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Abstract. A design and implementation of a declarative object-oriented
language is presented. The language is strongly and mostly statically
typed and supports software reuse techniques such as inheritance, sub-
type and parametric polymorphism. It differs significantly from the ex-
isting strongly typed object-oriented languages in its declarative con-
straint language which is based on a suitably extended logic program-
ming paradigm. Behavioral subtyping and advanced polymorphic facili-
ties (such as, for example, F-bounded polymorphism) now fit naturally
into this general paradigm. The underlying implementation technique
produces a powerful prototyping tool for object-oriented software devel-
opment and generalizes logic programming architectures by an algebraic
automata based model for representing object states and state transi-
tions.
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1 Introduction

The challenges in the design and implementation of strongly and mostly stat-
ically typed object-oriented languages are in incorporating appropriate tech-
niques for software reuse such as inheritance, subtype and parametric polymor-
phism, while pushing static type checking to its limits. A good illustration of
the underlying issues are the controversies related to subtyping and inheritance
[15, 16, 39).

Another challenge is in adopting a first order framework [9], in spite of the
strong evidence that higher-order features are needed [11]. Further challenges
are in designing object-oriented type systems supporting static type inference
[36, 37].

Our goal is to extend the results in the development of advanced object-
oriented type systems with a suitable semantic specification language which
would produce a declarative, rather than a procedural, object-oriented language.
In general, object-oriented languages lack high-level semantic specification facil-
ities. Eiffel [33, 34] is probably the only fairly widely used language that has a
limited assertion language. But those facilities in Eiffel do not go far enough.
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Our long-term goal is to abandon procedural specification of methods alto-
gether. That would in our opinion increase dramatically the level of software
reuse. Indeed, with procedural semantics, the only way to make sure that reuse
is appropriate is to look into the underlying code. In a declarative object-oriented
paradigm, exploiting inheritance is thus much more convenient.

In most cases, the only practical way at the moment to specify the seman-
tics is to write complete implementation code, and the only way to under-
stand it is to read and/or execute it. This makes the existing strongly typed
object-oriented languages particularly unsuitable for prototyping purposes. As
the object-oriented paradigm is intended to be a better paradigm for manag-
ing software complexity, prototyping complex design decision involving object
types (classes), inheritance hierarchies, subtype and parametric polymorphism,
becomes a major design and software development issue.

In this paper we present the basic design and implementation aspects of an
object-oriented, strongly typed, polymorphic language with semantic specifica-
tion facilities based on logic programming. Structural properties of complex ob-
jects are represented by the features of the type system. Behavioral properties
are captured by logic programming features. The language is first-order, but
it accomplishes higher-order notions such as, for example, F-bounded polymor-
phism [11]. It is only with an appropriate semantic constraint language that
behavioral subtyping [5, 27, 28] may be supported as a major generalization of
what can be accomplished with object-oriented type systems, no matter how
sophisticated those type systems may be.

At the moment we have only an initial implementation and the initial goal
of the language is to serve as a powerful prototyping tool in designing complex
object systems, even if another production quality object-oriented language (such
as C++ or Eiffel) is used for the actual implementation.

The novelty in the language design is in enhancing a sophisticated object-
oriented type system with logic-programming techniques for semantic specifica-
tion of object types and their associated methods. The novelty in the imple-
mentation is in representing and handling state transitions in object-oriented
systems using techniques of logic programming and automata theory.

The semantic specification facilities of the language are based on an appropri-
ate form of first-order logic. Among the candidates, first-order predicate calculus
appears in some proposals [35], and Horn-clause logic with equality has been used
in other related work [19].

The current version of our system uses Horn clause logic with separately spec-
ified equality theory. The main advantages of this logic are that suitable unifica-
tion algorithms are available [19, 24] and also that there exists a standard model
(initial algebra semantics [19]) so that we know that the system is sound. The
availability and the actual construction of the initial algebra semantics may also
have interesting implications on the linguistic reflective features of the paradigm
[20].

The main limitation of this logic is the absence of negation. Extensions of
Horn-clause logic to include negation (for example, in the body) [6] and [29]
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have been considered. The aim of these efforts is to increase the expressibility of
the language by adding some form of negation while maintaining computational
tractability. At the same time, some form of denotational semantics, preferably
the initial one, should still be available.

The paper is organized as follows: In Section 2, we present the basic language
construct, called the specification block, as a unit of encapsulation, information
hiding, inheritance, subtyping and parametric polymorphism. We also explain
the major role of the logic-based specifications in our paradigm. In Section 3,
we present the distinction between inheritance and subtyping in our behavioral,
semantically-oriented paradigm. After a brief discussion of object creation and
usage in Section 4, we discuss in detail the issues related to the conventional syn-
tactic [12] versus the recently proposed behavioral subtyping [5, 28] in Sections
5 and 6. The contra/co-variant subtyping rules and inheritance are discussed in
Section 7. The role of F-bounded polymorphism is explained in Section 8. In
Section 9, we describe our prototype implementation. Its implications on infor-
mation hiding are explained in Section 10. Section 11 deals with the limitations
and extensions of the developed paradigm. Conclusions and comparisons with
related work are presented at the end.

2 Specification Block

The language is strongly typed, polymorphic and declarative. Its main construct
is the specification block as a unit of encapsulation, information hiding, inheri-
tance, parametric and higher-order polymorphism. A specification block defines
an object type (class) and includes the following components:

¢ Optional type parameters.

e A collection of observers. Observers are predicates, whose result type is thus
omitted from the specifications.

e A collection of constructors. The result of a constructor application is an
object with a new identity. The type of the constructed object is the same
as the type specified by the specification block and is thus omitted.

o A collection of mutators that affect the underlying object (while preserving
the object identity). The result is of the same type as that of the specification
block, and is thus omitted.

o Constraints expressed in the chosen logic.

e An equality theory, preferably expressed in the equational form.

In addition, a class has functors associated with it, which when invoked, return
newly created objects of that class. Functors are thus creators. A functor can be
viewed as a method on the class itself, rather than on its objects.

We illustrate the proposed paradigm by strongly-typed, parametric, object-
oriented specifications with logic-based constraints and equations. In the first
example given below, the specification of the type Natural of natural numbers
(equipped with appropriate functions such as succ, add, sub, max, and min) is
assumed to be provided with the usual semantics.



239

Specification SimpleBag[T];
Imports Natural;
Observers
belongs(T,Natural) ;
Mutators
insert(T);
delete(T);
Constraints
B.insert(X) .belongs(X,N.succ()) :- B.belongs(X,N);
B.delete(X) .belongs(X,N) :- B.belongs(X,N.succ());
Equality
B.insert (X) .delete(X)
B.insert (X).insert(Y)
End SimpleBag.

B;
B.insert(Y) .insert(X);

The above block specifies the class Bag with a type parameter T. The specifica-
tion uses the type Natural, hence the Imports declaration. It defines a predicate
(belongs), and two mutators (insert and delete).

Constructors are methods that return new objects while preserving the state
of the underlying object, whereas mutators are methods that modify the state
of the underlying object. The Constraint section contains axioms that define
the effect of mutators on observers.

The language for axioms is that of Horn clause logic. As is customary in logic
programs, all variables in the clauses are considered to be universally quantified
over their respective types at the outside. It is impossible for any such set of
axioms to be inconsistent.

Horn clauses have the following general form:

A :-B1, B2, ..., Bn

where A, B1, B2, ..., and Bn are atomic predicates. The meaning of the above
clause is the following: In order for A to be true, B1 and B2 and ... and Bn must
be true.

The equational theory in the above Bag specification states that deletion of an
object undoes its insertion and that the order of insertions is not important. Any
such user-supplied equational theory is respected by the underlying unification
mechanism.

3 Inheritance and Subtyping

In this paper the term inheritance refers to techniques for deriving one specifica-
tion from another. In some cases the derived specification will produce a subtype
of the initial one. The idea behind subtyping is substitutability [12]. We say that
T, <: T; (T2 is a subtype of T} ) if an instance of T may be substituted any place
an instance of 77 is expected. If §; and S, are specifications, then Sy will define
a subtype of the type defined by S iff for every method M(A;, Ag,...,A,): A
in Sy, Sz has a method M(By,B,,...,By) : B such that A; <: B; for all i
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(contravariance) and B <: A (covariance). The subtyping relation is reflexive
and transitive.

This is the usual definition of subtyping [12] which we call in this paper syn-
tactic. A type system can only enforce syntactic subtyping in the sense that type
errors will be detected if such substitutions are permitted. Although very im-
portant {and in general impossible to check at compile time in most non-trivial
strongly typed object-oriented languages), syntactic subtyping addresses only a
small portion of the substitutability issue. Since the object-oriented paradigm
is a behavioral paradigm, a stronger and perfectly natural requirement is that
if a substitution is performed, a user viewing an object of type T3 as an object
of type T should see no behavioral difference [28]. Such a requirement can be
addressed only in a paradigm that extends a sophisticated object-oriented type
system with semantic (behavioral) specification facilities.

As an example, consider the specification BoundedBag derived by inheritance
from SimpleBag.

Specification BoundedBag[T];
Inherits SimpleBag[T], Redefines belongs;
Observers
non_full{);
size(Natural);
Mutators
clear();
Constraints
B.clear() .belongs(X,0);
.clear() .size(0);
.clear() .non_full();
.insert(X) .belongs(X,N.succ()) :- B.non_full(), B.belongs(X,N);
.delete(X) .non_full() :- B.belongs(X,N.Succ());
.insert(X) .size(X,N.Succ()) :- B.non_full(), B.size(X,N);
.delete(X).size(N) :- B.size(N.succ()), B.belongs(X,N.succ());
End BoundedBag.

o mmmWww

In addition to the inherited predicates, mutators and constraints, BoundedBag
introduces new predicates non_full and size (reflecting its bounded nature),
and an additional mutator clear, which empties the bag?.

The effect of the new mutator on both inherited (belongs) and new observers
(non_full and size) must be defined. In addition to that the effect of the
inherited mutators (insert and delete) on the new observers (non_full and
size) must be provided.

Syntactically, BoundedBag is a subtype of SimpleBag, i.e. BoundedBag[T] <:

1 An observant reader will notice that the predicate non_full is not completely speci-
fied. The specification could be completed if internal implementation related aspects
are included such as a private predicate bound with the associated constraints. We do
not elaborate this further in this paper, but the issue is related to internal interfaces
as proposed in [35] or ‘friend’ functions in C++.
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SimpleBag[T] for any specific T 2. Semantically or behaviorally, this is not the
case, as the effects of the mutators of SimpleBag have been redefined. As a result,
if a bounded bag is viewed as a simple bag, it may exhibit behavior unexplicable
from the simple bag specification.

Our approach is not based on Hoare-style pre and post conditions as those are,
in our opinion, suitable for procedural paradigms. In spite of that, it is possible
to make some comparisons with contravariant/covariant rules as they apply to
pre and post conditions [28]. Consider the constraints expressing the effects

of the insert mutator on the belongs observer in the Bag and BoundedBag
specifications.

B.insert(X) .belongs(X,N.succ()) :- B.belongs(X,N);
B.insert(X).belongs(X,N.succ()) :- B.non_full(), B.belongs(X,N)

We have B.non_full, B.belongs(X,N) implies B.belongs(X,N}, which is ex-
actly the opposite of what the contravariant/covariant rule requires as explained
in [28]. Hence, BoundedBag is not a behavioral subtype of SimpleBag.

Consider now another specification derived from SimpleBag by inheritance.
In the specification of Bag abstraction given below, a collection of new construc-
tors is introduced: union, intersect, difference. Additional constraints are
provided defining the effects of the constructors on the observers (only one in
this case, belongs). These constraints define what can be observed about the
state of a newly created object.

Specification Bag[Tl;
Inherits SimpleBag[T];
Constructors
union(Bag[Tl);
intersect (Bagl[T]);
difference(Bag[T]);
Constraints
Bl.union(B2) .belongs(X,M.max(N)) :- Bl.belongs(X,M),
B2.belongs(X,N);
Bl.intersect(B2).belongs(X,M.min(N)) :- Bi.belongs(X,M),
B2.belongs(X,N);
Bi.difference(B2) .belongs(X,M.sub(N)) :- Bi.belongs(X,M),
B2.belongs(X,N);
End Bag.

Bag is both a syntactic and a semantic (behavioral) subtype of SimpleBag. Just
adding new methods in general produces a syntactic subtype. In order to get a
behavioral subtype, the effects of new mutators must be explained in terms of the
existing ones [28]. But no mutators were added, just pure constructors. If union,
intersection, difference were defined as mutators, additional constraints
would be required that (equationally) define those mutators in terms of the
existing ones (insert, delete). Only if such a definition is possible, would we
have a behavioral subtype [28]. This problem is elaborated in Section 6.

? But observe that T2 <: T1 does not imply BoundedBag[T2] <: SimpleBag[T1] or
else problems discussed in [15] would occur.
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As a consequence, a bag can be used any place a simple bag is expected. The
type system will detect no problem nor will the behavior of such a bag viewed
as a simple bag produce unexpected effects.

4 Object Creation and Usage

Object creation is handled by separate constructs called functors, as in [35]. But
a major difference in comparison with [35] is that the initial state of an object in
our approach satisfies the constraints present in the functor definition. Observe
the underlying nondeterminism. The constraints in general do not determine
a specific state of an object, but rather a collection of states satisfying the
constraints. For example, only the values of some instance variables may be
specified or constrained. Because of all this, we allow more than one functors for
any specification block. Different functors associated with the same specification
block would in general create objects with different initial states.

The following is a specification of a functor that returns a bag of elements of
type T. A bag returned by this functor is always empty 3.

Functor null[T]: BaglTl;
Constraints

null[T] .belongs(X,0);
End null.

An example usage of the above specifications might look like this:

let Groceriesl = null[GroceryTypel;
let Groceries2 = null[GroceryType];

let CommonGroceries = Groceriesl.intersection{(Groceries?);
let AllGroceries = Groceriesi.union(Groceries?2);

5 Behavioral Subtyping and Multiple Inheritance

The following diagram illustrates various possibilities for deriving one specifica-
tion from another as they apply to bags and sets.

? Scope rules are defined in such a way that all the observers of the corresponding
specification are imported into the scope of a functor associated with that specifi-

cation. This allows specification of the observable properties of the newly created
object to be defined in the functor
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SimpleBag

N

BoundedBag Bag

SimpleSet

N

BoundedSet Set

If we allow selective inheritance, other options would be possible, such as de-
riving SimpleSet from BoundedBag and SimpleSet from Bag. We feel that the
above diagram presents semantically reasonable extensions. It also includes in-
teresting examples of multiple inheritance. Indeed, BoundedSet could be defined
by multiple inheritance from BoundedBag and SimpleSet. Likewise, Set may
be defined by multiple inheritance from SimpleSet and Bag. As our paradigm
is behavioral (in addition to being syntactic), an interesting issue is how the
associated logic-based paradigm handles behavioral aspects of multiple inheri-
tance demonstrated by the above examples. This important topic is discussed in
Section 11.

SimpleSet is derived by inheritance from SimpleBag. Sets differ from bags
in that they may contain any element only once. The effects of the inherited
mutators on the new observer (element) must be defined. However, the effect of
the inherited mutators on the inherited observers is redefined as well, as sets do
not behave as bags when those mutators are applied. Inserting an element into
a set more than once has no effect, quite contrary to the behavior exhibited by
a bag. Deleting an element also behaves differently.

A shortcut is used in the SimpleSet specification block. The new observer
element is defined in terms of the inherited one (belongs) and the inherited one
is redefined.

Specification SimpleSet[T];
Inherits SimpleBag[T] Redefines belongs;
Dbservers

element (T);
Constraints

S.element(X) :- S.belongs(X,1);

S.insert(X) .belongs(X,1);

S.delete(X) .belongs(X, 0) :- S.belongs(X,1)
End SimpleSet.

The result is a syntactic, but not a semantic subtype. Substituting a simple
set object any place a simple bag object is expected will cause no problem as

far as the type system is concerned. However, the behavior of such a simple bag
will not be bag-like. In fact, it will be set-like.
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A specification of the abstraction BoundedSet may now be derived in two
possible ways. One way is to derive it from BoundedBag. BoundedSet becomes
a syntactic subtype of BoundedBag. However, it obviously is not a semantic

subtype.

Another way to derive a specification for BoundedSet is from SimpleSet,
adding new predicates non_full and size and a new mutator clear.

Specification BoundedSet[T];
Inherits SimpleSet[T];
Observers

size(Natural);

non-full();
Mutators

clear();
Constraints

S

nwnnwmnn

S.

.clear() .belongs(X,0);

.clear() .size(0);

.clear () .non-full();

.insert(X) .belongs(X,1) :- S.non-full();

.delete(X) .non_full() :- S.Belongs(X,1);
.insert(X).size(X,N.succ{)) :- S.mon_full(), S.size(X,N),

S.belongs(X,0);
delete(X).size(N) :- S.size(N.succ()), S.belongs(X,1)

End BoundedSet.

The above specification produces a syntactic, but not a behavioral subtype.

6 Behavioral Subtyping and Equational Constraints

For an example of behavioral subtyping consider the following stack specification.
The class Stack will form a supertype of the class List specified immediately

after.

Specification Stack[T];
Observers
top(T);
Mutators
push(T);
pop();
Constraints

S.

push(X) .top(X);

Equality

S.

push(X).pop() = S;

End Stack.

The mutators push and pop affect the state of the underlying stack, and the
predicate top(X) is true if X is the topmost element of the underlying stack
object. top is defined only for mutator invocation sequences involving push.
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Let us now consider the following list specification:

Specification List[T];
Inherits Stack[T]; Imports Natural;
Observers
car(T) renames top;
is_nil();
length(Natural);
Mutators
cons(T) renames push;
cdr() renames pop;
concat (List[T]);
Constraints
L.is_nil()} :- L.length(0);
L.cons(X) .length(N.succ()) :- L.length(¥);

Equality
Li.concat(L2) = L2 :-  Li.is_nil();
L1.cons(X).concat(L2) = L1.concat(L2).cons(X);
End List.

The class List inherits all methods, constraints and equality axioms from the
class Stack. However, the methods push, pop and top are renamed to cons,
cdr and car, respectively. Although this presents a minor problem for the type
system, it is a major convenience for the users and in fact required in cases of
multiple inheritance. An important point to observe is that the new mutator
concat introduced in List specification may be entirely equationally expressed
in terms of the existing ones. Since the predicates is_nil and length are also
specific to lists, the specification contains clauses for them as well.

7 Contravariant Subtyping and Covariant Inheritance

A specification for Set may now be derived in two ways: from SimpleSet or
from Bag. There is nothing unexpected in the derivation of Set from SimpleSet.
Set becomes both a syntactic and a semantic subtype of SimpleSet. Deriving
Set from Bag produces a well-known controversy [15], except that our semantic
framework makes the discussion much more general.

Specification Set[T];

Inherits Bag[T] Redefines belongs;

Observers
element (T);

Constraints
S.element(X) :- S5.belongs(X,1);
S.insert(X) .belongs(X,1);
S.delete(X) .belongs(X,0) :- S.belongs(X,1);
S1.union(S2) .belongs(X,1) :- Sil.element(X);
S1.union(52) .belongs(X,1) :- S2.belongs(X,N);
S1.intersect(S2) .belongs(X,1) :- S1.element(X), S2.belongs(X,N);

S1.difference(S2) .belongs(X,1) :- Si.element(X), S2.belongs(X,0);
End Set.
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The constructors now take arguments of type Bag[T]. The type of the un-
derlying object, as well as the type of the constructed object is Set[T]. The
contravariant rule for the argument types of methods is satisfied and so is the
covariant rule for the result type, as explained in Section 3. For example, the
signature for union is now union(Bag[T]): Set[T] and Set[T] <: Bag[T]. Set
defined in this way indeed becomes a syntactic subtype of Bag. It is obviously
not a semantic subtype, because the rules for the mutators have been redefined.
Although the type system would have no problem with the above definition of
Set, a user viewing a set as a bag will see a different, non bag-like behavior.

Quite contrary to the usual contravariance of the argument types [12, 15],

consider a covariant redefinition of the signatures for the Bag constructors, given
below:

Specification Set[T];
Inherits Bag[T] Redefines belongs,union,intersect,difference;
Observers
element (T);
Constructors
union(Set[T]);
intersect (Set[T]);
difference(Set[T]);
Constraints
S.element(X) :- S.belongs(X,1);
S.insert(X).belongs(X,1);
S.delete(X) .belongs(X,0);
S1.union(S2) .belongs(X,1) :- Si.element(X);
S1.union(S2) .belongs(X,1) :- S2.element(X);
S1.intersect(S2).belongs(X,1) :- Sl.element(X), S2.element(X);
S1.difference(52) .belongs(X,1) :- S1.element(X), S52.belongs(X,0)
End Set.

The above redefinition is perfectly intuitive and in fact in the style of Eiffel
[34]. But now the signatures for the constructors do not satisfy the contravariant
requirements for the argument types. Both the argument and the result types
have been extended covariantly. It is now possible to write programs that type
check at compile time and fail at run time due to a type error. The following is
an example:

$1,82: Set[Natural];
B1,B2: Bag[Naturall;

Let B1=S1;
Let S2=B1.union(B2);

The problem comes from the local nature of type checking and dynamic bind-
ing. B1.union(B2) obviously type checks at compile time. But at run time, the
redefined version of union will be chosen, since the method is applied to an in-
stance of type Set[Natural] (dynamic binding). The selected method will get
an argument of the supertype, contrary to the principle of substitutability, ac-

cording to which only an instance of a subtype may be substituted in place of
its supertype.
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Set as specified above is neither a syntactic nor a behavioral subtype of
Bag. Not only have the signatures of the constructors union, intersect and
difference been redefined in such a way that the contravariant subtyping rules
for argument types are violated, but at the same time there are behavioral
changes. The effects of the inherited mutators insert and delete have been re-
defined. This is thus an example of pure inheritance where no subtyping, either
syntactic or semantic occurs. In spite of that, the derived abstraction makes per-
fect sense. But no substitutability, either on syntactic or on semantic grounds,
1s appropriate.

We summarize our analysis in graphical form:

SimpleBag SimpleBag
BoundedBag Bag Bag Bag
SimpleSet SimpleSet
BoundedSet Set Set Set
Syntactic Semantic Covariant
Subtyping Subtyping Inheritance

8 Higher-order Polymorphism

The main language construct, the specification block, comes in general with a
type parameter. That allows support of higher-order features in spite of the fact
that the language is still first order. A parametric specification block is in fact
a function TYPE — TYPE where TYPE is the collection of all types each of
which is expressed by a specification block. TYPE, however, is not explicitly
present in the language. It is constructed starting with specification blocks for
types such as Natural, Real, String etc. which are in fact predefined and thus
have fixed interpretations.

An important form of higher-order polymorphism for object-oriented lan-
guages is F-bounded polymorphism [11]. Although a fairly abstract and higher-
level notion, it actually performs a very pragmatic role in our language. Here is
an illustration. To specify an ordering we need at least a predicate, let us call it
less_than. Its generic (parametric) definition is given below.

Specification Order[T];
Observers

less_than(T);
End Order.
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A specific ordering will now be given by introducing appropriate constraints.
So, for example, a preorder is just reflexive and transitive, as specified below.
But the type parameter of the preorder abstraction must satisfy the condition
T <: Order[T]. This condition guarantees that whatever the underlying type
T is, it must have the predicate less_than. The form of subtyping is not just
bounded by a particular specification. Rather, an F-bound is Order [T].

Specification PreDrder[T <: Order[T]];
Constraints

X.less_than(X);

X.less_than(Z) :- X.less_than(Y), Y.less_than(Z);
End Prelrder.

Although F-bounded polymorphism [11] is important for object-oriented type
systems as it allows some inheritance relationships to be captured within the
type system, it is only within the framework of a constraint language that it
assumes its full meaning. In the above example, it is only when the F-bounded
subtyping condition is satisfied that the universal quantification of all variables
(standard in logic programming and adopted in our language design) makes
sense.

Following the same logic we can define the class of ordered sets as follows:

Specification OrderedSet[T <: PreOrder[T]];
Inherits Set[T];

End OrderedSet.

The above definition guarantees that the type parameter T is equipped with
the predicate less_than that satisfies the axioms for preorder. Recall that our
definition of subtyping <: given in Section 6 is a semantic rather than the usual
[12] syntactic one.

9 Prototype Implementation

The goal of the current implementation is not a production quality support
for a declarative object-oriented programming language. Rather, the goal is a
powerful prototyping tool based on an advanced type system extended with logic-
based semantic specification facilities. Because of that we explore suitable logic-
programming architectures and generalize them so that they become appropriate
for typed object-oriented environments.

Two major components of the underlying support for any logic programming
system are the unification algorithm and an implementation of some kind of
resolution. Augmenting clauses with an equational theory complicates matters
as ordinary unification can no longer be used. In [38], it was shown that one
can work on the clauses alone and yet have a complete inference system in a
theorem-prover, if a generalized unification algorithm is used, one which respects
the equational theory in question.
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One such unification algorithm is presented in [24] where the process of unifica-
tion 1s seen as solving equations within the equational theory. Another practical
approach to logic programs with equality theories is presented in [26] where an
extension to Prolog called Prolog-with-Equality is presented. Here, when two
terms do not unify syntactically, an equality constraint is used to attempt to
prove the two terms equal. We use similar techniques in the implementation of
the deductive capabilities of our language.

The first step in implementing our object-oriented language on an underlying
logic programming architectureis to translate features from the former paradigm
into the latter. We first present a simple translation procedure and then describe
the run-time organization of the deductive system.

9.1 ‘Translation

Associated with each object class in a given program is a collection of its observer,
constructor and mutator methods. For any n-ary predicate method p belonging
to a class c, we introduce an (n + 1)-ary predicate symbol p.c. The arity of p_c
is one more because the underlying object of p is now an argument supplied to
p_c. We attach the class name with the predicate symbols to distinguish between
identical predicate methods in different classes. This reflects the many sorted (in
fact order-sorted) nature of the paradigm [19]. Similarly, for any n-ary mutator
method f belonging to a class ¢, we introduce an (n 4 1)-ary function symbol

f-c.

The constraints in any class are also translated into standard Horn logic syntax
in a straightforward way. For example, the constraint

B.insert(X).belongs(X,N.succ()) :- B.belongs(X,N);
in the class Bag now becomes

belongs_Bag(insert_Bag(B,X),X,succ_Natural(N)) :-
belongs_Bag(B,X,N).

The equality axioms are translated similarly into unit Horn clauses {ones hav-
ing empty bodies). A functor r that returns an object of class ¢ now becomes a
constant r._c. Its constraints are also translated as above.

9.2 Objects and States

At run-time user(s) perform actions that may create, delete or manipulate ob-
jects. The object states are identified with equivalence classes of ground terms
representing compositions of messages (mutator invocations) each one begin-
ning with a functor application. This model is in fact based on a technique from
algebraic automata theory.

For example, the action let x = null[Natural] creates a bag of natural
numbers, whose current state is the term null_Bag, and since it satisfies the
axioms in the null functor specification, the term represents the empty bag of
natural numbers.
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The action x.insert(0) inserts the element 0 in x by modifying its state
to the term insert_Bag(null_Bag, O_Nat). And if y is also a bag of natural
numbers with the current state

insert_Bag(insert_Bag(null_Bag, 0_Natural), 1_Natural)

then the action let z = x.union(y) makes the current state of the object z to
be the term

union_Bag(insert_Bag(null_Bag, O_Natural),
insert_Bag(insert_Bag(null_Bag, O_Natural),
1_Natural))

(The constant 1 is considered to be equated to the term 0.succ() in the speci-
fication of Natural.)
Queries can be made by invoking predicate methods. For example, the query

z.belongs(0, N)}

produces the solution N = 0.succ().succ() indicating that the element 0 be-
longs 2 times to the object z.

9.3 Run-time Deduction

As suggested in the above example, constraints in a class specification are used
only for query answering, much like in standard logic programs. However, the
unifications performed in the derivations respect the equality theories contained
in the specifications.

For an example of the modified unification, consider the equality axioms con-
tained in the specification of the class Bag:

B.insert (X).delete(X)
B.insert(X).insert(Y)

B;
B.insert(Y).insert (X)

Let by and by be bags with the following histories of method invocations:

b; = null.insert(0) .insert(1)
by = null.insert(1).insert(2).insert(0) .delete(2)

In other words, b; is a bag, which was initially empty and into which the elements
0 and 1 were inserted, in that order. And b, is a bag, which was also initially
empty, and into which the elements 1, 2 and 0 were inserted in that order, and
the element 2 was later deleted. These two terms in fact belong to the same
equivalence class and thus represent the same state. The equivalence relation
is defined somewhat differently than in [19]. We say that terms #; and t, are
equivalent iff ¢; = #; is provable from the given set of equations E .
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Treating the equality axioms as rewrite rules, we can have the following rewrit-
ings of the terms b; and bs:

b; = null.insert(0).insert(1)
— null.insert(1).insert (0)

b, = null.insert(1).insert(2).insert(0).delete(2)
— null.insert(1) .insert(0).insert(2).delete(2)

— null.insert (1) .insert(0)

We thus see that b; and by unify with respect to the equality axioms and thus
represent the same state of the underlying object.

If the equality axioms in the specified classes, when considered as rewrite rules,
are confluent and terminating, then the following unification algorithm proposed
in [18] and improved in [22] is known to be complete, i.e. it produces a complete
set of unifiers.

Algorithm E-UNIFY: Let t; and f5 be terms and E be a confluent and ter-
minating set of rewrite rules. Let 7 be a new function symbol and let sq =
7(t1,t2), 815---,5, = T(t3,t4) be a sequence of terms such that:

o for each 7, 0 < i < n, s; contains a non-variable subterm w; that unifies (in
the ordinary sense) with the left hand side of a rule I; = r; in F with most
general unifier 9;, and 5,4, is obtained from s; by replacing w; by #;(r;); and

e t3 and ¢4 unify (in the ordinary sense) by a substitution a.

Then generate the substitution o6, --- f,_1@ as an E-unifier of ¢; and 5. 0

The above algorithm is known to generate a complete set of E-unifiers for ¢;
and to (see [18, 22, 19]), i.e. each substitution generated by it is an E-unifier
and, for any F-unifier v of t; and t;, there is some E-unifier # generated such
that for some E-unifier §, v = 6.

A derivation can now be defined as a (finite or infinite) sequence Gy, G1,...
of goals such that, for each i,

e G, is a set of the form {Bi,... ,Bﬁni}, where each B; is an atom;
e there is a constraint clause of the form

i, i i
A = Di,..., Dy,
with variables renamed to names never before used in the derivation;

8; is an F-unifier of A’ and B;, for some j, 1 < 3 < m;; and
Giy1 1s the set

{Bia“' SB;—I’D;V"’D:;‘eB;+1a-'-aB:;;‘}0i‘
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A derivation is successful if some goal in it is empty. The composition of the
unifiers in that derivation up to the empty goal produces the desired solution in
the usual way. Observe that unlike standard logic programs, here it is possible
to have more than one E-unifiers at each step. (In fact, for some pairs of terms
there are an infinite number of E-unifiers.) However, the set of all solutions is
still recursively enumerable, and can thus be effectively enumerated.

10 Information Hiding

Information hiding is supported in our paradigm in a way that the actual object
state is never exposed. The only way for a user to observe properties of the
hidden object state is by invoking the observer methods, and the only way to
change that state is by invoking mutators. In fact, two states of an object may
in fact be different in the underlying implementation, and still produce the same
observable behavior. Those two states will then be undistinguishable by the
users and thus belong to the same equivalence class of states in the underlying
implementation.

Given the particular example, we can illustrate such situations. For Bag and
Set specifications, an immediate question is whether the familiar axioms such
as idempotence, commutativity and associativity, should be given as additional
equational constraints, as in [19].

If B1, B2 and B3 are bags of type Bag[T], the standard equational axioms for
union are:

Bl.union(null[T])=B1

Bil.union(B1)=B1

Bl.union(B2)= B2.union(B1)
Bl.union(B2.union{(B3))= Bi.union(B2).union(B3)

The above properties of the constructors associated with the bag abstraction
are not given in the specification Bag[T]. Moreover, at the level of logic terms,
the above properties do not hold. Since this is not observable via the predicate
methods in the class Bag, explicit mention of these properties is not necessary.

As an example, let bl and b2 be singleton bags of natural numbers with
elements 1 and 2, respectively. Consider

let b12 = bl.union(b2);
Then, the state of the bag b12 after the above action is:
union_Bag(insert_Bag(null_Bag, 1), insert_Bag(mull_Bag, 2))
Likewise, the desired action and the corresponding state of the bag b21 are:

let b21 = b2.union(bl);

union_Bag(insert_Bag(null_Bag, 2), insert_Bag(null_Bag, 1)).

The states of the bags b12 and b21 are not equal with respect to the equality
theory. However, the two bags behave in exactly the same way with respect to
all the observers contained in the Bag specification.



253

11 Limitations and Extensions of the Paradigm

Although the paradigm in which the constraints are expressed in Horn clause
logic with separate equational axioms is intuitively attractive and computation-
ally tractable, there are situations where we need additional features such as (1)
equality in the clauses, (2) negation in the body of the clauses, and possibly (3)
disjunctions in the head of the clauses. We shall illustrate these situations with
examples and suggest how we are extending our paradigm to handle them.

11.1 Equality in Clauses and Axioms

The following example specification of PartialOrder has equality in the head
of a constraint clause:

Specification PartialOrder[T <: Order[T]];
Constraints
X.less_than(Z) :- X.less_than(Y), Y.less_than(Z);
X = Z :- X.less_than(Y), Y.less_than(X);
End PartialOrder.

This is a simple and easily tractable extension of our paradigm where all the
implementation techniques of the previous section remain applicable. For details,
see also [19].

11.2 Stratified Negation

A set of clauses is said to be stratified if the clauses can be partitioned into
ordered sets of clauses such that if a negated atom appears in the body of a
clause in a partition, then the definition of that atom appears in a previous
partition and if a positive atom appears in the body of a clause in a partition,
then its definition either appears in the same partition or a previous partition.
An example specification that requires stratified negation follows.

Consider the specification of the proper_subset predicate of the Set abstrac-
tion. The signature for proper_subset predicate would have the form:

proper_subset (Set [T])
and the associated constraint is:
S1.proper_subset(S2) :- S1. subset (S2), ~Si.difference(S2).empty()

A collection of stratified clauses does have a minimal model semantics as
described in [7]. The intended minimal model for a collection of stratified clauses
is constructed in an intuitive manner as follows: starting from the first partition
of clauses, compute the logical consequences of the clauses in a partition using
only the consequences obtained in previous partitions. Since the clauses are
stratified, the predicate that appears in a negated atom will have been completely
computed (i.e. both its positive and negative ground instances would be known)
in a previous partition and hence can be used in the current partition. The
derivation of negative facts for a partition is done by complementation after all
the positive facts have been computed for the partition.



254

11.3 Non-stratified Negation

There are situations where stratified negation is not sufficient. We now present
an example.

The difference and symmetric_difference constructors for the Set ab-
straction have the following signatures:

difference(Set[T]): Set[T];
symmetric_difference(Set[T]): Set[T]

and the associated constraints are:

S1.difference(S2).element(X) :- S1.element(X),
~S2.element (X);
S1.symmetric_difference(S2).element(X) :- Si.element(X),
“S2.element (X);
S1.symmetric_difference(S2).element(X) :- S2.element(X),
“S1.element (X)

As can be observed, the above constraints involve non-stratified negation.

The semantics of non-stratified logical clauses is captured by means of a partial
truth assignment on the Herbrand base. The well-founded semantics [42] of logic
programs (with no restriction on negation) is a partial assignment of truth values
obtained by two fixpoint operators, one to derive positive facts and the other
to derive negative facts. The operator used to derive positive facts is the usual
immediate-consequence operator. For the derivation of negative facts the notion
of unfounded sets is required. Informally, an unfounded set A with respect to a
partial interpretation I is a set of atoms of the Herbrand base of a logic program
P which satisfy the following property:

p € A iff for each ground instance of a clause whose head is p, either
(1) some subgoal of the clause is inconsistent with I or (2) some positive
subgoal occurs in A.

Intuitively, I is regarded as what is already known about the intended model of
P. Condition (1) says that the rule instance cannot be used to derive p. Condition
(2), referred to as the unfoundedness condition, states that of all the rules that
still might be usable to derive some atom in set A, each requires an atom in A
to be true. In other words, there is no first atom in A which can be established
to be true. Consequently, all of the atoms in A are assumed to be false in the
well-founded semantics. Of course, this process has to be iteratively performed
to arrive at the final well-founded model.

As far as the unification process is concerned, we still use E-unification de-
scribed earlier, however, we need to provide a mechanism for solving negated
subgoals. We use the following technique proposed by Clark [14] called negation
as finite failure to resolve negated subgoals.

Consider a set of clauses P and the goal G = Ly,..., L,. Consider a negated
subgoal L;, say —A. If PU {«~ A;} has a finitely failed resolution tree then,

= Lly‘--aLi—laLi—Flr‘-,Ln
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is a resolvent of G.
With this modification (for negated subgoals), we can use the derivations
defined in an earlier section to arrive at solutions to the queries.

11.4 Multiple Inheritance

The usual problems related to the complexity of multiple inheritance seem to
have an interesting relationship with the complexity of the required object-
oriented logic-based paradigm. For example, if we try to derive Set by multiple
inheritance from SimpleSet and Bag, we get the following specification.

Specification Set[T];
Inherits SimpleSet[T] Select element, insert, delete;
Redefines element;
Inherits Bag[T] Select union, intersection, difference;
Constraints
S.insert(X).element (X);
S1.union(S2).element(X) :- Si.element(X);
S1.union(S2).element(X) :- S2.element(X);
S1.intersect(S2).element(X) :- Si.element(X), S2.element(X);
S1.difference(S2).element(X) :- Sl.element(X), ~S2.element(X);
End Set.

In the above specification, we used selective inheritance where selection of a
particular method implies inheritance of the associated constraints and equa-
tional axioms (unless redefined). It is interesting that in this case, we have non-
stratified negation in the body of the clauses. This is just an illustration of the
problem we are investigating at present.

11.5 Disjunctive Clauses

There is at least one situation where disjunctive clauses (clauses with a disjunc-
tion in the head) would be required. The following specification of LinearOrder
has a constraint whose head is a disjunction.

Specification LinearOrder[T <: Order[T]];
Constraints

X.less_than(Y) or Y.less_than(Z);

X.less_than(Z) :- X.less_than(Y), Y.less_than(Z);
End LinearOrder.

Here, we do see a constraint that is a disjunctive fact. Computing with disjunctive
specifications in general is not computationally efficient [1, 23], although there
are several special cases of disjunctive clauses for which efficient algorithms do
exist {17, 25]. We are currently exploring the possibilities of using some of these
algorithms in our implementation.
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12 Conclusions and Comparisons with Related Work

The paper presents a design and implementation of an object-oriented language
with semantic constraints expressed in an extended logic programming paradigm.

The language is object-oriented, offering encapsulation and information hid-
ing. It differs significantly from the existing strongly typed object-oriented lan-
guages in that it is declarative, rather than procedural. In addition to support-
ing strong and mostly static typing, the language enables software reusereuse
via inheritance, subtype and parametric polymorphism. It features a semantic
specification facility based on a suitably extended logic programming framework
reflecting the behavioral nature of the object-oriented paradigm. It provides
higher-order polymorphic features proposed in advanced object-oriented type
systems, in spite of the fact that the language is first-order.

Our main contribution is in enhancing a sophisticated object-oriented type
system with semantic specification facilities based on a suitable extension of
the logic programming paradigm. In comparison with the object-oriented type
systems, our semantic constraint language is a major generalization, and accom-
plishes behavioral subtyping mechanisms like those proposed in [5, 27, 28].

The underlying object-oriented type system is different from the type systems
of languages such as C++ [40], or Eiffel [34]. C++ only recently supports para-
metric polymorphism; distinction between inheritance and subtyping is unclear
in C++, and matching the two in Eiffel creates well-known problems [15]. Our
paradigm is strictly more powerful and supports a semantic generalization of
F-bounded polymorphism [11].

The type system of our language is comparable to [35]. However, the constraint
language in [35] is first-order predicate calculus, which is computationally much
more complex and does not have an initial algebra semantics.

The main advantage of our language is that it departs dramatically from
the procedurality of the existing object-oriented languages, retaining advantages
such as encapsulation, information hiding, inheritance, and object-identity. C++
does not have any constraint language and the assertion language of Eiffel is very
limited.

Our constraint language is comparable to the one in EQLOG [19]. The differ-
ence is that ours is object-oriented and offers an interesting approach for mod-
eling object states and their transitions. In addition, our constraint language
consists of pure Horn clauses with separate equality theory, whereas in EQLOG
equality is merged with the Horn clauses. Qur paradigm is thus not only more
intuitive but also computationally more tractable. In addition, EQLOG does
not handle negation, and our paradigm is capable of dealing with some forms of
negation as explained in Section 11.

The language implementation technique extends some object-oriented and
logic programming architectures by a novel, automata-based model for repre-
senting object states and state transitions. Our contribution is a novel way of
representing states as equivalence classes of messages. As such the model resem-
bles the related approaches in algebraic automata theory.
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The language and its initial implementation are currently used as a powerful
prototyping tool, even if a production quality object-oriented language is used
for the actual implementation.

The following are some possible directions (a few of which are quite ambitious)
for future work:

e Investigate the problems associated with multiple inheritance in a truly be-
havioral and declarative paradigm.

¢ Extend the paradigm with persistence and develop an appropriate underlying
system’s architecture.

e Extend the language with appropriate high-level action composition rules.

e Provide a semantic definition for the language in a suitable formal frame-
work.

¢ Develop sophisticated optimization techniques for automatic generation of
the procedural implementations of methods from their specifications.

e Increase the expressive power of the constraint language by allowing ad-
vanced features such as negation and equality in the clauses, while main-
taining soundness by ensuring that some semantic interpretation (preferably
the initial one) is still available.
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