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Abstract. Support for cooperative distributed applications is an impor-
tant direction of computer systems research involving developments in
operating systems, programming languages and databases. One emerg-
ing model for the support of cooperative distributed applications is that
of a distributed shared universe organized as a set of objects shared by
concurrent activities.

While many experimental distributed object-oriented systems have been
designed and implemented (Gothic [Banitredl], Clouds [Dasgupta90],
Emerald [Hutchinson87], Argus [Liskov85]), few have addressed the de-
velopment of protected applications in such an environment (Melampus
[Luniewski91], Birlix [Kowalski90]).

In the Guide project, we have designed and implemented a distributed
system that not only intends to support the above model, but also pro-
vides mechanisms for the development of protected cooperative applica-
tions. The advantages of the provided mechanisms are that they allow the
cooperation of mutually suspicious users, that protection does not rely
on the safety of the code produced by the compilers and that their im-
plementation does not severely degrade object addressing performance.
Protection in the Guide system is based on access lists and visibility
restrictions on objects.

A prototype version of the system has been implemented using the
Mach 3.0 micro-kernel as a base. Some simple applications have also been
developed. More elaborate tools that allow the configuration of protected
applications are to be implemented.

1 Introduction

Support for cooperative distributed applications is an important direction of
computer systems research involving developments in operating systems, pro-
gramming languages and databases. One emerging model for the support of
cooperative distributed applications is that of a distributed shared universe or-
ganized as a set of objects shared by concurrent activities. In the Guide project,
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we have designed and implemented a system that supports such a model. Our
goal is to provide an efficient platform for a family of object-oriented languages
such as Guide (a language designed by our group [Krakowiak90]), and a persis-
tent extension of C++. In particular, we wish to enhance sharing and protection,
to simplify integration and to improve the performance of complex cooperating
applications manipulating a large number of small objects (i.e. about a few hun-
dred bytes). Our target application domain includes office applications, such as
a cooperative document editor [Decouchant93] and a system for document cir-
culation [Cahill93] composed of groups of interacting data centered tools that
are inherently interdependent and have frequent interactions.

In a system where objects may be shared between multiple users that interact
through a cooperative application, it is indispensable to provide mechanisms
that allow the control of user’s rights on objects. The second version of the
Guide system (Guide-2) has been designed to provide such mechanisms; these
mechanisms have been integrated into the objects’ addressing scheme.

The lessons learned from our experience may be summarized as follows :

1. We can provide access control mechanisms at system level without relying
on the safety of the code produced by the compilers.

2. We can implement access control on fine-grained objects without method
call performance being severely degraded.

3. Per object access lists that register users’ rights (rather than capabilities)
work well in the case of mutually suspicious users or applications.

4. The delegation problem that arises with user based access lists may be solved
with the definition of application entry points that allow the design of mu-
tually suspicious sub-systems.

The remainder of the paper is organized as follows. Section 2 presents the
requirements for access control in a system and the way existing systems fulfill
these requirements. Section 3 describes our experience. It summarizes the main
design choices and implementation principles of the Guide system, and then
concentrates on the aspects related to protection. Section 4 presents a prelim-
inary evaluation of these mechanisms. Section 5 is devoted to conclusions and
perspectives.

2 Requirements and Related Work

The purpose of this section is first to present the most important requirements for
the support of cooperative applications, and then to describe different approaches
through previous system examples for providing this support.

The protection mechanisms we want to provide must deal with:

1. Access control regarding users

An application is always running on the account of one user. The system must
allow the control of users’ rights on shared data managed in the system.
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2. Delegation problem
[t must be possible to temporarily extend users’ rights for the execution
of a specific operation. The game example given in [Kowalski90] illustrates
this problem. An object? game exports an operation play. Every user who
wants to play invokes play on the object game. An object score is used to
store the highest scores. The object score is updated using the operation
edit_score (user_id, new_score) at the end of the game. Every user who has
the right to play the game must have the right to call edit_score on object
score, but a user must not be able to update score by invoking edit_score
from an object other than game.
A player should be able to update score invoking edit_score from the object
game, but access to score from other objects should not be possible.

3. Mutually suspicious users
We want to manage cooperation between untrusted users. If user U gives
rights on his objects to user U2, U2 must not be given more than those rights.
In particular, U2 must not be allowed to tranfer these rights to another user.
Additionally, U1 must not get additional rights on U2 (i.e. we don’t want to

manage a hierarchical organization of users since users are all equal regarding
protection).

In these requirements, we did not include the problems that relate to right
revocation. It is a difficult problem that is not currently dealt in the Guide
project, and that could be the subject of a separate paper by itself.

These requirements will now be used to analyse some previous systems.

In systems, protection rights can be represented as a matrix [Lampson71]
where rows contain rights associated with users and columns contain rights as-
sociated with objects (Fig. 1).

Objl Obj2 Obj3

Userl ggé
User2 Opl
User3 Op2

Fig.1. Lampson matrix

Two approaches are often used for implementation purposes. The first one
consists in gathering protection information by column. An access list is then
associated with each object and contains users’ rights on this object. The second

% At this step, we don’t make any supposition about the meanning of the words Object
or Operation. An Object can either be a segment or a file.
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approach consists in gathering protection informations by row. A capability list
is associated with each user and contains rights on objects for this user. We now
study three variants of these basic solutions.

2.1 Hydra

Hydra [Wulf74] is an object-oriented capability-based system developed on a
specific hardware at Carnegie-Mellon University. Some machine registers allow
the use of capabilities through a restricted set of operations (load, store, copy,
restrict_rights and call). A capability is composed of a unique identifier and a
field that describes the authorized methods among the methods declared in the
type of the referenced object. The state of an object is composed of a data part
and a C-list which is a list of capabilities. A process that executes in an object can
only use the capabilities stored in the C-list of that object and some capabilities
received as parameters. As each method call switches the capability space (or
address space) of the current process, we say that each object is managed in a
different protection domain®.

We now examine how the previous requirements are taken into account in
the Hydra system :

1. Access control regarding users
A user application has the ability to copy capabilities, to restrict their asso-
ciated rights, and to give them to other user applications. Each user owns
an initial capability list which determines the objects the user may invoke.
These objects may contain other capabilities that provide additional rights.
But if a user cannot reach a capability on a given object, he will not be
allowed to invoke that object.

2. Delegation problem
As each object in Hydra is managed as a distinct protection domain, an
object (game) may contain a capability on another object (score) and possess
rights on this object. No object except game will obtain the capability on
object score. Without this capability, score cannot be accessed. The player
will only get a capability that allows the invocation of the method play on
the object game. The invocation of method play extends the rights of the
current process.

3. Mutually suspicious users
When a server gives access rights to a client, the server does not get rights on
the client’s objects. However, the client gets the right to give the capability
to another client, which implies that the server looses some control on the
rights it exports. The problem is not solved if clients are authenticated by
capabilities, since clients may exchange these capabilities. This comes from
the fact that no user check is performed at the system level.

® A protection domain may be viewed as an address space; method call is the only
way for changing the execution protection domain.
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Hardware-based capability systems have had limited use because they only
run on specific hardware. Capability-based systems now running on classical
hardware [Mullender86] provide capability protection with encryption based al-
gorithms.

2.2 Multics

Multics [Organick72] is a system developed at Massachussetts Institute of Tech-
nology that also runs on a specific hardware. Protection in Multics is based on
access lists. The basic unit of shared data is the segment, and an access list is
associated with each segment and registers users rights (read/write/ execute) on
the segment.

Moreover, the system manages rings: there are 8 protection rings and a pro-
cess always executes in one ring. A ring bracket is attached to each segment and
gives for each operation (read/write/execute) the rings in which the operation
may be performed. Brackets for read and write operations always start at ring 0,
which means that a process executing in this ring has access rights for all the
segments managed in the system. This scheme is in fact a generalization of the
classical master/slave model, in which several protection levels are managed.

In order to allow processes to enter a lower ring, procedure segments may
export some entry points (gateways) that may be called through a specific in-
struction. A process that calls a gateway from a procedure segment enters the
higher ring of the execution bracket attached to the segment.

We now examine how the previous requirements are managed in the Multics
system :

1. Access control regarding users
An access list is associated with each segment and controls users rights on
the segment. Therefore, access control in terms of users is possible.

2. Delegation problem
In Multics, we can manage a data segment in a ring, i.e. the segment can
only be accessed by a process that executes in this ring (the segment may
contain the game and the score objects), and constrain processes that want
to enter this ring to call a dedicated gateway in a procedure segment also
managed in the same ring (this gateway is then the play operation). Then,
the data segment is protected against direct access and can only be adressed
by the procedure segment.
A protected application can therefore be managed in a lower ring, and a
process that calls a gateway to enter this ring extends its rights for the time
of the execution in the ring.

3. Mutually suspicious users
With access control lists associated with segments, rights that are received
by a user cannot be given to another user.
However, if a user wants to provide a protected service in a server, he needs
to manage its segments in a ring inferior to the ring in which client processes
execute. This means that the server will have rights on the segments managed
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by its clients (in some upper rings), and that mutually suspicious sub-systems
cannot be implemented.

2.3 Melampus

Melampus [Luniewski91] is an object-oriented system developed at the IBM Al-
maden Research Center that provides access control mechanisms based on access
lists, but it differs from others by the fact that its lists contain object owners.
An object’s access list gives the users whose objects may invoke that instance.
The originality of their implementation is to take into account immediately a
modification in an object’s access list.

We also examine how the previous requirements are managed in the Melam-
pus system. Melampus has similar problems to capability based systems since
no check on the original issuer of a request is made. This allows an intermediate
object to forward unauthorized requests to a server.

1. Access control regarding users
As in capability-based systems, access rights regarding users may be con-
trolled. While a user cannot get rights on an object that is the target object
or which is an object that has rights on the target object, this user will not
be authorized to call the target object.

2. Delegation problem
The delegation problem can be solved by retaining the rights on protected
objects for a privileged user (owner). In the game example, objects game
and score belong to the game administrator. Object game accepts calls from
objects that belong to other users, but object score only accepts invocations
from objects that belong to the administrator of the game.
A comparable mechanism is also used in the Birlix system [Kowalski90] in
which another attribute (the class) of the calling object may be used in access
lists. The access list of object score can then specify that only invocations
from instances of class Game will be accepted.

3. Mutually suspicious users
The same problem arise as in capability-based systems. If a server gives
rights to a client C, i.e the server accepts calls from objects that belong to
C, there’s no way for the server to be sure that C will not give rights to some
other clients on his own objects. When an invocation comes to the server
from client C, the invocation may have been initiated by another client if C
trusts others. Therefore, server’s protection relies on client trust.

2.4 Conclusion

Protection rights may be given to users (U) associated with processes like in
Multics, or to calling objects (O) like in Hydra or Melampus.

In both cases (O or U), the problem that arises is to be able to control rights
according to the other invocation parameter (respectively the calling user and
the calling object). If rights are given to users (U), the delegation problem needs
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to make rights depend on the calling object. If rights are given to object (0),
mutually suspicious sub-systems implementation needs to control the calling
user.

We believe that user control (U) should be used as the basis for the support
of protected mutually suspicious cooperative applications. Therefore, access con-
trol in Guide is based on access lists that contain users’ rights. An additional
mechanism allows us to solve the delegation problem by specifying the entry
points of each application.

The other conclusion of this section relates to protection safety. In the de-
scribed systems, protection relied either on a specific hardware or on trusted
compilers. As the Guide system aims at supporting untrusted compilers, we
have to provide a minimal degree of isolation between processes and objects,
and to authenticate parameters on which depend access rights.

3 Protection in the Guide System

The previous section has detailed the requirements and the related work, this
section is devoted to the work achieved in the Guide project.

Section 3.1 summarizes the main design choices and implementation princi-
ples of the Guide system. It focuses on the object addressing scheme because the
protection mechanisms has to fit well into this scheme. Section 3.2 concentrates
on the mechanims that are provided and their integration in the Guide kernel.

3.1 Summary of the Guide Design and Implementation

A more complete description and justification of the Guide design is given in

[Chevalier93c].

Object and Execution Model.

The object model provided by the Guide virtual machine defines basic ab-
stractions for building complex structures. The virtual machine [Freyssinet91] is
intended to be used by the run-time system of object-oriented languages (in prac-
tice: Guide and an extended C++). The model defines three basic abstractions:
instance-objects, class-objects, and code-libraries. The corresponding entities are
potentially persistent; they are named by universal system references. Figure 2
shows the organization of these entities.

Class-objects and instance-objects are defined separately, in order to enforce
modularity; the system knows about the link between an instance-object and its
class-object. An instance-object can only be accessed using the methods defined
in its class. The system does not manage relationships between class-objects
(inheritance). The code of the methods involved in class definitions is stored in
code-libraries.

Objects are named by unique system references, and may contain references
to other objects. A code-library may contain a reference to a procedure in another
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Code-library

Instance-object

Class-object Code-library

Fig. 2. The generic object model

code-library. Objects are passive (active agents are defined independently from
objects).

The execution model is based on multi-threaded Tasks*. A Task is a set of
resources, in particular a distributed virtual address space, shared by its activities
(sequential threads of control). The address space of a Task is composed of a
set of contexts. A contezt is a virtual memory local to a node. A Task may
span many nodes and the set of objects it contains may evolve dynamically. In
practice, a program is represented by a Task, and a complex application may
involve several cooperating Tasks.

Shared objects is the only means of communication between activities within
the same Task or in different Tasks. The system should provide different poli-
cies to implement object sharing (i.e., one copy for read/write object-instances,
multiple copies for class-objects).

On top of the Mach 3.0 micro-kernel, each context is implemented by a Mach
task and a Guide Task is implemented by several Mach tasks distributed on the
network. Mach threads are used to implement local representatives of activities
in contexts and cross-context invocations are implemented using Mach IPC.

Management of Shared Objects.

In order to be accessible, an object must be mapped in a context of a Guide
Task. Object sharing between Tasks could be implemented either by sharing con-
texts between Tasks or by mapping an object in separate contexts, one per Task.
The second solution was adopted in order to provide protection for individual
objects. Tasks do not share contexts and protection is enforced by isolation of
Tasks.

Furthermore, the system was also designed to provide object isolation: objects
of different owners are mapped into different contexts in the same Task. When

* We use Task with a capital T to differentiate Guide Tasks from Mach tasks used in
the implementation.
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an activity spreads from an object owned by X to an object owned by Y, it must
execute a cross-context invocation, which is interpreted by the system. Thus, an
error in a method of an object can only affect objects having the same owner.
This design is illustrated on Fig. 3.

Task T1 Task T2
( = ) s
Owner X Owner Y Owner Y Owner X OwnerZ Owner Y
S ) =
A E\\
Activity ’ .
Al 5 . . O | AC:\Qty
\ \ 4
\\ \ II
(- ARV S N 1, Y,
NN ’
\ ’
\ ’
\./,
Cluster I L
Node 1 Node 2

Fig. 3. Guide execution structures

Our experience shows that most Guide data objects are small (i.e. less than
300 bytes). Using objects as units of sharing would mean supporting the cost of a
mapping for each object binding. We therefore decided to use an object clustering
scheme. A clusteris a set of (logically related) objects that have the same owner;
clusters are the unit of mapping. A cluster is mapped in the context of a Task
when two conditions are fulfilled: an object of the cluster has been called (for the
first time) by an object mapped in the context; the object caller has the same
owner as the called object. In practice, clusters can be used at the application
level to group logically related objects; the cost of cluster mapping is amortized
if most references are local to the cluster.

On Mach 3.0, clusters mapping and sharing are implemented by the Mach
external pager facility. A pager runs on each node and is in charge of the man-
agement of a set of clusters. These clusters are mapped in contexts according to
the protection policy (isolation).

Object Binding.

In the design of our generic virtual machine [Freyssinet91], the main moti-
vations are to provide dynamic binding of references (in order to accommodate
polymorphism rules of languages), and to support persistent shared objects that
may be used to build more complex structures by embedding references to ex-
ternal objects within the instance data of an object. This design is based on the
following decisions:

1. In a previous prototype [Balter91], each method call was interpreted, i.e. the
binding of code and data was checked by the kernel before the actual call. In
order to improve performance, interpretation is now only done at first call.
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2. Since we only have a 32 bit address-space, we reuse space by dynamically
mapping clusters in address spaces. An object may be mapped at different
addresses, thereby precluding the use of traditional pointer swizzling. The so-
lution was to simulate a Multics-like segmentation mechanism [Organick72].

A reference in an object O to another object O2 mapped in the same context
C is made through a linkage segment associated with O in this context. This
linkage segment is built at the first use of Of in C, using a model generated by
the compiler. For each external reference in O, the compiler includes an entry
in its linkage segment; this entry is filled (i.e. the reference is bound in O1) at the
first method call from OI to the object pointed by this reference. After binding,
further method calls to the object use indirect addressing through the linkage
segment of O, without further interpretation.

In fact, all the abstractions of the virtual machine are managed in this way.
A code-library refers to other code-libraries through its linkage segment, and a
class-object refers to code-libraries in the same way.

Lib2
far
T mi(Lib2, d ~
02 m2Lib2, 42 a3
e m3(Lib2, d3

ix =]
s Is iml m3
im2
f i_m3| -

/ll b

Fig. 4. Segmented mechanisms for object support

In Fig. 4, object O! contains in a field z (or variable) an external reference to
object O2. As this reference has been bound, the entry i_z associated with zin the
linkage segment of O points® to object O2 in the current context. In the same
way, class C2 contains the external references to the code of the defined methods;
these references are also dynamically bound. When all the involved references
are bound, an object invocation from object OI to object 02 is performed with
pointer indirections through the linkage segment of 01, 02 and C2. Thus, if Ris
a register that points to the linkage segment of the current object O1, then the

invocation of method m2 on the object pointed by z will execute the method at
the address :

® An entry of a linkage segment has two fields s and Is that respectively point to the
referenced segment and its linkage section.
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R[ix].Is->1s[i_m2].s

Note that after the variable z has been reassigned in context C, a context C’
that shares object O may have a linkage segment that still points to 02 in C’.
If this reference is used in C”, the reference should be explicitly rebound.

3.2 Design and Implementation of the Protection Mechanisms

We must first summarize the requirements we had for the design of the protection
mechanisms. These requirements are based on the study of protection in previous
systems, but also on the design of the Guide system described above, since it
was important for these mechanisms to fit well into this design.

As described in Sect. 2, mechanisms based on access lists that contain users
allow us to solve the problem of mutually suspicious users. Therefore, our ap-
proach was to provide access list based mechanisms and to solve the delegation
problem with an additional mechanism.

The second requirement relates to the design of the Guide system, and espe-
cially to the addressing scheme we adopted. It was very important not to sacrifice
the performance of object invocation for providing protection. In particular, we
wanted to keep the binding at first call scheme.

Finally, the last requirement is the safety of the protection mechanisms. If it
is acceptable that a user may bypass the protection system for his own objects,
the system must guarantee that it is not possible for a user to corrupt or elude
the protection system for objects from other owners. In particular in the context
of the Guide project, in which a virtual machine is provided for the support of
several object-oriented languages, the system cannot trust the code produced by
the compilers and must enforce the protection mechanisms.

We now describe how the Guide system allows the control of access rights
on objects using access control lists, and then the mechanisms used to solve the
delegation problem.

Users Access Control.

The fact that we cannot interpret each method call caused us to develop the
following implementation.

We define the notion of view as a set of authorized methods. A view is a
restriction of a class interface which is stored in the class. For instance, in the
class File that defines methods read and write, may be defined the following
views:

Read_Write : (read, write)

Read_only : (read)

No_right: ()

"The access list of an object associates a view with each user. This is equivalent
to the definition of the set of methods that the user may call on that object. An
example of access list for an instance of the class File could be the following:

( (Userl, Read_only), (User2, Read- Write), (Others, No_right) )
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At execution time, the access control according to such an access list is
achieved as follows. For each class, a sub-section of its linkage segment is de-
voted to each view defined in the class. If the class defines NM methods and NV
views, then the linkage segment of the class will contain NM*NV entries. We say
that the linkage segment of the class contains NV views. In each of these views,
the Nth entry corresponds to the same method, and the binding of the reference
to this method in this view is only performed if the view definition in the class
authorizes the method.

When the reference from an instance-object to its class is bound, the access
list of the object is consulted to find out the view associated with the current
user. Then the binding of this reference updates the linkage segment of the
object® and makes it point to the view associated with the current user.

F1((Userl, Read_only ) (User2, Read_Write ) (Others, No_right ) Lib
a1
File
Fead ( Lib.a1) o
o Write | Lib, d2
(Fie0) X3
No_right X
- A X
-------- Read_only { -
al Read_Write { ]

Fig. 5. Implementation of access control

This implementation is illustrated on Fig. 5. An instance (F1) of the classe
File is mapped in a context that runs on the account of User!’. Note that since
contexts are never shared between Guide Tasks, a context always runs on' the
account of a unique user and all the bindings in this context are made according
to this user. FI’s access list specifies that User! should use FI through the view
Read_Only. Then, the binding of the reference from FI to its class points to the
view Read_Only in the linkage segment of the class File. In this view, an attempt
to bind the second method will return an error.

With this implementation, the scheme used for an object invocation is un-
changed. Protection checks are only made at binding time. The binding of a
reference from an instance to its class checks the rights stored in the access
list of the instance. The binding of a reference from a class to a code segment
(through one view of the class) checks the rights stored in the views definition
in the class.

® The entry that corresponds to the class reference is always the first in the linkage
segment of an instance.

" The Guide Task (and each of its contexts) runs on the account of Userl. The context
may be associated with any owner (independently of Userl).
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However, with this scheme, a modification in an access list will only be taken
into account in the next binding, but we think this is an acceptable trade-off
between functionality and performance.

One of the requirements we made in the beginning of the section related to
the safety of the provided mechanisms. In the Guide system, object isolation is
provided through user isolation: objects owned by different owners are mapped
in different contexts within a Task. This implies that a method that executes
on an object in one context will only have the possibility (if it breaks object
encapsulation) to address objects that belong to the same owner. Therefore, a
user that runs a program can only corrupt its own data and can only access
objects of other owners through methods, since access is achieved through an
inter-context call. Note that the creation of an instance of a class implies trust
by the user of the methods defined in that class.

Delegation Problem.

As explained in Sect. 2, a protection scheme based on access lists that contain
users rights brings the need for an additional mechanism to solve the delegation
problem.

In the delegation problem, the purpose is to be able to extend user rights
to some protected objects through some well defined entry points, the protected
objects being not directly accessible. Since this ability is generally used to pro-
vide protected services, it has to be safe and this protection safety can only be
obtained using protection domain separation (context separation in the Guide
jargon).

When an object invocation involves objects from different owners, 1t implies
a cross-context call that is interpreted. Moreover, the owner of the calling object
can be authenticated by the system, since an object owner is statically associated
with each context. The principle of our mechanism is to make rights depend on
the calling object (as explained in Sect. 2.4), and in particular to make rights
depend on the owner of the calling object. A boolean tag called the visibility tag
is attached to each object. This tag indicates whether the object to which it is
attached can be invoked from an object owned by another owner.

In the example of the game, the game administrator creates the object score
with a false visibility tag and the object game with a true visibility tag. The game
administrator is the owner of score and game. So, when a player Task invokes
the method play on game, it executes play in a context associated with the game
administrator, and object score can be invoked from object game because they
reside in the same context. Score cannot be invoked directly from an object that
belongs to the player.

The implementation of this mechanism consists in a simple check to verify,
whenever an inter-context call involves different owners®, if the called object has
a true visibility tag.

We say that an object with a visibility tag set to true is an entry point of

8 An inter-context call may involve two contexts associated with the same owner, but
when these contexts are running on different nodes.
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the application. This tag can also be set in a class; it defines the default tag for
the instances of the class.

Object Ownership.
For the management of object ownership, it was possible to choose the owner
of a created object as :

1. the user assoclated with the executing Task,
9. the owner of the object that requested the creation.

We chose the second solution because it is not well suited for mutually sus-
picious users to allow an object that belongs to user X to create an object that
belongs to the caller Y. It would break the owner isolation we built, since 1t
could create an object into which Y does not trust the implementation.

Moreover, it is more logical when complex structures are managed. If a text
composed of chapters and sections is represented by an object tree (these objects
belong to user X) and if user Y calls a method that adds a section in the text,
it seems preferable that the section belongs to the owner of the text (X).

Therefore, an object is always created in the current context.

4 Evaluation

In this section, we try to provide a preliminary evaluation of the previous mech-
anisms, focussing on the following aspects:

1. The adequacy of the defined mechanisms for programming protected ap-
plications. In particular, we detail their influence on the design of these
applications.

2. The impact of their implementation on the performance of the system.

3. The safety of the protected applications.

4.1 Adequacy

First, access lists are very convenient for managing protection rights according to
users. They can be either managed at the language level or from a configuration
tool.

Second, when an application is developed, the programmer has to specify the
entry points of the application that can be reached from other applications. These
entry points correspond to a consistent interface of the application according to
its semantic.

We can then study two different ways to manage cooperation:

1. If the application does not trust its users, then all the objects managed
by the application will belong to the application manager. The protection
is then very simple to program, using access lists and the visibility tag.
Cooperating users can only enter the application through an entry point
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when its access list permit it. All the objects created by this application will
belong to the application administrator, and will therefore be protected from
illegal addressing.

For instance, some system services such as user management may be man-
aged in that way; objects belong to the system administrator, access lists
authenticate the system managers and the visibility tag mechanism guaran-
tees the consistency of the data.

2. If the application manages objects that belong to its users, then the devel-
opment of the application may be influenced by the protection mechanisms.
An invocation inside that application where the callee and the caller objects
belong to different owners will require a called object with a true visibility
tag. This requirement has to be managed in the application, but it seems co-
herent to structure protected applications for inter-owner calls to go through
some ”consistent” entry points.

In fact, in this case, the application may be viewed as a generic application;
some instances of the generic application cooperate, each instance managing
the objects of one user.

An example of such an application could be a mailer application. The mailer
has to manage objects that belong to different owners. If an object invoca-
tion occurs between two mailboxes that belong to different owners, then the
application must be designed in such a way that a mailbox is an entry point
of the mailer application.

In fact, both of these approaches will be combined in application develop-
ments. Complex applications will manage objects that belong to the appli-
cation administrator and also objects that belong to the application users.
The application administrator is only a privileged user.

4.2 Performance

The table below gives performance figures for the different cases that may occur
in the system. The machine is a Bull-Zenith P.C. 486 (33 MHz).

Object Call (without fault) 1) 4.4 ps
Object Fault (object cached) 2) 22 ps
Object Fault (object not cached) 3) 55 us

An object call without fault (1) does not call any primitive of the Guide
kernel. This can be compared to the cost of a procedure call on the same processor
(0.9 ps) and to the cost of the virtual method call on a C++ object (1.5 ps)
where sharing, persistence and protection are not managed.

In each context, a cache registers all the object bindings that occured. Then

an object fault may find the object in the cache (2) or search the object in its
location cluster (3).



295

More detailed measurements are given in [Chevalier93b].
The cost of protection is distributed as follows:

1. Protection checks are done on object and method faults (so it does not put
any overhead on direct object invocations).

2. Linkage segments associated with classes are larger.
This implies that the probability of finding the address of the called method
in the linkage segment of the class is reduced.

3. Invocations that involve objects from different owners cross context bound-
aries.

Some measurements on simple applications showed that most of object in-
vocations are direct (without faults) [Chevalierd3b]. We plan to also provide
statistics about cross-context invocations.

4.3 Safety

As the system may support applications written with untrusted compilers, it has
to assure the safety of the protection mechanisms.

The protection mechanisms provided in the Guide system allow a user to
corrupt his own objects, simply by writing and executing an application that
directly addresses virtual memory in the current context.

But mechanisms that intend to enforce user isolation and that protect against
untrusted users are implemented with protection domains (Mach tasks). A user
cannot directly address objects from other owners; he can only properly call a
method on an object through an entry point.

In the implementation of the Guide kernel, the system has to authenticate
users and contexts. It has to be sure that a user will not be able to give the
illusion that he is somebody else or that a cross-context invocation comes from
another context. This authentication of users and contexts is based on Mach
protected port [Chevalier93al.

5 Conclusions and Perspectives

In conclusion, we first summarize the basic design choices for providing protec-
tion mechanisms in the Guide object-oriented system. We next outline our plans
and perspectives for the continuation of this work.

Basic Design Choices.
The basic message of this paper may be summarized as follows:

1. Protection mechanisms based on access lists are well suited for the support
of cooperative applications developed on object-oriented systems. Another
mechanism is then used to solve the delegation problem.

2. These mechanisms can be implemented at the operating system level:
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(a) Without trusting the supported compilers.
(b) With a good trade-off between performance and safety.

The main design decisions that relates to protection are the following:

1. Protection based on owner’s isolation. Objects that belong to different own-
ers are mapped in different contexts.

2. An addressing scheme & la Multics. This scheme allows users to only pay
the cost of an interpretation at first call; further invocations do not call any
primitive of the Guide kernel.

3. Views definition in classes. A view describes a set of authorized methods. A
sub-table in the linkage segment of the class is assoctated with each view.

4. Access lists associated to objects. An access list associates a view of the
object’s class with each user. The binding of the reference from an object to
its class depends on the view attached to the current user.

5. Access control is realized at binding time, when an object or method fault
occurs.

6. The delegation problem is solved with the visibility tag. This boolean tag is
attached to each object and indicates whether the object can be called from
an object that belongs to another owner.

The described mechanisms have been implemented in the Guide kernel and
simple hand-coded protected programs have been written. However, we have not
yet deeply explored the design of protected cooperative applications, since de-
velopment tools that use these mechanisms are to be implemented.

Perspectives.

The system provides a generic virtual machine for the support of several
object-oriented languages. The applications we developed were written with the
Guide language. We are currently working on the support of an extension of
the C++ language that would manage shared persistent objects. We are also
working on the improvements to the Guide language.

We plan to develop tools that help in the development of protected applica-
tions. Some of the protection mechanisms could also be manipulated through an
instruction set in the Guide language.

Next, we will be able to experiment through larger protected cooperative
applications for the validation of our concepts.

Availability. Papers written in English describing the Guide system and
the Guide language are accessible via ftp anonymous on the machine imag.fr.
They are stored in the directory: /pub/GUIDE/doc
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