Object Location Control
Using Meta-level Programming

Hideaki Okamurat Yutaka Ishikawaft *

t Department of Computer Science, Keio University
3-14-1 Hiyoshi, Kohoku-ku, Kanagawa 223, Japan
t+ Tsukuba Research Center, Real World Computing Partnership
1-6-1 Takezono, Tsukuba, Ibaraki 305, Japan

Abstract. In distributed environments, location control of objects among
hosts is a crucial concern. This paper proposes a new mechanism of ob-
ject location control using meta-level programming which provides the
following advantages to programmers. First, the description of location
control can be separated from the application program by exploiting the
meta-level architecture. This separation makes it easy for programmers
to understand application programs and change location control policies.
Second, it is possible for programmers to control object location using
runtime information provided at the meta-level such as the number of
remote messages. This information enables programmers to control ob-
ject location more flexibly than in traditional distributed languages. The
mechanism proposed in this paper has been implemented on an AL-1/D
distributed reflective programming system. We show that our mechanism
of location control using meta-level programming provides reasonable
performance for a distributed application.

1 Introduction

In distributed environments, location and distribution of objects among hosts
(processors) which have no shared memories is a crucial concern. Object migra-
tion or object location control among hosts provides us benefits such as load
sharing, efficient communication, fault tolerance, the utilization of special hard-
ware and software capabilities, and data movement [8]. Several distributed sys-
tems with the object migration facilities have been developed [15, 1, 8, 2]. Also,
a computational model, called the Computational Field Model [17], has been
proposed for the optimized allocation of objects.

Most current distributed programming languages (DPLs), such as Emerald
8], Distributed Smalltalk [3], and COOL [7], provide the programmer with ex-
plicit object location control through programming languages. These languages
have location control facilities such as explicit movement, object attachment, and
parameter passing. However, these DPLs have two problems. First, the location

* This work was conducted under the partial support of the MITI project “New Models
for Software Architecture” while the author was at Electrotechnical Laboratory.

300

control facility is incorporated into the application program together with com-
putational algorithms for processing user requests, such as a search algorithm.
Unnecessary of combination of the location control facility and the computa-
tional algorithm results in complicated programming flow and thus it is difficult
for programmers who reuse existing application programs written by others to
understand the program and change the location control policies used in the
program. The second problem lies in the lack of information at runtime that can
be used by the object location control facilities. The lack of runtime information
makes it difficult for application programmers to use some useful location con-
trol facilities such as the object migration facility using the messages content for
efficient communication.

In this paper, to overcome the problems of explicit user definition of location
control through programming languages, we propose a new mechanism of object
location control using meta-level programming. This mechanism is based on a
meta-object protocol to achieve separation of concerns, that is, separating the
user supplied computational algorithm and the mechanism needed to optimize
and manage execution of the application program. This separation enables pro-
grammers to understand the program and change the location control policies
because programmers can control object location through the programming lan-
guage without complicating the application program. Our mechanism of object
location control also provides runtime information at the meta-level where object
behavior at runtime is defined. By using runtime information, the programmer
can program object location control facilities more flexibly than that in existing
DPLs which do not support capabilities for obtaining such information.

The location control mechanisms discussed in this paper have been imple-
mented on our AL-1/D reflective programming system [13]. Based on the eval-
uation of application programs in AL-1/D, we discuss the trade-off between the
overhead incurred by meta-level programming and performance improvement
gained by object location control.

Section 2 discusses several useful object location control facilities which are
necessary in DPLs and the problems in existing DPLs that support object mi-
gration. Next, in Section 3, we propose solutions to these problems by employing
the mechanism of object location control using meta-level programming. In Sec-
tion 4, we describe some examples of meta-level programming for object location
control facilities in AL-1/D. In Section 5, we examine the trade-off mentioned
above based on the evaluation of a distributed application program in AL-1/D.
Related work is covered in Section 6. Finally, Section 7 summarizes this paper.

2 Object Migration in DPLs

In this section, we discuss several useful object location control facilities which
are necessary in DPLs and the problems with existing DPLs.

301

2.1 Object Location Control Facilities

DPLs such as Emerald [8], Distributed Smalltalk [3] and COOL [7] feature a
language primitive for explicit object movement. Programmers can move objects
between hosts by using this primitive whenever necessary.

Programmers may also wish to explicitly specify which objects move together.
If an object references other objects, these referenced objects may move together.
For this purpose, Emerald allows the programmer to attach objects to other
objects. When object Aisattached to object B,object A moves together with
object B. We call this facility, supported by Emerald, “object attachment”.

An important object location control facility is the choice of parameter pass-
ing policies. When remote message passing or a remote procedure call is used, a
programmer can select whether argument objects should be marshaled into the
message. If a remote object invokes argument objects frequently after remote
messages have been passed, argument objects should be moved by piggy-backing
them on the sent message. This facility of object movement results in reducing
remote communication cost [2]. Emerald and COOL provide this facility.

Fig. 1 is a sample program in Emerald, which illustrates object attachment
and parameter passing facilities. This program is a part of the Emerald mail
system. In line 1, the array of destination mailboxes is attached to the mail
messages. When mail message is moved, the array pointed to at that time by
ToList is moved with it. This may affect the performance of invocation on
ToList. The operation starting at line 3 delivers the message to all the mailboxes
on the ToList. If there is only one destination, parameter passing is used to move
the mail message with the single destination mailbox which exists on the remote
host (in Line 7).

1 attached var ToList: Array.of[Mailbox]
2
3 operation Deliver
var aMailbox: Mailbox
if ToList.length = 1 then
aMailbox — ToList.getelement|[ToList.lowerbound]
aMailbox.Deliver[move self]
else
var i: Integer + ToList.lowerbound
10 loop
11 exit when i > ToList.upperbound
12 aMailbox «— ToList.getelementli]
13 aMailbox.Deliver|self]
14 i—1+4+1
15 end loop
16 end if
17 end Deliver

OO0 -3 O

Fig. 1. Sample Program in Emerald

Other useful location control facilities which have not been incorporated into
existing DPLs must be considered. One such facility is object movement when
an object sends remote messages. If a programmer knows that the sender ob-

302

Ject will send many messages to the receiver object, the sender object should
migrate to the receiver object’s host when communication is initiated to reduce
communication cost. We call this migration facility sender migration.

Another useful facility is object movement after a certain number of messages
Is sent to an object. For example, we can consider the case when an object starts
to move if the number of remote messages from a sender object to a remote
receiver object exceeds some threshold set by the programmer. We call this
migration facility dynamic migration.

Finally, object migration according to the receiver’s name is also useful. For
example, if an application programmer knows that Object A will send many
messages to Object B, Object A migrates to Object B’s host when the first
message is sent from Object A to Object B. We call this migration facility
recetver-name migration.

2.2 Problems with Object Migration in DPLs

In existing DPLs, the unnecessary combination of computational algorithms and
location control facilities, and the lack of runtime information are problems for
object migration. These problems are discussed in this sectiorn.

Combining Computational Algorithm and Location Control

Several facilities mentioned above are suitable for writing distributed applica-
tions, such as mail systems, that are concerned mainly with data movement.
There are many applications, however, in which data movement is not essential
and some other function should be emphasized. Examples include search sys-
tems for distributed data, simulation by distributing tasks to hosts, etc. In these
applications, location control is an important part of performance optimization
and should be performed at a lower operating level than the computational al-
gorithm which simply calculates the result needed by the programmer. Also, the
programmer may not wish to be concerned about object location, but may in-
stead want to concentrate on describing an algorithm to produce desired results.

For instance, when a programmer designs a data search system in a dis-
tributed environment, the programmer should concentrate on the search algo-
rithm to be used. In some cases, the programmer may want to apply an existing
search algorithm used in centralized systems. Object location and movement are
of no importance, unless data is located on distributed resources or when effi-
ciency must be emphasized. Combining location control and the computational
algorithm into a single program makes the program complicated and, hence.
difficult for programmers who reuse existing application programs written by
others to understand or change.

Fig. 2 shows an example in which a location control mechanism and the com-
putational algorithmn are combined into a single program. In many traditional
DPLs, object mobility is incorporated as in this example. The language used
in this example has message passing syntax like Smalltalk [6] and a language

303

1 [object Searcher
2 (delegation nil)
3]

5 [method Searcher search: nm with: sec with: age
6 (vars data strm)

7 while (data != nil) de

8 if (fnum <= 30) then

9 data = dmgr next;

10 else

11 data = dmgr next[move]; /* move if (number of messages > 30) */
12 foum = 0;

13 end

14 if (dmgr isRemote) then /* count remote messages */

15 fnum = foum + 1;

16 end;

17 /* pattern matching, stream creation */
18 if (((data name) isMatch: nm) && ((data section) isMatch: sec) &&

19 ((data age) <= age)) then
20 if (strm == nil) then

21 strm = data dataToStream
22 else

23 strm add: (data dataToStream)
24 end;

25 dnum = dnum + 1;

26 if (dnum >= bufnum) then
27 return strm

28 end

29 end

30 end;

31 return "done”

32]

Fig. 2. Location Control Mechanism and Computational Algorithm Combined into a
Single Program

primitive that supports object mobility so that it can easily be compared to AL-
1/D programs described later. In this program, an object Searcher obtains data
from the object dmgr located on the remote host and selects data items which
match the keys specified by the user. Lines 1 to 3 define of the object Searcher.
This language is not class-based but prototype-based like AL-1/D. Delegation is
employed via a message forwarding mechanism. The delegation entry at line
2 describes that the delegation object of Searcher is nil, that is, there is no
delegation object. Lines 5 to 32 define the method search:with:with which
defines the behavior of the object Searcher while searching requested keys. The
vars entry in the method describes temporary variables. The message expres-
sion “data = dmgr next;” denotes that a message next is sent to the object
dmgr, and a return value is bound to the temporary variable data. Lines 18 to 25
describe a pattern matching algorithm. According to lines 8 to 16, if the number
of remote messages exceeds the maximum 30, a base-level object is moved by
the primitive move. Thus, the program contains an extra algorithm for location
control. This makes it difficult to understand the search and pattern-matching
algorithms in the program. Such combination of computational algorithms and

304

location control also makes it difficult to change the optimization policy. For
instance, if the programmer needs information on the kinds of receiver objects
instead of the number of remote messages, the whole program in Fig. 2 has to
be recompiled and loaded in the system. But in order to do so, the application
program must be terminated.

Lack of Runtime Information

Some object location control facilities such as “dynamic migration” and “receiver-
name migration”, described in Section 2.1 need runtime information, such as the
number of messages and the receiver names. For example, to count the number of
messages between Objects A and B regardless of message content, it is necessary
to access to the message sending mechanism to trap messages. If the message
sending mechanism can be accessed, we can count the messages each time they
are sent. If information on the receiver objects is important, receiver names are
needed. In this case, a message sending mechanism must also be accessible to
retrieve receiver name from the message contents.

Traditional DPLs lack the facility which make it possible to access such
runtime information from the message handling mechanism. This mechanism
would be built into the programming language system during system design if
the facility is necessary, however, it is difficult to predict all runtime information
that is needed by the application programmer.

3 Location Control Using Meta-level Programming

In this section, we propose a mechanism for object location control using meta-
level programming to overcome the problems described in the previous section:
unnecessary combination of computational algorithms and location control fa-
cilities, and lack of runtime information. This location control mechanism is not
supported by the basic language specification for writing computational algo-
rithm, but by meta-level programming facilities which are based on the concept
of computational reflection and meta-level architecture. The meta-level architec-
ture is employed to achieve separation of concerns, that is, separating the user
supplied computational algorithm and mechanism needed to optimize and man-
age it. With this architecture it is also possible to provide runtime information
to the application program because this information can be gained by accessing
object behavior defined at the meta-level.

3.1 Reflection and Meta-level Architecture

Computational reflection is a useful concept for modifying a system according
to the programmer’s requirements [16, 11, 18, 19, 12]. A system supporting
the reflection concept is called a reflective system. A reflective system has a
meta-level architecture, which consists of two levels; the base-level and the meta-
level. To expose or reify its internals, a reflective system embodies reifiable data

305

that represents or implements the structural and computational aspects of the
system at the meta-level. Such data must be dynamically self-accessible and self-
modifiable by the user program. Furthermore, modification by the user must be
reflected’ to the actual computational state of the user program. This property
is termed causal-connection [12]. We call programming at the meta-level meta-
level programmming. Computational reflection is employed by functional languages
such as 3-Lisp [16] and BROWN [5], object-oriented languages such as 3-KRS
[11] and CLOS [9], concurrent object-oriented languages such as ABCL/R [18],
and distributed systems such as the Apertos OS [19] and ABCL/R2 [12].

Base-level

Base-level

[code start

location control
-
' algorithm

Object ————

location control
tocation control |

——

algorithm
code en

[code start
]

Object algorithm

code end]

" Location
Control

: e
Fig. 3. Traditional DPL Fig. 4. Meta-level Architecture
(Closed Implementation) (Open Implementation)

3.2 Separation of Concerns

We describe the difference between programming in a traditional DPL and pro-
gramming in a system with a meta-level architecture. Fig. 3 shows programming
in a traditional DPL, where system implementation, that is, the meta-level, is
closed to the application programmer. This black-box style of system design is
called closed implementation. If location control facilities are needed in such a
system, location control primitives must be introduced in the application pro-
gram flow. This makes it difficult to understand the application program. A
system design that does not use this style, is called open implementation [10].
This implementation is supported by a meta-level architecture. In open im-
plementation systems, system components and operations, such as a location
control mechanism and a message sending mechanism, are accessible by a pro-
grammer as in Fig. 4. These components and operation are programmed with
a well-defined protocol called the meta-object protocol. In the open implemen-
tation system, meta-level programs and base-level programs are separated thus

306

a separation of concerns can be introduced. This enables programmers to eas-
ily read and construct programs, and to customize optimization code, such as
location control, without changing the base-level program. In the the open im-
plementation system with meta-level architecture, location control mechanisms
are encapsulated and are not provided to users who do not need optimization
while it can be accessed by users who require optimization.

3.3 Flexible Location Control Facilities

In addition, meta-level programming solves the problem incurred by the lack
of runtime information. In meta-level programming it is possible to use runtime
information provided at the meta-level by the meta-level architecture, and so pro-
grammers can use flexible location control facilities. In the open implementation
system, the application programmer can access a message passing mechanism
defined at the meta-level. By programming the message passing mechanism and
adding a message monitoring facility based on this mechanism, runtime infor-
mation such as the number of message and the receiver’s name can be made
available to the programmer. Using this information, the programmer can mod-
ify the object location control facility accordingly.

If a object location control policy can be programmed at the meta-level
according to runtime information, we can modify it to suit the characteristics
of the application program. We can also flexibly control object location because
more complex requirements of applications such as those requiring information
pertaining to both communication cost and object name leading to migration
can be satisfied through meta-level programming with runtime information.

4 Meta-Level Programming in AL-1/D

In this section, we cover the object location control facilities by meta-level pro-
gramming provided by the AL-1/D distributed reflective system. AL-1/D is a
concurrent object-based reflective programming system that may be used over
distributed environments [13]. An AL-1/D system consists of a compiler and a
virtual machine, that is, a bytecode interpreter, constructed on a UNIX-based
operating system. Basically, programs are constructed using concurrent objects
and messages. The message sending syntax is similar to that of ConcurrentS-
malltalk [20]. Multiple virtual machines may be connected to each other by
networks. Distributed programming facilities, remote message passing, and ob-
ject migration are provided. Since AL-1/D has a meta-level architecture, we
can program the location control facility specified to the meta-level thus taking
into consideration the separation of concerns described previously. We can also
achieve flexible location control using runtime information. Some examples of
meta-level programming are presented.

307

4.1 Revised Base-level Program

Unlike programs in traditional DPL (Fig. 2), AL-1/D programs are separated
into a base-level program (Fig. 5) and a meta-level program (Fig. 6). The “base”
expression as in the line 1 of Fig. 5 is used to depict a base-level object, which in
this case is the Searcher object. In this program, location control is separated
frow the search algorithm. That is, the program becomes location-independent
and can be understood easily, because there is no extra algorithm for location
control included.

1 [base Searcher

2 (delegation nil)

3]

4

5 [method Searcher search: nm with: sec with: age

6 (vars data strm)

7 while (data != nil) do

8 data = dmgr next

9 if (((data name) isMatch: nm) && ((data section) isMatch: sec) &&

10 ((data age) <= age)) then
11 if (strm == nil) then

12 strm = data dataToStream
13 else

14 strm add: (data dataToStream)
15 end;

16 dnum = dnum + 1;

17 if (dnum >= bufnum) then
18 return strm

19 end

20 end

21 end;

22 return "done”

23]

Fig. 5. Revised Base-level Program

4.2 Encapsulated Location Control Facilities at Meta-level

Next, we discuss meta-level programming in AL-1/D. A meta-level program
shown in Fig. 6 encapsulates location control of the program in Fig. 2. This
meta-level program uses the DE (Distributed Environment) model, a meta ob-
ject provided by AL-1/D. The DE model is a meta-object that represents the
distributed environment and consists of object location information, a name
server object, remote host information and a network. The DE model is mainly
responsible for describing remote message sending.

Lines 1 to 7 show the definition of the meta-object DESearcher that is the
DE model of the base-level object Searcher. The vars entry in lines 3 to 6 shows
that DESearcher has localHost, nameServer, remoteInfo, and network as
its internal variables, called the meta-level variables. These variables are bound

308

1 [meta DE DESearcher Searcher
2 (delegation nil)

3 (vars localHost /* object location */

4 nameServer /* name server */

5 remotelnfo /* remote information */
6 network /* network */)

7]

8

9 [method DESearcher ssend: revr message: msg
10 (vars rcvrLocation info)
11 rcvrLocation = nameServer location: revr;
12 if (rcvrLocation != localHost) then
13 info = remotelnfo at: #remotesend; /* Count remote messages */
14 remotelnfo at: #remotesend put: (info++)
15 /*if (number < 30), migration starts */
16 if (info > 30) then

k]

17 state migrating: rcvrLocation; /* migration */
18 (revr meta: request:) request: msg

19 else /* else, remote sending */

20 network send: rcvr message: msg host: revrLocation
21 end

22 end

23]

Fig. 6. Migration based on Number of Messages

to the components of the base-level object Searcher when reification occurs. The
method “ssend:message:” in the DE model defines its behavior when sending
a remote message. When a message send is initiated, this method is invoked by a
message which contains a receiver object and a message object as arguments. The
location control facilities can be combined with the monitoring facility for remote
messages. This combination allows runtime information obtained from the loca-
tion control mechanism to be used. Fig. 6 defines the method ssend:message:
of the object DESearcher, the DE model of the object Searcher. This method
counts the number of remote messages. If the number exceeds the maximum 30,
the base-level object migrates. The number of remote messages is stored in the
#remotesend entry in lines 13 to 14. This number is used in line 16. The “state

migrating:” expression moves a base-level object to the remote host specified
in the argument.

Although there are many lines of code in this program, the essential code
is located in lines 12 to 18. This program was constructed by modifying the
program of the default object behavior (see Fig. 7 which is described later).

We now show some examples of changing the optimization policy by modify-
ing the meta-level program. In systems with the meta-level architecture, the code
needed for optimization part can be modified without changing the base-level
computational algorithm. In Fig. 7, the method ssend:message: is modified so
that the base-level object Searcher does not migrate to remote hosts. This is
the default definition for the method ssend:message:. In Fig. 8, object location
is controlled by the object names rather than the number of remote messages. If
the receiver’s name is “Special”, a sender base-level object Searcher is moved

309

to the receiver object’s host according to lines 7 and 8. Notice that the base-level
program depicted in Fig. 6 does not have to be modified at all. In AL-1/D, since
users can replace the methods of the DE model dynamically by compiling and
loading source codes, the location control policy can be changed by the applica-
tion program according to runtime information. This allows easy prototyping of
the location control policy. which is a difficult task in traditional DPLs.

1 [method DESearcher ssend: rcvr message: msg
2 (vars rcvrLocation)
3 /* Get location of receiver object */
4 revrLocation = nameServer location: rcvr;
5 if (rcvrLocation == localHost) then
6 (rcvr meta: Ffrequest:) request: msg }[* If local, send local message */
7 else /* If remote, send remote message */
8 network send: rcvr message: msg host: revrLocation
9 end
10]

Fig. 7. Without Migration (default)

1 [method DESearcher ssend: rcvr message: msg

2 (vars rcvrLocation)

3 rcvrLocation = nameServer location: revr;

4 if (revrLocation == localHost) then

5 (rcvr meta: #request:) request: msg

6 else

7 if ((rcvr name) == #Special) then /* Move, if receiver name is "Special” */
8 state migrating: rcvrLocation;

9 (rcvr meta: #request:) request: msg

10 else

11 network send: rcvr message: msg host: rcvrLocation
12 end

13 end

Fig. 8. Migration based on Receiver Name

4.3 Programming Location Control Facilities of DPLs in AL-1/D

Examples in this subsection illustrate that AL-1/D encapsulates the location
control of traditional DPLs at the meta-level. We described parameter passing
and “object attachment” policy in DPLs using the DE model of AL-1/D. These
examples show that several location control facilities of DPLs are encapsulated at
the meta-level of AL-1/D. Behavior equivalent to that of the program described
in traditional languages can be encapsulated into the AL-1/D meta-level. This
makes both programming ordinal computational algorithms and optimization
casy. By sharing meta-objects (e.g. through a delegation mechanism), we can
also reuse the optimization policy with other application programs.

310

[method DESearcher ssend: revr message: msg
(vars rcvrLocation args i obj)
rcvrLocation = nameServer location: revr;
if (rcvrLocation == localHost) then

(rcvr meta: #request:) request: msg
else
network send: rcvr message: msg
host: rcvrLocation;
/* Get and Move argument objects */
10 if ((msg selector) == #next:) then
11 for (i = 0) to (i < args size)

Neliv IR B G I S

12 step (i++) do

13 obj = args at: i;

14 if (obj size > 1) then

15 obj move: rcvrLocation
16 end

17 end

18 end

19 end

20 |

Fig. 9. Parameter Passing Using DE model

1 [method DESearcher ssend: rcvr message: msg
2 (vars rcvrLocation)
rcvrLocation = nameServer location: rcvr:
if (revrLocation == localHost) then
(revr meta: #request:) request: msg
else
/* if remote, migration starts */
state migrating: rcvrLocation
/* after migration, local message send */
10 (revr meta: #request:) request: msg
11 end
12]

O 00~ ULk W

Fig. 10. Sender Movement Using DE model

1 [method DESearcher ssend: rcvr message: msg
2 (vars rcvrLocation objList 1)
3 rcvrLocation = nameServer location: revr;
4 if (rcvrLocation == localHost) then
5 (rcvr meta: #request:) request: msg
6 else
7 objList = base readMVal: #ivars:
8 state migrating: rcvrLocation;
9 (rcvr meta: #request:) request: msg:
10 /* Get and Move internal objects */
11 for (i = 0) to (i < objList size)
12 step (i++4) do
13 (obj at: i) move: rcvrLocation
14 end
15 end
16]

Fig.11. Object Attachment Using DE model

311

First, we describe the parameter passing facility. We restrict the description
granularity using call-by-move semantics similar to that in Emerald (8], which
allows programmers to specify a move primitive at any place in the base-level
program. In our parameter passing facility, however, the programmer chooses the
objects which can migrate. That is, based on the kind of the message selector
and the argument object, it is possible to decide whether an argument object is
to be piggy-backed on the remote message which is sent by the sender object.
Our purpose for the parameter passing description is to reduce the number of
remote references after migration rather than to control data movement from an
application program. We believe parameter our passing facility is sufficient for
object location control, because we can control the migration cost of argument
objects and the number of remote references according to migrating object size
and the kinds of receiver objects. Though parameter our passing facility restricts
object location control, we emphasize that meta-level programming separates
location control from the base-level program. Fig. 9 defines parameter passing
by meta-level programming for the method ssend:message:. Lines 10 to 18 are
different from the default definition. The DE model retrieves argument objects
from the message object msg as an array object. If the message selector is “next:”
and the size of an element object included in the argument array is greater than
1, the element object initiates the move by sending the “move:” message®(lines
12 to 17).

In the Fig. 10, if the receiver object is at a remote host, the sender object
migrates to the receiver’s host. We call this movement “sender movement”. In
line 8, “state statement” is used to initiate the migration of the base-level object
Searcher. Using the state statement, we can change the state of the base-level
object. When the base-level object is moved by a meta-object such as the DE
model, its state changes *. In Fig. 10, the object state changes into “migrating”,
and the base-level object starts migration to the destination host.

Fig. 11 defines object attachment. The variable objList is an array object
listing attachment objects. In existing DPLs, an expression to define obj1 and
obj2 as objects attached to base-obj would be represented by adding obj1 and
obj2 to objList in the DE model of base-obj. In Fig. 11, all internal variables
of the base-level object are moved along with the sender object, which means all
internal variable objects are attached to the sender object. In line 7 of Fig. 11, an

2 Emerald provides two parameter passing modes: call-by-move and call-by-visit. The
argument object may return to the source host of a call in call-by-move mode, and
remain at the destination host in call-by-visit mode.
To move an object except for the base-level object, we use the explicit description
using the “move:” message. When object obj receives a “move:” message, it mi-
grates to a remote host specified by the parameter. In AL-1/D, object movement is
represented by another model called the Migration model. This model converts an
object into a message packet and sends the packet to the network. Object migration
cannot be defined at the meta-level but at the base-level in AL-1/D
* Object migration of the base-level object is defined as a state transition to unify
behavior at the meta-level. A model uses state transitions to it check the object
behavior is reflected consistently [14].

312

internal variable slot of the base-level object is reified as an array object. Here.
we use the model, called the Operation model, to reference an internal variable
slot defined in a base-level object. A programmer can use the special message
readMVal:model: to reference the meta-level variables of each model. We can
program methods for attaching several other internal objects to the base-level
object to be moved.

5 Performance Evaluation

In this section we present our evaluation of the object location control facilities
in AL-1/D. To control object location, our AL-1/D code invokes meta-objects.
As convenient as it may be, this is not very efficient because of the overheads
incurred by reification and reflection. Reification is the behavior exhibited when
a meta-object is invoked and the actual computational state contents at the
meta-level are retrieved. Reflection is the behavior exhibited when a meta-ob ject
finishes execution and its modifications are reflected to the actual computational
state. Although description with meta-level programs is useful for location con-
trol, we must also consider the trade-off between the benefits of object loca-
tion control and the drawbacks of meta-level programming which present an
overhead. To do so, we evaluate an application program in AL-1/D, using a
distributed search system as an example.

5.1 Application Program: Distributed Search System

The distributed search system searches for data in databases distributed on
several hosts, according to keywords input by the user. The configuration of this
application is shown in Fig. 12.

Host A Host C

M @’ @ - - - 3y -
Syl o)) o
| | (&)
Wi

Network \i e R—

Fig. 12. Distributed Search System

This system consists of three kinds of objects: SearchManager, Searcher,
and DataManager. These objects are responsible for the following tasks:

(1) The SearchManager object provides a user interface. This object receives
keywords from the user and exists on the user’s host, Host A.

313

(2) When SearchManager receives a request to search, it simultaneously invokes
several Searcher objects. The number of Searcher objects corresponds to
the number of hosts that contain databases. In Fig. 12, since there are
two such hosts in our example: Host B and Host C, two Searcher objects
are invoked. Synchronization between Searcher objects is managed by the
SearchManager object.

(3) The Searcher object accesses the DataManager object on the host with
databases.

(4) The DataManager object provides an interface between the Searcher object
and databases. The DataManager object does not migrate to any other host
and retrieves data from the database.

The description of these objects’ behavior is location-independent at the base-
level. In addition, we control object location by meta-level programming. There
are several ways to control location. In this evaluation, we control object location
by considering remote message sending between the Searcher and DataManager
objects. To evaluate this, we employ programs described in Fig. 7, Fig. 10 and
Fig. 6 as meta-level programs of the DE model of the Searcher object. The
Searcher objects migrate to other hosts at appropriate times.

5.2 Basic Performance

Communication and migration costs were measured on Sun SPARCStation 2
workstations connected via 10 Mbps Ethernet. Each workstation has a 40 MHz
SPARC CPU with 32 MB of physical memory. A virtual machine with the same
specification was executed on each workstation, using SunOS as the platform.
TCP/IP was used for the network protocol.

Communication Cost

Communication costs between sender and receiver objects were measured. We
made comparisons of: (1) local and remote message passing and (2) whether
the DE model is defined, that is, whether meta-level programming is used or
not. A receiver object only returns an integer value when it receives a message.
The result is the average value of total time when 10,000 messages are sent
and received. The message packet size is fixed, regardless of whether the DE
model is defined. To analyze remote message sending results, we also measured
communication cost using a packet with the UNIX socket interface, whose size is
the same as that of a message packet in AL-1/D. The results are shown in Table
1. The “ratio” depicted in this table is the ratio of the communication cost with
the DE model to that without the DE model.

The difference between remote message sending and UNIX socket commu-
nication is 1.32 milliseconds. This is the time required for creating a message
packet at the sender host and regenerating it at the receiver host.

When users do not write a meta-level programs, the AL-1/D virtual machine
executes internal codes by default (without invoking meta objects) considering

314

efficiency. This enables AL-1/D to send local messages as quickly as Concur-
rentSmalltalk [20], a concurrent object-oriented programming system without
the meta-level programming facility. When the DE model is defined, local mes-
sage sending becomes 20 times more expensive. There are three reasons for this:
generation of internal objects of the DE model, context switching required to in-
voke the DE model, and execution of code defined in the DE model. Our present
implementation of AL-1/D has not been completely optimized. We expect that
optimizing object creation will reduce the overhead behalf. On the other hand,
for remote message send, the overhead incurred by meta-level programming is
low, 30% of the cost without the DE model, because much more cost is necessary
for remote message sending.

Table 1. Communication Cost

A: time (ms) B: time (ms) ratio
without meta with meta (B/A)

Local 0.04 0.87 21.2
Remote 2.60 3.40 1.3
UNIX socket 1.28 - -

Table 2. Migration Cost

size (byte) time (ms)
(i) Only Searcher 364 7.10
(ii) Searcher + DE (dormant) 608 8.64
(iii) Searcher + DE (running) 4494 15.20

Migration Cost

The migration cost of a Searcher object is shown in Table 2. The cost includes
the time taken to receive an acknowledgement from the destination host. The
first column in this table indicates three cases: (i) migration of the dormant
Searcher object without the DE model, (ii) migration of the Searcher object
with the DE model, but the Searcher object and DE model are both dormant,
and (iii) migration when DE model is running. Execution contexts are packed
into the migration stream®. (iii) is for object when migration occurs while ex-
ecuting the “sender movement” program (Fig. 10). The migration stream in
(iii) is bigger than (i) or (ii) because it includes several messages and execution
contexts. Analyzing (iii), we found that it takes the same time needed to send

® Only the current context migrates. Contexts which invoke the current context do
not migrate.

315

messages on the network for migration stream generation and object regenera-
tion.

5.3 Application Program Evaluation

Search time of the distributed search system was measured by modifying the
number of data items stored in remote databases. We used several location con-
trol strategies. Data items in the databases consists of three character strings.
Users can query by using three keys. Each key specified by one character is the
first character of the value. If there is any matched data, the Searcher object
returns the string that is generated from matched data to SearchManager.

The Searcher object scans the database as long as matched data exists.
When all the data is scanned, the search completes. To simplify the comparison,
queries were made so that the Searcher object returns only the first two matched
data items matched. The total size of the sent packet is fixed when the number
of returned data items is fixed.

Table 3. Measurement Factors

meta-object sender migration # of message
@ E -
(b) DE - -
(c) DE YES -
(d) DE YES COUNT

We measured four situations of execution as shown in Table 3. In (a) and (b),
no objects migrate. (a) is the result obtained when Searcher executes without
meta-level programming in the DE model. (b) is the result obtained when the
program in Fig. 7 is used. That is, the Searcher and DataManager send remote
messages to each other. Comparison of (a) and (b) shows the overhead incurred
by meta-level programming. (c) is the result of executing the “sender movement”
program in Fig. 10. As expected, (¢) shows improvement over (b). (d) is the result
of a more flexible location control facility than (c). In (d), the number of remote
messages is counted and the sender object moves, if the number of messages
exceeds a programmed value. We expect (d) to result in a further performance
improvement than (c). Results are shown in Fig. 13.

First, we compare (a) and (b). Since (b) includes overhead from using the DE
model, (b) takes more time than (a). Next, let us concentrate on the results of (b)
and (c). Both search times increase with the number of data items, although (b)
increases at a greater rate. This is because, for (b), if Searcher does not move,
as the number of data items increases, the number of remote messages between
Searcher and DataManager increases. For (c), however, the number of remote
messages does not increase once Searcher migrates to the DataManager’s host.

316

Search Time (ms)

700.0& ‘ | /
@ —————- without meta)
650.00 (D) s WithoUt migration
\ () JEemE———— 1 T /‘
(d) e == o= == = = dynamic migration .
600.00 T / : -A ,/
. / -7 @)
550.00 y P
‘ / s B
500.00 v P e
'
450,00, ’ /
o=
-
400.00, v |
| v
c
350.00 ()o«’“ Al
! d/////
300.00 (.) /
y /
/
25000 7,7 ‘
’ |
0 10 20

30 40 50
Number of Data Items
Fig. 13. Search Time and Number of Data Items

There is a certain threshold for numbers of data items where the search
time of (c) is greater than that of (b). This threshold can be determined for
numbers of data items less than 10. This happens because the results are greatly
influenced by migration cost. Using this characteristic in our distributed search
system, we can create a flexible meta-level program. Let us consider the case
where a user randomly queries multiple databases. Each database can have up
to 50 data items. To minimize the average search time, we can use the program
of the DE model described Fig. 6. This program lets the Searcher object move if
the number of remote messages is greater than the user-defined maximum value.
When the number of data items in a database is 10, we found this value to be
30. The result with a threshold of 30 is indicated by (d) in Fig. 13. We call this
migration mechanism dynamic migration. This method result in better average
search times than those in (b) or (c).

Performance of (b) relative to (a) drops because of the overhead incurred
by meta-object invocation. However, by meta-level programming in (c) and (d),
the performance improvement gained by location control (shown as | B in Fig.
13) is greater than the overhead incurred by meta-object invocation (shown as
1A4). The overhead incurred by using meta-objects is generally large. In our ap-

317

plication, however, this overhead has small influence because the cost of remote
message send and object migration is as great as the overhiead shown in Ta-
bles 1 and 2. Although the network performance will improve, this result will
not change because of the costs incurred by migration stream creation and ob-
ject regeneration. On the contrary, we expect performance improvements within
a host and efficient implementation techniques of meta-level architecture will
reduce the overhead incurred by meta-level programming. Our results in this
section show object control by meta-level programming efficient as well as in-
creasing programmability. Location control combined with the message handling
mechanism is also useful for efficiency.

With these results, we can define the characteristics of our distributed search
system relating to the DE model. These characteristics consist of information
such as communication costs, the number of data items in databases, the number
of matched data items. etc. If such characteristics are available, it becomes easier
to make programming decisions such as whether to write meta-level programs
and how to define meta-objects.

6 Related Work

In this section, we discuss related work, comparing our work to other distributed
reflective systems. ABCL/R2 [12] is a reflective programming system based on
the Hybrid Group Architecture. The grouping concept is used to represent dis-
tributed environments. In ABCL/R2, modification of object location is defined
as migration among groups. A group can be the unit for resource sharing and
can represent a host. ABCL/R2 employs object migration to modify the execu-
tion environment of an object. The system does not exhibit concrete components
and strategies for object mobility. Thus, to our knowledge. ABCL/R2 does not
support object location control as described in this paper.

The Apertos OS [19] incorporates the concept of meta-space corresponding to
a group of ABCL/R2 and supports the object migration facility. However, since
object location control facilities are shared by the members in a meta-space.
it is difficult to describe the facilities which should be defined in every object
such as object attachment. Also, Apertos does not yet supported a high-level
programming language like AL-1/D for writing application programs. In both
these systems, the trade-off between the improvement of efficiency gained by
using location control and the drop in efficiency incurred by employing meta-
level programming based on the evaluation as described in Section 5 has not
been studied.

OpenC++ [4] is a reflective programming language, which has no interpreter,
based on C++. In OpenC++, we can marshal argument objects into the remote
message by changing the message sending mechanism. The message sending
mechanism, however, is modified in every class rather than in every object. Also,

it is difficult for OpenC++ to change the migration policy while the application
program is running.

318

7 Summary

This paper presented the advantages of incorporating an object location control
facility using meta-level programming into distributed systems. Object location
control is a practical application of meta-level programming on a reflective sys-
tem.

Meta-level programming provides the following benefits to improve programma-
bility. It separates code for efficiency from the application program and clarifies
the programming flow. Programs can be tuned based on object location without
changing the basic computational algorithm through the capability of separation
of concerns between the base-level and the meta-level. It also provides flexible lo-
cation control facilities using runtime information such as the number of remote
messages. These facilities are more flexible than those provided by traditional
DPLs.

Our object location control facilities have been implemented in the AL-1 /D
distributed reflective programming system. We discussed the meta-level compo-
nents needed to control object location and showed several useful examples of
meta-level programming. Meta-level programming in AL-1/D enables descrip-
tion of facilities similar to those provided by traditional DPLs, such as “pa-
rameter passing” and “object attachment”. With AL-1/D. we can also support
the location control facilities combined with the message handling mechanisms
based on application program characteristics. For example, we can describe ob-
Ject location control based on the number of remote messages and the receiver
object’s names.

In AL-1/D, the location control facilities can be combined with message
handling mechanisms based on application program characteristics. For example,
we can describe object location control based on the number of remote messages
and the name of receiver objects.

By evaluating an application system created on AL-1/D, we discussed the
trade-off between performance optimization from using location control and the
overhead incurred by meta-level programming. As a result, in a distributed envi-
ronment where we can use remote message sending and object migration, loca-
tion control by meta-level programming is efficient while improving programma-
bility. If programmers take this trade-off into account, meta-level programming
can be effective.

Acknowledgements

We would like to thank Professor Mario Tokoro and Atsushi Shionozaki at Keio
University, and Gregor Kiczales and members of his group at Xerox Parc for
their helpful comments on earlier drafts of this paper.

References

1. Y. Artsy and R. Finkel. Designing a Process Migration Facility - The Charlotte
Experience. IEEE COMPUTER, 22(9):47-56, October 1989.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

319

. J. Bacon and K.G. Hamilton. Distibuted computing with RPC: the Cambridge

approach. In Proceeding of IFIP Conference on Distibuted Computing, North-
Holland, October 1987.

. John. K. Bennett. The Design and Implementation of Distributed Smalltalk. In

Proceedings of ACM O0PSLA’87, pages 318 330, October 1987,

. Shigeru Chiba and Takashi Masuda. Designing an Extensible Distributed Lan-

guage with a Meta-Level Architecture. In Proceedings of ECOOP’93, July 1993.

. D. Friedman and M. Wand. Reification: Reflection without meta-physics. In Pro-

ceedings of ACM Symposium on Lisp and Functional Programming, pages 348-355,
August 1984,

. A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation.

Addison Wesley, 1983.

. Sabine Habert and Lanrence Mosseri. COOL: Kernel Support for Object-Oriented

Environments. In Proceedings of ECOOP/OOPSLA’90, pages 269-277, October
1990,

. E.Jul, H. Levy, N. Hutchinson and A. Black. Fine-grained mobility in the Emerald

system. ACM Transaction of Computer Systems, 6(1):109-133, February 1988.

. G. Kiczales, J. Des Rivieres and D. G. Bobrow. The Art of the Metaobject Protocol.

MIT Press, 1991.

Gregor Kiczales. Towards a new model of abstraction in software engineering. In
Proceedings of the International Workshop on New Models for Software Architec-
ture’92 Reflection and Meta-level Architecture, November 1992.

Pattie Maes. Concepts and Experiments in Computational Reflection. In Proceed-
ings of ACM OOPSLA’87, pages 147-155, 1987.

H. Masuhara, S. Matsuoka, T. Watanabe and A. Yonezawa. Object-Oriented Con-
current Reflective Languages can be Implemented Efficiently. In Proceedings of
ACM OOPSLA’92, October 1992.

Hideaki Okamura, Yutaka Ishikawa and Mario Tokoro. AL-1/D: A Distributed
Programming System with Multi-Model Reflection Framework. In Proceedings of
the International Workshop on New Models for Software Architecture’92 Reflection
and Meta-level Architecture, November 1992.

Hideaki Okamura, Yutaka Ishikawa and Mario Tokoro. Metalevel Decomposition in
AL-1/D. In Nishio and Yonezawa, editors, Proceedings of the International Sym-
posium on Object Technologies for Advanced Software, pages 110-127, Springer-
Verlag, November 1993. Lecture Note in Computer Science, No. 742.

Michael L. Powell and Barton P. Miller. Process Migration in DEMOS/MP. ACM
Operating System Review, 17(5):110-119, October 1983.

B. C. Smith. Reflection and Semantics in LISP. Technical Report CSLI-84-8,
Stanford University Center for the Study of Language and Information, 1984.
Mario Tokoro. Computational Field Model: Toward a New Computing
Model/Methodology for Open Distributed Environment. In Proceedings of the 2nd
IEEE Workshop on Future Trends in Distributed Computing Systems, September
1990.

Takuo Watanabe and Akinori Yonezawa. Reflection in an Object-Oriented Con-
current Language. In Proceedings of ACM OOPSLA’88, pages 306-315, 1988,
Yasuhiko Yokote. The Apertos Reflective Operating System: The Concept and
Its Implementation. In Proceedings of ACM OOPSLA’92, pages 414-434, October
1992.

Yasuhiko Yokote and Mario Tokoro. The Design and Implementation of Concur-
rentSmalltalk. In Proceedings of ACM OOPSLA’86, pages 331-340, 1986.

