions and comparisons with related works.

197

2 Objects in logic programming

2.1 Objects as finite trees

Objects of the application domain arc usually represented in a logic program by
mcans of tcrms, that is, by mapping them into {initc trees. Roughly speaking, logic
programs are designed 1o be uscd morc as “term constructors” than as thcorem
provers, since they are built around the notion of a constructive proof rather than on
the success/failure dynamics of a logic computation.

A logic computation can be scen as a scquence of progressive refinements of the
structurcs represcenting semantic objects. A top goal can be read as a set of relations
among the objects of the domain ol discoursc. The corresponding proof procedure is
then a process which cxploits a logic program to transform such relations into a
consisient collection of constraints over the variables occurring in the structures
representing objects. Finally, cach involved structure is constrained to a particular
configuration rcpresenting the state of the corresponding object.

The concept of object configuration is then quite relevant in logic programming.
On the onc hand, the configuration of terms is a typical intended result of a logic
computation. On the other hand, by keeping track of the evolution of a computation,
the structures representing objects somehow encapsulate the notion of state of an
object.

A fundamental feature of the logic programming approach lics in the possibility to
deal with partially configured objccts. At any step of a logic computation, cach object
structure may cither be completely specificd or contain some free variable. In
particular, the result of a logic computation may be rcad as a collection of objects
whose statcs may be cither partially or completely configured. In addition, a global
notion of consistency is provided: cach object state is consistent both in itself and
with respect to the other objects.

Example 1. Consider for instance the following CLP(R) program describing simple
clectric circuits made of resistors.

ohm(resistor(V,R,I)) :- V = R*I.

voltage (resistox (v, _, },V).

value (resistor(_,R,) ,R).

current (resistor(_, ,I),I}.

equivalent (R, series (R1,R2)) HE
ohm(R), ohm(R1l), ohm(R2),
current (R,I), current(R1l,I), current (R2,I},
voltage (R,V), voltage(R1l],V1), voltage(R2,V2},
V = V1l + V2.

Goal (g1) below collects a sct of relations over object Res, rcsulting in the
complete configuration of Res like a resistor object with a fully specified state.

?- current (Res,2), value(Res,5), ohm(Res). (gl)
Res = resistor(10,5,2) 7?

198

The computation induced by the proof of (g1) can be scen as an cxample of a logic
computation conliguring an objcct by progressive refinement steps. The first subgoal
builds Res as a resistor object, and constrains ils current value to be cqual 10 2.
?- current (Res, 2) . (gl’)
Res = resistor(, ,2) ?

Notc that goal (g1’) also shows how partially specificd objects can be the intended
result of a logic computation. The sccond subgoal further specifics the Res state by
constraining its resistance value to 5.
?- current (Res,2), value(Res,5). (gl”)
Res = resistor(_,5,2) 2

Finally, the last subgoal sct the final valuc [or Res voltage by constraining the Res
state to following Ohm’s Law.

Goal (g2) shows how intra-object and inter-object relations can be exploited so as
to compute over collections of objects, and have their states configured consistently.

?- current (Res2,2), voltage(Resl,b10), (g2)

equivalent (Res2, series (Resl,Resl)).
Resl = resistor(10,5,2),
Res2 = resistor(20,10,2) 2

The main concern in representing semantic objects by means of terms is that from a
programming language perspective they arc not “objects™ at all. This approach, in
fact, provides ncither encapsulation nor data abstraction, and no way 1o ¢xpress the
notions of class, hicrarchy and inheritance.! In particular, the object identity issue is
not addressed, since there is no distinction between the object and its identifying term.
In addition, as a final, morc practical consideration, it is worth pointing out that
mapping complex objects into terms is likely 1o be a really painful task for a
programmer,

2.2 Objects as logic theories

The difficulty of representing and dealing with complex objects by means of terms
suggests shifting from term representation 10 clausc representation. Then, clauses of a
program must be somehow “labelled” so that they can be mapped into objects of the
domain of discourse. Each labcel, then, denotes a set of clauses, that is, a logic theory,
describing a scmantic object. As a result, programs consist of a collection of labelled
logic theorics. Labelled theories may be represented through collections of meta-facts
of the form O = /I:-B, where O is a thcory label and H:—B is a first-order clause.
Then, programs in a logic framework with multiple labelled theories can actually be
scen as mela-programs.

The fundamental idea is that an object in a logic framework is what we know to be
true about it {7]. This approach calls for a dilfcrent notion of truth of a formula with
respect to traditional logic languages. In the same way that axioms no longer refer to

1 LoGIN [118] is a proposal aimed Lo incorporalce inheritance directly in the term representation of

objects. Term arguments represent attributes of the objects, which are organised into hicrarchies by
means of labels. Unification has 1o be extended so as 1o take object taxonomics into aceount.

199

universal truths, logic formulac can be stated o be truc only with respect 1o a
particular abstraction of thc domain of discourse, that is, a given object’s set of
clauscs. Thus, since cach theory is denoted through a label, only labelled formulae of
the form O : G can be given a truth value. In particular, O : G is true if G logically
follows from the logic theory denoted by O.

We do not to introduce here any special set of symbols to label logic theorics, by
allowing any symbol of the Herbrand Universe? of a program (henceforth denoted by
H) 10 work as a theory identificr. The declarative semantics of a logic program with
multiple labelled theorics might be cxpressed as a slight variation on the scheme
presented in [11].

Example 2. Assumc cxtending a CLP(R) framework with multiple labelled
theorics. There are many different ways 1o rewrite Example 1 in this framcwork.
Considcr for instance the following program:

resistor :: isa(Res,V,R,I) :- Res:state(V,I),
Res:rasistance (R),
V = R*I.

resistor :: equivalent (Res,series(Resl,Res2)) :-

isa(Res,V, ,I1),
isa(Resl,Vl,_,I),
isa(Res2,V2, ,I),
vV = V1l + V2.

resistor :: voltage(Res,V) :- Res:state(V,_).
resistor :: current(Res,I) :- Res:state(_,I).
resistor :: value(Res,R) :- Res:resistance(R).
resl :: state(l10,2).

resl :: resistance(5).

res2 :: state(20,2).

res2 :: resistance(10}).

Here, methods of the theory resistor can be used as state selectors (such as goal
(g3)) or consistency checkers (such as goal (g4)).

?- resistor: (current (resl,I),value(resl, R)). (g3)
I =2, R=517

?- resistor:equivalent (res2,series(resl, resl}). (gd)
yes

However, they cannot be used cither for instance creation or for stale configuration,
since theorics have o be fully specified once-for-all in the program text,
|

From an objcct-oricnted viewpoint, a labelled-thcory framework offers several
fecaturcs. First of all, logic theorics encapsulate all procedures and data of the
corresponding object. Labels address the object identity issue. The notion ol proof of
labclied formulac scems well suited for a message passing interpretation: we may read

Given a set of well-formed formulae P, its Herbrand Universe 9((P) is defined as the collection of
the ground terms (i.c., not containing variables) which can be built from the constants and the

function symbols occurring in 2. When no need exisis to reler P, we will use the symbol 24 instead of
H(P)

200

O : G as the message G sent to object O for an answer. By introducing mechanisms
for theory composition, notions like class, super class, and instance can be mimicked,
while suitable binding mechanisms can be used to reproduce static and dynamic
inheritance (see for instance [13] and [7]). However, since these mechanisms concern
csscntially object statics, and the present work concentrates rather on object dynamics,
we will ignore them in the core of this paper. In fact, the notions introduced in
Section 3 and 4 are ncarly orthogonal with respect to theory composition, and
working in a simplificd framework makcs it casicr to point out the essentials of our
proposal.

The main drawback of representing objects by means of logic theories is that we
lack a way 1o create and configure new logic theorics. Thus, new objects cannot be
generated during a logic computation, and have rather 1o be statically defined in the
text of the program. Moreover, no notion of object state (neither state configuration
nor state modification) can be reproduced. Needless 1o say, approaches based on clause
assertion cannot be considered satislactory, since they forfeit the declarative model of
logic computations.

3 The conceptual framework

3.1 Program extension through abduction

In the previously defined labelled-theory framework, the text of a program is assumed
1o include all the logic theorics which can be used during a computation, henceforth
called the core theories of the program. In other words, the program is supposed o
complctely describe all the semantic objects through a finite number of logic theories,
in turn denoted by a corresponding number of identificrs. This amounts (o putting an
a-priori constraint on the sct of the core names, that is, those ground terms used in
order 1o label core theories. Since the range of the clements of the Herbrand Universe
Hwhich can be used in order o denote an object is limited, the formula O : G has to
be considered false whenever O docs not represent a core theory.

Dropping this assumption is the first siep towards the form of (implicit or
explicit) theory crcation which we are looking for. From a syntactic viewpoint, this
amounts to abandoning the restriction on theory identifiers: thus, any formula O : G,
with O ranging over the domain 4, should be admissible in principle. Now, the
problcm is how (o decal with thosc identificrs which arc not known 1o represent any of
the core theorics of the program. The basic idea is to consider them as potential
identificrs for ncw theorics to be created. As a result, the problem of program
cxtension is then reduced to finding out the collecuon of clauscs which has to be
bound to the ncw idenuficr, that is, to configure theorics which extend the program
(extension theories).

Computations dcaling with extension (non-corc) names should then provide
cnough informaton 1o allow extension theories o be configured. The fundamental
intuition is that clauses of an cxtension unit have 10 be obtained as a result of an
abduction rather than an asscrtion so as o preserve a declarative model for
computations. Abduction, in fact, is the only kind of computation that we can
perform over logic theorics which we know nothing about. For example, if the proof
of a given goal G in a theory T involves the proof of a goal P in the extension theory
0, there would be no way o deducce the truth value of P, if nothing were known

201

about 0. Then, G might be proved by assuming O : P as a possible explanation for
T : G, that is, by assuming by default 2 truc with respect to theory O. Needless o
say, since we want 1o exploit abduction for the creation and configuration of instance
in an object-oricnted framework, we nced o pul somc restrictions on what is
abducible and what is not, so as to make abduction fit into our object-oriented
scheme.

More specifically, the Abductive Logic Programming approach [15] can be easily
adapted to our case. In particular, once stated that clauses arc labelled clausces, that
only labclied formulac can be given a truth value, and that explanations have 10 be
labelled formulac, too, we can dircctly apply o our model some of the ALP ideas.
First of all, the sct of hypotheses which can be adopted during a computation is
restricted o the atoms built from a given sct of predicates, called abducibles. In our
labelled theory framework, hypotheses are again labelled atoms, since we can assume
a formula to be truc only with respect 1o a given theory. As a consequence, also
abducible predicates have (o be associated to a theory. In particular, it scems coherent
with our approach to associate abducible only Lo extension theorics, by considering
core theorics as complele, closed theorics. On the other hand, cach extension theory
must be associated to a sct of abducible predicates if we want Lo perform abductions
so as to configure it. Hencelorth, we will use the term extension predicate as a
synonym for abducible. In particular, since our [inal goal is to represent instances
through cxtension theorics, the notion of abducible predicate for an cxtension theory
immediately matches the notion of attribute for an instance. Thus, the most natural
approach is 1o define a class as a sct of extension predicates, so that whenever an
extension theory is declared to be an instance of a given class, its sct of auributes 1s
known.3

Morcover, we restrict the set of atoms that can be taken as hypothescs 10 ground
atoms. Since cxtension predicates actually correspond 1o instance altributes, this
amounts to giving an cxtensional representation of objects state, which is quite
natural. In particular, a stronger restriction on extension predicates is required in order
to specify the state of an object as usual in object oricnied languages, that is, as a
collection of attributes which may assumc only a single valuc at a time. Thus, some
extension predicates may be constrained 0 being single-extension predicates: that is,
if pis a single-extension predicate for exiension theory O, then only one formula
O : p(1) can be adopied as a hypothesis. This amounts (o saying that only one
ground atom with predicate symbol p is 10 be contained in the full configuration of
0.

3.2 Meta-predicates

In our labelled theory framework, abduction is used as a conceptual tool to extend
logic programs in a declarative way. From this perspective, a program does not
coincide here with its textual description. Instead, it results from the union of two
sets of meta-relations, that is those expressed in the ext, and thosc introduced by the
computational process. Programs can then be seen as consisting of a fixed part

3

In this simplificd framework, class hicrarchics cannot be built by theory composition as in [5] orin
CixLP. Thus, special symbols for classes would have 1o be introduced into a language implementing
the model with no theory composition in order to denote the set of extension attributes which have 1o
be associated 1o cach instance theory. Scction 5 shows instcad how no symbols, other than the theory
names are needed 1o build class hicrarchics when mechanisms for theory composition are available.

202

(henceforth called the core part) expressed in the text of the program, and of an
extended part which is built during a computation. For instance, mcta-relations of the
form O :: C (where O denotes a theory and C a program clausc) may concur in
forming cither the core or the exiended part of a program, according to O (that is,
whether it denotes a core theory or not). Of course, some other meta-predicates have
to be introduced so as o completely define the abductive scheme. For each
mcta-predicate we should specify whether the information it represents concerns
program extension. In fact, when extending a program with new meta-relations, a
global notion ol program consistency has 1o be given. Generally speaking, new
information P’ can be added to program P whenever P P’ is consistent.

Since we have to express class specifications and class/instance relationships, we
introducc threce new meta-predicates: isa, connecting instance theories to a given class,
extension and single_extension, defining the abducible predicates for cach class.
Following the typical approach of O-O languages, we introduce two further
hypotheses. First, class-specific information, which consists here of the instance
templates only (that is knowledge concerning abducibles) has 10 be included in the
text of a program: thus, extension and single _extension meta-relations concern the
core part of a program. Secondly, it must be possiblc for class/instance relationships
to be introduced dynamically through ise mcla-rclations, which may consequently
concern the extended part of a program.

In order to formally cxpress the notion of consistent program cxtension, it suffices
{0 state that

« P U {0isaC}isconsistent if O is an extension name, C denotcs a class, and
OisaC e P = C=C"holds.

- Py {() : /)(7) is consistent when O isa C € P, and it is cither
extension(C, p) € P, or (single_extension(C, p) € P} A
(()::p(t’)e[’ = (=1

Sincc any program cxtension in this framework can be expressed as a sequence of the
two basic cxicnsions above, our abstract modcl bascd on abduction is now sufficiently
specificd. What is lcft is to definc a computational model supporting program
extension through abduction.

4 The operational framework

4.1 Meta-level constraints

Mapping clcments of the domain of discourse into logic thcorics amounts to
describing them through the Herbrand model of their corresponding theory. Each
semantic object has a mecta-level representation and an object-level denotation, since
cach theory is denoted by a ground term. From this perspective, the elements of Hare
object-level symbols which may be assigned a mceta-level value (a theory). In
particular, some ol them (the corc names) arc bound statically, while others (the
exlension names) have 1o be bound dynamically during a computation.

How to build an cxtension theory and bind it 1o an cxicnsion namce is actually the
central point of the discussion. Since we have restricted abduction to (labelled) ground
atoms, the notion of logical conscquence for an cxtension thcory comes down to set

203

inclusion. As a result, instance configuration can be achieved by building the
Herbrand modecl for the corresponding cxtension theory. If 8 is the Herbrand Base* of
a program, cxlension names actually work as meta-level variables whose domain is
the powersct A‘B). Then, relations over the domain of discourse have 1o be expressed
with respect 10 P(8), representing the space of the Herbrand intepretations. Adding
ncw rclations between objects and computing with these relations involves
computing over such a meta-domain.

Thus, an objcct-oriented computation in the logic framework based on the
abductive scheme presented in the previous scetion can be seen as a process which
progressively narrows the domains of a set of symbols of #/ from the whole space
P(B) lo cither a subsct (partial confliguration) or a single element (complete
configuration) ol that space, by cxploiting rclations over the symbols and the
propertics of the domain. From this perspective, meta-relations in our framework act
as constraints. Since they actually concern program structure, we speak of meta-level
constrainis.

Apart {rom the intrinsic difficultics (symbols ranging over the meta-level domain
arc not variables of the language, but ground terms; the computation domatn is
expressed in the language itsell), the formal introduction of complete CLP(Meta)
scheme is out of the scope of this work. However, in order to define the operational
framcwork supporting the abductive model skeiched above, we can take as a basis the
general framework presented in [16] for top-down cxccution operational scmantics of
CLP languages, and concentrate on the peculiaritics of our approach.

4.2 The operational semantics

Generally speaking, any language fitting our scheme will eventually provide a syntax
for expressing meta-relations corresponding Lo the meta-predicates scen so far: isa, =,
extension, single extension. Morcover, in a lirst-order logic language, labelled
formulac can be rcad as being built from the : (demo) meta-predicale. However,
according 10 the scheme presenied in the previous scction, classcs as instance
templates arc defined once-for-all in the program text, so that information over
abducible is not subject o change during a computation. Thus, extension and
single_extension meta-relations belongs to the core program. Moreover, core theory
clauses arc defined statically, and extension theory facts cannot be asserted. Thus,
dynamic handling of O = C meta-rclations is never related to explicit language
constructs (c.g. asscrt).

As a result, defining the computational behaviour of our modcl simply amounts o
specifying how 10 treat demo and ise meta-predicates. Since the top-down execution
scheme adopted in [16] has been used 10 cover most of the major CLP systems, we
will present the operational semantics of our model by reproducing and (partially)
instantiating this scheme. Such a semantics is a transition sysicms on states, which
arc represented as tuples (A,C,S), where A is a collection of (labelled) atoms, and C
and § arc collections of constraints (respectively, active and passive constraints) called
constraint store when taken as a whole. The transitions arc —, (for rcsolution), —
(introducing constraints), —, (for consistency), and —; (for inference). The model is
paramclerised by a computation rule (which selects a type of transition, and an

Given a set of well-formed formulac P, its Herbrand Base B(P) 1s defined as the collection of the
ground atoms which can be built applying the predicate symbols occurring in £ 1o the clements of the
Herbrand Universe 9((P). When no need exists 1o refer £, we will use the symbol 8 instead of B(P).

204

clement of A il nceessary), a consistent predicate (verifying the consistency of C) and
a infer function (transforming the constraint store). In particular, the infer function is
used in —; transitions of the form

(A,C,S) -, (A,C,S)

where (C', §°) = infer(C, S).

When an isa mela-predicate is encountered, what is 10 be cnsured in order to
preserve consistency is that no contrasting isa information alrcady cxists. Thus, we
could simply write®

infer(C, S v isa(0, T)) = (Cuisa(0, 1), S)
and

infer(C L isa(0, 1) U isa(0, 17),5) = (Cuisa(O, T) U (T=T"),§)
80 that meta-level consistency is simply mapped onto object-level consistency
(r=1").

As far as the demo predicate is concerned, the transition rule has simply to be
cxtended so as to treat labelled atoms. The transition

(AuTG,C, 8y >, (AUB,C,SuU(G=11))

can be applicd if T:G is the sclected labelled atom, 7 is a core theory, /=B is a
clausc of 7, and G and // have the same predicale symbol. In particular, {G=11) is
supposcd to summarise all the cqualitics between the arguments of G and /1.
Corrcspondingly, we define

infer(C, S v (t=1")) = (Cu(1=1"), §)

where ¢ and 1" arc generic terms.
However, when the label docs not denote a core theory, the labelled atom has 10 be
treated as a constraint through a — . transition. Thus,

(A V06, C,S) >, (A, C,$SUO0GC)

is sclected when @ denotes an cextension theory, and G predicate symbol is an
extension (or single cxtension) predicale for O. New infer definitions have 10 be
introduced to treat these meta-level constraints. Apart from the obvious

infer(C, S U OG) = (CuOG,S)

the notion of single extension predicate is handled by an —; transition according to
the following definition:

infer(C L Oy L O:p(1), S) = (C L Op(iy L (i=T), §)

when p is a single extension predicate for extension theory 0.

Since these definitions are sufficient 1o caplure the conceptual framework defined in
Section 3, there is no need to further specily the semantic model by giving a formal
definition (or the consistent predicate (which could be actually taken 1o be the same of
Prolog, given our infer definitions), or for the computation rule (many different

Of coursc, this applics only to extension theories. FFormally, this could be achieved for instance by
supposing that a meta-rclation isa(1,core) has been implicitly defined for cach core theory T, where
core is a special class name which no abducible are defined for. This would formalise the idea that
core theories are fixed theorics.

205

choices could be made, without affecting the substance of this approach). In fact, the
aim of this work is to present a computational model where constraints can be used in
order o capturc object-oriented abstractions in a logic framework, rather than to
complctely define a CLP system.

5 A simple object-oriented logic language

This scction shows a simple Prolog-like language called Class&Instance (henceforth,
C& 1) implementing the computational model presented in the previous sections. ¢& 7
is bascd on a CixLP framcwork built as an cxicnsion of SICStus Prolog [17], called
CSM, which is described in [14]. After a summary of contextual programming
concepls and mechanisms, a simplified version of the €&/ syntax is presented, so
that some examplces of object-oriented computations in a logic language can be finally
given.

5.1 Contexts

The contextal logic model (originally delined in [12], and subsequently further
developed in [13] and [18]) is a multiple-thcory framework with theory composition
which can be fruitfully taken as a basis for object-oriented logic programming. In
such a framework, labelled logic theorics arc called units, and theory labels are ground
terms. Structurcd logic theorics, obtained by unit composition, are called contexts. A
context can be scen as an scquence of units, and list notation will be used for context
representation. In particular, a context consisting of units T, T,_;, ..., T, Ty i
represented by the list [T,, T,-1, .., T2, T1].

Each unit is implicitly associated to a context. The super rclation, defined by
means of a static declaration, involves two units in that cach unit may declare another
unit as being its super unit. The conlext associaled 10 a unit results from the
transitive closure of the super relation. If the super unit of Ty 1s T_y for any £,
nzk>1, and T, is a roor wunit (that is, it has no supcr unit), then
[Tn Th-1, -T2, Ty] is the context associated with T,. As a consequence, the
associated context of a unil can be dircetly referred to through the unit name:
whencever a context is expected in a formula, a unit identilicr denotes the context
associated 1o the unit. As an cxample, consider the message-passing goal 0<-G,
which is defined 1o be truc whenever G can be logically derived from the context
denoted by o. If 0 is a unit identificr, then 6 should be proved in the context
associated to 0 unit.

Binding of logic procedurcs is performed by applying the Closed World
Assumption o cach unit, except when open goals are concerncd. That is, any
predicate call performed in a given unit is solved locally by using procedures defined
in the unit itself, except when it is a call of an open goal. Diflerent kinds of open
goals cxist, allowing different binding policies to be performed. Out-oper goals of the
form o<—G cxplicitly delegates the prool of goal 6 1 object 0. Up-open and
down-open goals, henceelorth denoted with prefixes self and super, respectively,
cxploit an implicit form ol delegation. A goal self G (respectively, super G)
called in unit T; of the context [T,, .., T;, Tj-1, .., T1] is solved by using the
whole context [T, .., T;, T;-, .., T1] (respectively, the subcontext [T;_q, .., T1))
as the binding context.

206

Contextual logic programming provides some basic tools for capturing
object-oricnted abstractions in logic programming. Objccts of the intended application
domain can be mapped into contexts. An out-open goal 0<-G may be interpreted as
sending a message G to the object represented by context ©. Supposc O is a unit, and
[o|C] its associated context. Then, object © may be scen as an instance of the class
¢, where unit 0 represent the self unit of the object, possibly modelling object
specific attributes, and context € is the class context of 0, possibly modelling the
behavioural knowledge of the object. In its wrn, class context € may consist of a
hierarchy of (class) units, statically defincd by means of the super rclation. Then,
super rclation may be interpreted as an is-a relationship between classces, so that class
taxonomics can be built. Each unit may inherit from its super class(cs) methods, and
may reler to instance atiributes stored in the sclf unit by mcans of open goals. In
particutar, up- and down-open goals allow sclf and super binding policics of
traditional objcct-oriented programming languages 1o be reproduced. In the end,
notions likc object, class, hicrarchy of classes, inheritance, message passing can be
mimicked in this extended logic framework, as discussed in [13] and [18].

5.2 Extensions

In order 1o represent instance creation and configuration, the notion of extension unit
(corresponding to the extending theorics of previous sections) have 1o be introduced.
Core units arc again statically-delincd labelled theorics, and core contexts are conlexts
built of corc units only. Since in the extension of a contextual program units are
intended 1o be used solely for representing instances of a class, they are constrained (o
having a super unit actually being a core unil. By conscquence, extension contexts
representing instance objects consist of an extension unit as their self (top) unit, and
of a core conlext as their class context. Extension contexts can be built by allowing
super rclations to be introduced dynamically. To this end, mcla-predicate isa allows
cxtension units 1o be declared as instances of a given class. If 0 is an extension unit,
T a corc unit, and € ils associaled context, © isa T declarcs © as an instance of
class ¢, and builds [0}C] as the context associated o O.

As required by the object-oriented paradigm, classes must provide a template for
their instances. A suitable declaration can be introduced so as to allow cach unit 10
define the set of its atiribute predicates. The union ol the attribute predicates of the
units of a core conlext taken as a class provides by definition the sct of the extension
predicates of the instances of that class.

As a result, once associated to a super core unit, the predicate set of an extension
unit is known. By conscquence, any information about the predicate sct of an
exiension context can be derived [rom the program, so that contextual binding rules
can be applicd 1o extension contexts t0o. For instance, suppose that O is an instance
of ¢lass ¢, that is, O is an extension unit and C is its class context, so that [0]C] is
the context representing instance 0. Then, a goal 0<-p(&), where t is a tuple of
terms and p a predicate symbol, can be further claborated before to be solved. If p is
defined in a unit T of the class context (that is, it is a method of class €), then
0<- p(t) can be transformed in the labelled atom T: p(t) and possibly solved.
Instcad, in casc p is an cxtension predicate of 0, 0<~ p(t) can be reduced to the
mcta-constraint 0 : p(t) concerning the extension unit 0.

207

5.3 (&l syntax

The skeleton syntax of the language is given with the minimum of details needed. A
‘e ‘ AR . »

full Prolog-likc syntax with “t”, “;” precedence rules with parenthescs, and usual
mela-predicates may be obviously assumed by default, as well as basic constraint
solving capability®. The implementation scheme for this language (not presented
here) consists in a quite simple cxiension of the contextual logic programming
cnvironment CSM [14] basced on the popular SICStus Prolog {17].
Unit (class) declaration. A &/ corc unit has the following structure:

{Unit) == {UnitDecl) {{ AuributeDect)} {{Clause)}
A unit declaration has the following form:

(UnitDecl) == :— unit (UnitName) [isa (SupcrUnitName)] .

where { UnitName) and (SupcrUnilNamc) arc ground terms. The absence of isa in
a unit declaration characterisc root units, while its presence provides information on
the super unit 100, allowing static hicrarchics to be built. The name of a unit can be
uscd in order 1o denote its associated context.

Instance attributes. Each corc units can define its sct of single-cxtension predicate
symbols by mcans of an attribute declaration.

{AuributeDecl) == :— attribute (P){,(P)}.

where {(P) is a predicate symbol of the form name/arity. The predicate sct of an
cxtension unit is represented by the attribute predicates of its class context, built as
the union of the attribute predicates of its composing units.

Clauses. A clausc ol &/ has the usual form
(Clause) == (Head) [:~ (B()dy }] .
(1lead) and (Body) arc defined as {ollows
(Head) == {A)
(Body) = (G){.(G)}
(G) = (A) l (((I){, (G)})] self ((})' super (G) | (1)< (G) I
(1) isa (T)
where (A) is an atom, and (7°) is a term.
When uscd in class bodics, the isa operator performs instance creation. A goal

O isa T constrains unit © to having core unit T as its super unit, if this is
consistent with previous information. In particular, if 0 is an cxtension unit, its

Our model has been thought 1o be built upon a constraint system. Then, = in the example has to be
rcad as an cquality constraint, rather than as a umification operator. For our purposces, it docs not
matter il this s implemented cither via simple suspension mechanisms or by means of a
fully-fecatured constraint solver.

208

predicate set is forced 1o be the collection of the attribute predicates defined by the
conlext associated with T, representing O class context.

5.4 An example

In the following, we will show some cxamples of C&1 programs and computations.
By reproducing the behaviours deseribed in Scction 2, we aimed to point out how
¢s& ! fully preserve the declarative model of logic computations while capturing the
0-0 essentials. Consider for instance the following cxample of a &/ program:

:- unit resistor.
:— attribute state/2, resistance/l.

ohm(V, R, I) :-
self state(V,I), self resistance(R),

V=RH™*TI.
voltage (V) :- self state(V,_).
value (R) :- self resistance(R).
current (I) :- self state(_,I).

equivalent (series (Resl,Res2}) :-
ohm(V, ,I), V = V1l + V2,
Resl <- ohm(V1, , I}, Res2 <- ohm(V2, ,I).

From an objcct-oriented point of vicw, unit resistor represents a class of objects
having three attributes (representing voltage, resistance value, and current) and
responding to several class methods. A (ully configured instance of class resistor
can be built through the goal (g5), roughly corrcsponding 1o goal (gl) in
Examplc 1:

?- rl isa resistor, rl <- current (2), (g5)
rl <- value(5), rl <- ohm(V,_,_).

v = 10,

rl isa resistor,

rl :: state(l10,2), rl :: resistance(5) ?

It is worth to point out that, like (gl) in Example 1, the computation induced by
the proof of (g5) can be scen as an cxample of a logic computation configuring an
objcct by progressive relinement steps. Even though objects arc represented by means
of togic thcorics, computations still cvolve in the typical style of logic
programming. The {irst subgoal creates object rl as an inslance of class resistor.
In other words, constant rl is taken as an identificr for an extension unit constituted
by two ground facts built from the cxtension predicales. [rl, resistor] is then
the context associated o unit r1, which represents the resistor object rl.

?- rl isa resistor. (g5')
rl isa resistor ?

The second subgoal results in applying class method eurrent/1, which in turn
induces a sclf call state(_, 2) in the current context [r1l, resistor]. The
current value of r1 is then constrained to being 2 by means of a meta-level constraint
rl:state(_,2), which is given as an output ol the computation.

209

?- rl isa resistor, rl <- current (2). (g5”)
rl isa resistor, rl : state(_,h2) ?

After the third subgoal has been cxccuted, a new meta-level constraint
rl:resistance (5) is added. However, since it is completely ground, the atom
resistance (5) can bc adopted as an axiom of thcory ri1, actually cxploiting
abduction. This may be pointcd out in the answer through the
rl::resistance(5) rclation.

?- rl isa resistor, rl <- current (2), (g5”)
rl <- value(5).

rl isa resistor,

rl : state(_,2),

rl :: resistance(5) ?

In the end, last subgoal forces r1 attributes 1o follow Ohm’s Law, so that instance
rl comes o be completely configured in conclusion of the abduction process.

In order o [ully accomplish the declarative model of logic computations, C&/
computations adopt a data-driven approach by mecans of a sclection rule which chooses
the leftmost executable subgoal. Leftmost goals insufficiently specificd arc suspended,
10 be later resumed as soon as enough information is available. By conscequence, goal
(g5”7) will give basically the samce results as (g5) .

?- R1 <~ current(2), Rl isa resistor, (g5” ")
rl <- value(5), rl <- ohm(V,_,), Rl = rl.

R1 = rl, V = 10,

rl isa resistor,

rl :: state(10,2), rl :: resistance(5) ?

The step-by-step cvolution of the computation induced by the proof of goal (g5)
shows how the model deals with partially specified objects. In particular, partially
specified instances can be actually given as results of a goal evaluation.

Goal (g6) may provide onc of the basic intuitions bchind the notion of
declarative theory creation: a completely configured extension unit behaves the same
as a core unit.

?- rl isa resistor, r2 isa resistor, (g6)
r2 <- equivalent (series(rl,rl)),
rl <- ohm(V,5,I), r2 <- current(2).

I =2, V =10,

rl isa resistor, r2 isa resistor,

rl :: state(10,2), rl :: resistance(5),

r2 :: state(20,2), r2 :: resistance(1l0), ?

The prool of (g6) would lead to the same result (the creation of unit x2) even
though unit r1 were a corce unit, statically declared in the text of the program
(accordingly the above result, of course). Even more, if both 1 and r2 were core
units, goal (g6) would succeed as well, trivially resulting in binding v t0 10 and I
10 2. Thus, the same clauses which arc used 10 configure an cxiension unit can be
used as well 1o perform logic proofs in a fully configured unit, dclined cither statically
or dynamically. As a result, programs can be writien having in mind the usual model
of logic programming of computations as deductions, and instance configuration is
achicved automatically by the system, extracting information from logic
computations via abduction.

210

Finally, thc computation induced by the cvaluation of goal (gé) scems
particularly suited to be rcad as the cvolution of a small, two-object network of
independent computing clements. After defining both rl and r2 as resistor
instances, the third subgoal bounds cach other the states of the two objects, according
10 the notion of resistor cquivalence. From now on, any subscquent evolution of one
of the two objects will affect the other. In particular, note that the fourth and the fifth
subgoals would respectively configure 1 and r2 only partially, if taken isolated.
Instead, since they come to work in a globally constrained system (rl and r2 states
arc corrclated by the third subgoal), they resull in fully configuring both instance
units. Furthcrmore, congistency is no longer a single object issue, but rather a matter
of the softwarc system as a whole. For instance, trying to sciting rl current to 3,
cven though not in contrast with the constraints dircctly referred to thal object, would
result in a failure, because of the global constraints on the whole computation.

6 Related works and conclusions

Among the many diffcrent approaches to the integration between object-oriented and
logic programming which can be found in the litcrature, the proposals more strictly
related 10 ours arc obviously those bascd on the notion of object as logic theory. In
particular, [11] describes the basic notions of object, message-passing and inheritance
in a contextual-like logic framcwork, by providing both a declarative and an
operational scmantics. A clean discussion of the inheritance issuc in a declarative
framcwork is provided in [19]. [20] decals with logic classcs and instances, and
provides primitives for creating instances from scts of ground terms. By exploiting
the distinction between deductive and active logic computations in a contextual
framework, [18] presents an approach to state modification in logic. [7] constitutes
the most extensive approach to the integration of object-oricnted and logic modcls (as
well as functional onc), providing a satislactory solution for the problem of
class/instance relationship in a labelled-thcory framcwork. However, it eventually
fails in capturing some fundamental concepts of object-oricnted languages, such as
object identity and information hiding.

This is not the casce of the approach presented in this work, which exploits
abduction as as a link between the declarative computational model of logic
computations and key-concepts of O-O programming such as instance creation and
object identity. The declarative approach o state configuration intrinsically promoted
by logic programming is achicved here through meta-level constraints. Any language
bascd on the proposed model should then provide the benefits of both O-O and logic
paradigms, and considerably extend the application arca of logic programming. In
particular, O-O dcclarative programs arc intrinsically built as networks of protected
and cven partially configurcd objects whose cvolution is controlled by a collection of
intra- and intcr-object constraints.

Further issues, such as modcl theoretic scmantics, object persistency, information
hiding, mutable instances, and implementation techniques, not discussed here, arc
partially covered by {21] and will be subjects for further work.

211

Acknowledgements

This paper has greatly benefited from fruitful discussions we had with Anténio Porto
and Luis Monteiro. This work has been partially supported by “Progetto Finalizzato
Sistemi Informatici ¢ Calcolo Parallclo” of C.N.R. under grant n. 93.01627.PF69.

Bibliography

1.

2.

6.

o~

9.

10.

13.

14.

15.

16.

P. Wegner: Dimensions of Object-Based Language Design. Proccedings of
OOPSLA ’87. ACM, 1987.

P. Wegner: Dimensions of Object-Oricnted Modcling. IEEE Computer,
October 1992, pp. 12-20.

C. Zaniolo: Object Oriented Programming in Prolog. In: Proceedings of the
Inicrnational Symposium on Logic Programming, Atlantic City, 1984,

H. Ait-Kaci, R. Nasr: LOGIN: A Logic Programming Language with
Built-in Inheritance. Journal of Logic programming, 3(3), 1986, pp. 185-215.
J. Conery: Logical objects. In: Proccedings of the Fifth International
Conference and Symposium on Logic Programming. Scattle, 1988.

A. Andrcoli, R. Parcschi: Lo and Behold! Concurrent Structured Processcs.
In: Proccedings ol OOPLSA’91, 1991,

F.G. McCabe: Logic and Objects. London: Prentice Hall International 1992,
E. Shapiro, A. Takcuchi: Objcct Oriented Programming in Concurrent
Prolog. New Generation Computing, 1(1), 1983.

A. Borning, R. Duisburg, B.Frceman-Benson, A. Kramcer, M. Wollf:
Constraint Hicrarchics. In: Proceedings of OOPLSA’87, 1987, pp. 48-60.

B. Frceman-Benson: Kalcidoscope: Mixing Objects, Constraints and
Imperative Programming. [n: Proccedings of ECOOP/OOPLSA’90, 1990,
pp. 77-87.

. A. Brogi, E.Lamma, P. Mcllo: Objects in a Logic Programming

Framcwork. In: A. Voronkov (cd.): Logic Programming. Lecture Notes in
Artilicial Intelligence 592. Berlin: Springer-Verlag 1992, pp. 102-113.

L. Montciro, A. Porto: Contextual Logic Programming. In: G. Levi,
M. Martelli (eds.): Proceedings of the 6th International Conlercnce on Logic
Programming. Cambridge: The MIT Press 1989.

A. Brogi, E. Lamma, P. Mcllo: A General Framework for Structuring Logic
Programs. C.N.R. Technical Report “Progetto Finalizzato Sistemi Informatici
¢ Calcolo Parallclo” 4/1, May 1990.

E. Denti, A. Natali, A. Omicini: Moving Prolog Toward Objccts. In:
E. Tick, G. Succi (eds.): Implementations of Logic Programming Systems.
To be published by Kluwer, 1994, pp. 92-104.

A. Kakas, R. Kowalski, F. Toni: Abductive Logic Programming. Journal of
Logic and Computation, Vol. 2, 1992 pp. 719-770.

J. Jalfar, M.J. Mahrer: Constraint Logic Programming: A Survey. In: Ten
Yecars of Logic Programming. Special Issuc of the Journal of Logic
Programming. New York: Elscvicr. To appear.

Swedish Institute of Computer Scicnce: SICStus Prolog User’s Manual. Kista
(Sweden) 1993,

212

18. A. Natali, A.Omicini: Objects with State in Contextual Logic
Programming. In: M. Bruynooghe, J. Penjam (cds.): Programming Language
Implemcentation and Logic Programming. Lecture Notes in Computer Science
714. Berlin: Springer-Verlag 1993, pp. 220-234.

19. M. Buglicsi: A declarative view of inheritance in logic programming. In:
K. Apt (cd.): Proccedings of the Joint International Conference and
Symposium on Logic Programming. The MIT Press 1992, pp. 113-130.

20. C. Ruggicri, M. Buglicsi. A Prolog Object-Oricnled System: an Exercise in
Contextual Logic Programming. Procecdings of the 6th Italian Conference on
Logic Programming GULP 91, Junc 12-14,1991, Pisa, ltaly.

21. A. Omicini: Integration of Object-Oriented and Logic Programming. Ph.D.
Thesis, University of Bologna, Taly.

