Customising Object Allocation

Giuseppe Attardi and Tito Flagella *

Dipartimento di Informatica, Universita di Pisa
Corso Italia 40, I-56125 Pisa, Italy
net: {attardi,tito}@di.unipi.it

Abstract. Automatic garbage collection relieves programmers from the
burden of managing memory themselves and several techniques have
been developed that make garbage collection feasible in many situa-
tions, including real time applications or within traditional programming
languages. However optimal performance cannot always be achieved by
a uniform general purpose solution. Sometimes an algorithm exhibits
a predictable pattern of memory usage that could be better handled
specifically, delaying as much as possible the intervention of the general
purpose collector. This leads to the requirement for algorithm specific
customisation of the collector strategies. We present a dynamic memory
management framework which can be customised to the needs of an al-
gorithm, while preserving the convenience of automatic collection in the
normal case. The Customisable Memory Management (CMM) organizes
memory in multiple heaps. Each heap is defined as a C++ class which
encapsulates a particular storage discipline. The default heap for col-
lectable objects uses the technique of mostly copying garbage collection,
providing good performance and memory compaction. Customisation of
the collector is achieved exploiting object orientation by defining spe-
cialised versions of the collector methods for each heap class. The object
oriented interface to the collector enables coexistence and coordination
among the various collector as well as integration with traditional code
unaware of garbage collection. The CMM is implemented in C++ with-
out any special support in the language or the compiler. The techniques
used in the CMM are general enough to be applicable also to other lan-
guages.

1 Introduction

In most programming languages, memory allocation is either under total respon-
sibility of the programmer or under full control of a garbage collector.

The garbage collector’s function is to find data objects that are no longer
in use and to reclaim their space for further use by the program. An object is
considered garbage, and therefore subject to reclamation, if it is not reachable

* The research described here has been funded in part by the ESPRIT Basic Research
Action, project PoSSo.

Part of this work has been done while the first author was visiting the International
Computer Science Institute, Berkeley, California.

321

by the program via any path of pointer traversal. Live (potentially reachable)
objects are preserved by the collector, ensuring that the program can never follow
a “dangling pointer” leading to a deallocated object.

This technique has several advantages since it improves: safety, avoiding the
risk of deallocating an object too soon; accuracy, avoiding the risk of forgetting
to deallocate unused memory; simnplicity, assuming a computational model with
unlimited memory; modularity, the program does not have to be interspersed
with bookkeeping code not related to the application; burden on programmers
who are relieved from taking care of memory management.

Garbage collection has been mostly available in programming languages
whose design had taken into account its requirements: for instance not allowing
pointer manipulation (Lisp), using tagged pointers or providing run-time type
information, using special notation for pointer operations (Simula), requiring
enhanced pointer declarations (Modula3).

This has restricted garbage collection from general use, more than the of-
ten cited concerns about efficiency. Recent research has proved in fact that the
performance of garbage collectors compares quite well with explicit memory
deallocation (using primitives like free or delete) [17], and techniques like
generational garbage collection have been developed to minimise latency during
garbage collection.

With the development of techniques for conservative garbage collection, the
use of garbage collection has become feasible also for languages which are not
well behaved with respect to pointers. Even so, current implementations limit
the use of pointers: for instance in Modula3 [11] there are traced pointers to
collected objects and untraced pointers to uncollected objects — an uncollected
object can’t contain an untraced pointer.

One problem still needs to be addressed: interacting with the collector, which
in general assumes full control of memory management.

The fact that a collector assumes total control of memory management can
sometimes be a drawback. For instance, it becomes harder to integrate code
or libraries which are unaware of garbage collection and use pointers without
restrictions, it is impossible to mix code from programming languages with dif-
ferent memory models. And finally, as we argue here, it is impossible to specialise
the collector to the particular needs of an algorithm.

A general purpose collector strategy may work well in most circumstances,
but there are cases where an algorithm within an application exhibits a pre-
dictable pattern of memory usage which can be exploited to achieve significant
performance benefits. When the collector is alone in control of memory manage-
ment, it becomes impossible to arrange for allocating and deallocating objects
in a special way during the execution of that portion of the application. The
programmer could request an area of memory from the collector and arrange
for managing it by himself. This however would not be sufficient if pointers are
allowed from within such area to objects external to it. Such objects might still
be reachable but the general collector would not be aware of them and might
unduly reclaim their space. Therefore if the user wants to manage memory by

322

himself, some form of coordination with the general collector is necessary.

We faced a situation like this when developing memory management facili-
ties for a large research project in symbolic algebra: the ESPRIT BRA PoSSo
which aims at building a sophisticated system for solving systems of polynomial
equations. The core algorithm of PoSSo is quite memory intensive and even the
best traditional garbage collection techniques lead to thrashing where most of
the time is spent in garbage collection. However, there are precise points in the
algorithm where all data created during the previous step of the algorithm be-
come irrelevant and can be deallocated in block. By customising the allocation
within this portion of the algorithm significant improvements in performance
have been achieved.

The requirements of this project led us to design a Customisable Memory
Management (CMM) framework where several policies can coexist. Users can
choose the most appropriate one, ranging from manual management to fully au-
tomatic garbage collection, and can also implement their own specialised memory
management. The extensibility of the framework is achieved exploiting the ob-
ject oriented paradigm of C++, thereby maintaining a consistent and simple
interface for programmers.

The CMM consists of:

1. a general purpose garbage collector for C++; this collector is called primary
garbage collector and is a variant of Bartlett’s mostly copying collector [4];

2. a user interface: the interface used by programmers to access the CMM;

3. a programmer interface: a set of facilities used by CMM programmers to

define specific memory management policies as appropriate for their appli-
cations.

In the rest of the paper, we introduce the idea of custom object allocation,
the requirements for a customisable memory manager. After recalling the general
principles of memory management, we present our primary collection algorithm,
then discuss the CMM, its implementation and its usage. Finally we illustrate
how to emulate different garbage collector styles and application specific memory
management policies.

2 Custom Object Allocation

Among the properties of the storage for an object that one would like to be able
to control are:

— lifetime
— relocatability
— traversability

For instance, if an object contains some implicit pointers to within itself, like
a branch instruction in a binary code segment, one needs to specify that the
object cannot be relocated. Supplying information about the layout of an object

323

may be useful to improve the accuracy and the performance of the garbage
collector. For instance, an array of characters need not be traversed looking for
pointers to other objects. Specifying the lifetime of an object is more difficult,
but there are some useful simple cases: for instance asserting that an object is
permanent may be useful to store it in an area which is visited less frequently
by the collector; objects with a dynamic extent can be allocated on the stack.

In most garbage collector implementations, such properties are dictated by
the collector design and users have no control on them: if the collector is a
copying collector, it will not handle objects which cannot be moved. The lifetime
of dynamically allocated objects is unpredicatable and uncontrollable.

To provide user control over these properties entails adding a new dimension
to garbage collection: customisation of object allocation, applicable to individual
objects rather than to the whole collector or to classes of objects. Customisation
requires a collector designed to be open and to delegate portions of his task to
other collectors.

This is a different concept from the mechanisms of parametrisation or tuning
that some collectors provide.

For instance garbage collection intervention can be sometimes avoided in
ADA [1] by specifying an upper bound for the space needed for data of a certain
type. The corresponding space can then be reserved globally when the definition
is elaborated. Subsequently, when leaving the program unit enclosing the type
definition, the space corresponding to the collection may be recovered since the
contained objects are no longer accessible.

An interesting form of tuning is provided in Lisp Machine Lisp [14] where one
can define areas of memory and designate which area to use when allocating ob-
jects. Areas are primarily used to give the user control over the paging behaviour
of a program. One area could be selected as permanent, so that it would not
be copied at each activation of the ephemeral collector. Microcode support was
present in the Lisp Machine so that each area could potentially have a different
storage discipline, but apparently such feature was never exploited.

Information about traversal of objects can be supplied to the Boehm-Weiser
collector for C [5] in the form of a region parameter to the allocation routine.
Region identification is used to determine how to locate pointers within objects
during traversal by the collector. The PTRFREE region for instance is used to
allocate objects which do not contain pointers. Such regions are simply skipped
by the collector. Detailed traversal information for each type of object is instead
required in Bartlett’s mostly-copying collector [4].

In all these examples however the collector implements a fixed policy, and
no alternative is contemplated. The collector routines at most take into account
the area where an object resides besides its type and layout.

The CMM allows users to customise object allocation by specifying individ-
ually for each object created which policy to adopt for its storage. The CMM
admits the presence of several collectors, each one in charge of its own heap,
which coordinate with each other for proper memory management. The heap
where an object resides determines the policy used for the object, but to achieve

324

coordination it is not enough for the procedures of the collector to discriminate
on the heap of residence, they must also take into account which heap is currently
subject to collection. This two dimensional dependency is an original feature of
the CMM and it will discussed later.

CMM users can select among a few predefined memory management disci-
plines, define their own, or customise those provided in the framework exploiting
the mechanisms of inheritance and specialization.

For instance it is conceivable a situation like in the following figure, where
three different memory management policies are available or even used together
in the same application: a traditional stop-and-copy collector, a specialised stack
allocator for portions of the algorithm with controlled behaviour and a genera-
tional collector for real-time tasks such as user interfaces.

Stop & Copy Stack Generational

From Genl Gen2 Gen3

The mechanism to implement these alternative policies is the heap abstrac-
tion which we develop in this paper. Specific algorithms are used and particular
data structures are maintained by each heap to ensure its proper behaviour. A
critical question is what to do with pointers which cross the boundaries of heaps.
If no such pointers are allowed, then a heap need only be concerned with objects
it has allocated and over which it has some control. We considered this solution
too restrictive, since it would not allow portions of applications built separately
by different people to exchange data freely. We took therefore special care to
design the mechanism of heaps to ensure that different heaps can coexist and
data of different sources can be mixed. The amount of coordination necessary
to achieve this goal consists of a traversal function that each class of collectable
objects must provide and a scavenging function for each heap. To achieve coor-
dination in a simple and effective way, we exploit the object oriented features
of C++. In practice, all the operations of the collector are performed through
member functions of the class of each object. However, the action of the collector
on an object may also depend on the heap where the collection started, not just
on the heap to which the object belongs. For instance if the collection starts in
the Stop&Copy heap, it applies its methods to mark and traverse the object in
that heap, but if a pointer leads into a Stack heap, those objects are unobtru-
sively traversed without modifying them. Only if such traversal leads back into
the original heap, will the full collector operation resume.

325

3 Design Issues
In designing the CMM we tried to achieve the following goals:

— portability: the CMM is simply a library of C procedures and C++ classes,
which can be used with any C++ compiler. Alternative solutions rely on
changes to the underlying language or compiler.

— coexistence: code and objects built with the CMM can be exchanged with
traditional code and libraries. No restrictions exist on whether a collected
object can point to a non collected object and viceversa. We wanted to be
able to pass collected objects to programs unaware of garbage collection,
allowing them to store such objects in data structures, without special bur-
den on the programmer or risk that the object would be garbage collected.
Alternative solutions require the programmer to put an object in an “escape
list” before passing it to an external procedure.

— algorithm specific customisation: the allocation policy can be customised to
the particular needs of an algorithm. This is different from other solutions,
where the allocation policy is associated to the type of an object [10]. For
the purpose of our applications, it is necessary to allocate the same type of
object sometimes with one policy and sometimes with another. For example,
in PoSSo there is only one class of polynomials, but sometimes a polynomial
is allocated in a special heap which can be freed quickly once a certain portion
of the simplification algorithm is complete; in other cases the lifetime of the
polynomial cannot be predicted, so it must be allocated in the general heap.

— multiple logical heaps: at least two heaps are necessary, one for collectable ob-
jects and one for traditional objects. However two is not enough: for instance
collectable objects containing data which cannot be relocated for some rea-
sons must be handled differently from other objects which are copied by the
collector. For this reason the CMM provides multiple logical heaps.

— wusability: only a minimal burden is placed on the programmer who wants
to use the collector. When collectable objects are required the programmer
needs to define their class as inheriting from the base class GeObject and
supply a method for traversing them, a task which could be automated.

— separation of concerns: memory management code needs not to be included
within algorithms, and it is possible to change the memory policy just by
selecting which heap is employed by the algorithm.

— efficiency: the implementation is efficient enough to be as good as and some-
times better than hand tuned allocation.

The CMM allows customisation of the collector and provides a few pre-built
variants. One could argue whether a single general strategy could fit all the needs.
For instance a generational garbage collector ensures that memory is reclaimed
quickly. However not even a generational garbage collection is good enough for
applications like PoSSo where one must prevent or delay garbage collection as
much as possible, not just make its duration shorter. For the vast majority of
applications a general purpose strategy is adequate, and the CMM provides a

326

good one by default. But for research or applications that need to push the limits
of technology, the CMM provides a solution with limited burden on the user.

4 Dynamic Memory Management: Concepts and
Terminology

A garbage collection mechanism basically consists of two parts [16]:

1. distinguishing the lLive objects from the garbage in some way, or garbage
detection;

2. reclaiming the garbage objects’ storage, so that the running program can
reuse it.

The formal criterion to identify live objects is expressed in terms of a root set
and reachability from these roots. The root set consists of the global and local
variables, and any registers used by active procedures. Heap objects directly
reachable from any of these variables can potentially be accessed by the running
program, so they are live objects which must be preserved. In addition, since
the program might traverse pointers from these objects to reach other objects,
any object reachable from a live object is also live. Thus the live set is the set
of objects in some way reachable from the roots. Any object not in the live set
is garbage and can be safely reclaimed.

Depending on the kind of information available during the traversal of objects
from the root set, a tracing collector can be conservative, type-accurate or both.

A conservative garbage collector does not require cooperation from the com-
piler and assumes that anything that might be a pointer actually is a pointer.
In this case an integer (or any other value) is assumed to be a pointer by the
collector if it corresponds to an address inside the current heap range: any such
value is called an ambiguous pointer. A root containing an ambiguous pointer
is called an ambiguous root. A garbage collector is type-accurate when it is able
to distinguish which values are genuine pointers to objects. Some garbage col-
lectors adopt a combination of these two techniques: some pointers are dealt
conservatively, while others are treated in a type accurate way.

The main limitations of a purely conservative collector are memory fragmen-
tation in applications dealing with objects of several sizes, which arises from
the inability to move objects, and the risk that a significant amount of memory
might not be reclaimed in applications with densely populated address spaces of
strongly connected objects [15].

The alternative approach which is type-accurate in identifying objects faces
some problems with hidden pointers. For instance in C++ the location on the
stack of the pointer to the object itself, denoted by the variable this, is only
known to the compiler. The only compiler-independent way to catch such point-
ers is to examine the stack conservatively. Failing to trace hidden pointers may

lead to dangling pointers and produce serious consequences for the integrity of
the program.

327

Both these limitations arc avoided in the partially conservative approach
proposed by Bartlett for his mostly copying garbage collector. We chose this
technique as the basis for developing our customisable collector.

5 The Primary Collector

The CMM relies on an underlying general mechanism for identifying objects,
moving them and recovering memory. These mechanisms constitute the primary
collector of the CMM and are based on Bartlett’s technique [3]. The difference
and the derivation of our technique from Bartlett’s original are discussed in [2).
Here we present our implementation.

5.1 CMM mostly copying collector

A mostly-copying garbage collector performs compacting collection in the pres-
ence of ambiguous pointers in the root set. The technique is an evolution of the
classical stop-and-copy collector which combines copying and conservative col-
lection. Those objects which are referenced by ambiguous roots are not copied,
while most other live objects are copied.

The heap used by the mostly-copying collector consists of a number of equal
size pages, each with its own space-identifier (either From or To in the simplest
non generational version). The FromSpace consists of all pages whose identifier is
From, and similarly for ToSpace. The collector conservatively scans the stack and
global variables looking for potential pointers. Objects referenced by ambiguous
roots are not copied, while most other live objects are copied. If an object is
referenced from a root, it must be scavenged to survive collection.

Root set Heap Root set Heap Root set Heap

gl

33—
]

Before Collection After Page Promotion After Compaction

e |

! FromSpace page ToSpace page

328

Since the object cannot be moved, the whole page to which it belongs is saved.
This is done by promoting the page into ToSpace by simply changing its page
space-identifier to To. At the end of this promoting phase, all objects belonging
to pages in FromSpace can be copied and compacted into new pages belonging
to ToSpace. Root reachable objects are traversed with the help of information
provided by the application programmer: the programmer must supply the def-
inition for a member function for each class of objects which traces the internal
pointers within objects of that class.

Our algorith uses a bit table called LiveMap, to identify objects reached
during traversal, improving both virtual memory performance and ability to
reclaim storage with respect to Bartlett’s algorithm.

The algorith of the collector is as follows:

1. Clear the LiveMap bitmap

2. Scan the root set to determine objects which cannot be moved. Any directly
reachable object is marked as live setting a bit in the LiveMap bitmap and
the page to which it belongs is promoted.

3. Scan each promoted page linearly, looking for live objects. Traverse each live
object by applying the following procedure to each pointer it contains:

(a) if the pointer lays outside the heap do nothing;

(b) if it points to an object not yet reached: scavenge the object if it belongs
to a non promoted page, i.e. copy it, mark the copy as live, set a forward-
ing pointer within the object to the copy. Otherwise mark the object live
and, in case it is past the current scanning position, recursively traverse
it.

(¢) if it points to a live object in a non promoted page update the pointer
to the forward position.

All new pages allocated for copying reachable objects belong to ToSpace,
therefore the algorithm does not need to recursively traverse copied objects. A
copied object is traversed when the collector examines its page, so traversal is
rarely recursive.

In this algorithm we have reduced the amount of overhead required in each
object to just whatever C++ needs for implementing classes with virtual func-
tions, eliminating the header used in Bartlett’s implementation which contained
a forward bit, the size of the object and the identifier of a callback routine.

6 Multiple Heaps

Besides the copy-collected heap, also the traditional uncollected heap must still
be supported by providing the primitives malloc or new on uncollected classes.
The uncollected heap cannot be eliminated since there are programs and libraries
which may use uncollected objects in an unsafe way for the collector [10], and
there are objects that can’t be relocated. However, we must allow ob jects in the
uncollected heap to point to objects in the collected heap and viceversa.

329

The collector algorithm described previously relies on the fact that all lo-
cations which might contain ambiguous pointers are known in advance: they
coincide with the root set. Therefore pages to be promoted can be identified by
a single linear scan of the root set, in the promotion step of the algorithm.

However, when multiple heaps are present and pointers across heaps are
allowed, ambigous pointers might be detected at a later stage.

Requiring that such pointers be registered as roots is not practical, since
it would entail registering as root any collected object which is passed to an
external library procedure, which might store such pointer internally. This can
be cumbersome to do and may be accidentally forgotten.

Modifying the promotion step of the algorithm to perform a complete traver-
sal from the root set in order to identify ambiguous pointers to collected objects,
would be a costly solution with live objects being traversed twice.

In [2] we propose a slight variation to our basic algorithm. We do not update
pointers immediately when an object is copied, but we just record the location
to be updated, using a temporary bitmap. If we discover later that the object
should not have been moved, but rather the page should have been promoted, we
restore all the objects in such page from their copies. The updates to pointers are
performed only at the end of the algorithm, using the bitmap and the forwarding
pointer stored in the objects. This technique is similar to the one suggested by
Detlefs [7] to handle C/C++ unions of pointers and non-pointers.

6.1 TUser Collected Heaps

With the algorithm described so far, two heaps are available: an uncollected
heap for non garbage collected objects and a collected heap.

Our goal is to allow users to build their own heaps with specific allocation
strategies for their applications.

We must however fulfill some essential requirements for the solution to be
consistent and practical:

— allow pointers across heaps: restricting the range of pointers is difficult and
inconvenient.

— transitivity of liveness: if an object is pointed to by a live object it is live as
well. We must ensure that a pointer crossing heap boundaries does not go
unnoticed by the collector.

— independence of collectors: it must be possible to write a collector for a
particular heap, without relying on the collectors for other heaps, provided
the root set for this heap is known.

— coordination among heaps: a simple set of conventions is established to en-
sure that pointers across heaps can be properly traversed.

In the following figure three heaps are present: the uncollected, the copy
collected, and one user collected heap.

330

Global Roots
Copy Collected
Heap O
: 5 | |
System Stack :
User Roots)
User Collected
Heap B
Static Area
>f
: Uncollected
Registers Heap

All six possible cross-heap pointers are shown. The user heap is maintained by
the user, who keeps a record of the roots into his heap, so that he can perform a
collection of that heap when appropriate, without involving the general collector.
However the general collector must be capable of identifying for instance object
e as live, even though this involves passing through several heaps.

6.2 Customising the GC

The basic operations of a copying tracing collector are traversal and scavenging.
The traverse procedure is used in the first phase of the collector to identify live
objects, the scavenge procedure is used to copy an object or perform whatever
action is needed to preserve it.

One way to customise these operations is to use the mechanism of call-
backs, used for instance in programming window based user interfaces. With
this schema, a user would register a specific callback routine with the general
garbage collector, for use on specific type of objects. So when the garbage col-
lector recognises one of these objects during traversal, it applies the appropriate
callback to collect the object.

Callbacks can be different for each individual object, but this is not necessary
for our purposes, so we prefer to replace callbacks with member functions. This
makes these functions more convenient to define and to retrieve by the collector
through the standard mechanism of C++.

Moreover the traverse function could actually be generated automatically
and no registration has to be added in the application programs. A version of
our algorithm for C would still exploit callbacks.

331

6.3 Coordination

To achieve coordination among collectors for the various heaps, one has to agree
to a mechanism that allows traversing objects in different heaps on behalf of the
collector for another heap. While traversing a foreign heap, a collector should not
be allowed to make changes to the objects it visits, except to update recognised
pointers to an object in its own heap, after the object has been moved.

This means that one must perform scavenging only for objects in the heap
being collected. In other words the scavenge procedure must remain the same
throughout a collection, but the scavenge for one heap must not operate on
objects in other heaps. scavenge is then implemented a member function of
each heap class.

traverse instead must be specialised according to the type of the object, so
we implement it as a member function of each class of objects.

The following figure illustrates the interplay between scavenge and traverse:

Heap A Heap B

Suppose a garbage collection is started in heap A which uses a copy collector.
While traversing object A1, the garbage collector identifies a pointer to the object
B1, belonging to heap B. Object Bl is scavenged by the scavenge function of
the heap A. This function recognizes object B1 as external to heap A, so it does
not copy the object, as it would if it were internal to the heap, but only traverses
the object to determine whether further objects in heap A can be reached from
it. The behaviour of scavenge changes again when object A2 is reached which
belongs to heap A. Applying the scavenge function of heap A has the effect of
copying object A2.

7 The CMM Run Time

Heap memory is divided into pages of equal size. The allocator for each Heap
requests pages from the low level page allocator, where to allocate its objects.
Each page is tagged with the heap to which it belongs.

The CMM provides a malloc routine which uses such pages to allocate ob-
jects, implementing the traditional uncollected heap. malloc actually creates an
instance of class CnmObject, which contains an array of the required size, and

332

returns a pointer to one such array, as expected by calling programs. This is in
fact an interior pointer inside an object, and we exploit the ability of the CMM
to map such pointers to their base. This allows us to traverse also CmmObjects
by means of its member function traverse, defined as follows:

void CmmObject: :traverse() {
for (int i = 0; i < size(); i++)
promote_page(block[i]);

so that it promotes pages which are pointed to from within the block. The
only essential information that CmmObject must provide is the size of the block.

In all other collected heaps, the objects allocated are instances of the class
GecObject or its derivatives, which have their specialised version of traverse.
No space overhead is present in GeObject except for what C++ must supply for
the support of virtual functions.

A bitmap is used to deal with internal pointers to objects. Whenever a CMM
object is created, the bit corresponding to its first word is set. Using this infor-
mation, a pointer inside that object can be normalized to the beginning of the
object, simply scanning the bitmap backward until the first set bit is found.

When an object has been moved, its first word is replaced by a forward-
ing pointer to the new object. As already mentioned, this happens only during
garbage collection and the collector can determine this situation from the fact
that the object is marked live and it is in a page in FromSpace.

7.1 The GcObject class

The run time support required for collectable objects is provided by the class
GeObject. Every class of collectable objects must be derived from GeObject.
Users access the services of the CMM mainly by using GcObject member
functions. The most notable function of GeObject is the overloaded new operator
which takes care of allocating the object in a specific heap. The other functions
are used by the primary collector or by user defined collectors.
Here is the public interface for this class.

class GcObject

{
public:

void* operator new(size_t, Heap* = (Heap *)heap);
virtual void traverse();

GcObject *next(); // returns the next adjacent object
bool forwarded(); // tells whether the object has

// been forwarded
void SetForward(GcObject *ptr); // sets the forwarding pointer

333

GeObject *GetForward(); // returns the forward location
// of the object

Heap *heap(); // returns the heap to which the
// object belongs

void mark(); // marking primitives

bool IsMarked();
void SetLiveMap();

8 CMM User Interface

A collected class must be derived from the class GeObject provided by the
CMM. The default collector calls the method traverse on collected objects to
identify their internal pointers to other objects. Users have to provide traverse
methods for each class whose data members contain pointers. traverse must be
defined according to well defined rules presented below, because it implements
the interface between the CMM and user defined collected objects.

These rules ensure that superclasses or class objects contained in the class
are correctly handled. The following example illustrates the rules, which are a
generalisation of those in [4]. Suppose the following collected classes were defined:

class BigNum: public GcObject

{
long data;
BigNum *next; // Rule (a) applies here
void traverse();
}
class monomial: private BigNum // Rule (c) applies here
{
PowerProduct pp; // Rule (b) applies here
void traverse();
}

A BigNum stores in next a pointer to a collected object which needs to be
scavenged, so traverse becomes:

void BigNum: :traverse()
{

scavenge (&next) ; // Applying rule (a)
}

Because monomial inherits from BigNum, the method traverse for this base
class must be invoked; finally, since a monomial contains a BigNum in pp, this
object must be traversed as well:

334

void monomial::traverse()
{
BigNum: :traverse(); // Appling rule (c)
pp.-traverse(); // Applying rule (b)
}

Finally, to deal with multiple base classes, we must identify the hidden pointer
to the base class present inside an object. This cannot be done in a compiler
independent way, so the CMM provides a macro VirtualBase which is compiler
specific. For instance, its definition for the GNU C++ compiler is:

#define VirtualBase(A) & (_vb$ # A)

In summary the rules are:

(a) for a class containing a pointer, say class C { type *x; }, the method
C::traverse must contain scavenge (&x)

(b) for a class containing an instance of a collected object, say class C { Ge-
Class x; }, the method C: :traverse must contain x.traverse()

(c) for a class derived from another collected class, say class C: GeClass {. ..},
the method C: :traverse must contain GcClass: :traverse().

(d) for a class deriving from a virtual base class, say class C: virtual GcClass
{...}h the method C::traverse must contain
scavenge (VirtualBase (GcClass));

Preprocessing [8] or compiler support [13] could be adopted to avoid hand
coding of these functions and risks of subtle errors in programs. We plan to
address this issue in the future.

8.1 Object Creation

When creating a collected object one can specify in which heap to allocate it.
The parameter heap can be supplied in the standard C++ placement syntax for
the new operator:

p = new(heap) Person(name, age);

If the user does not specify any heap, the default heap heap is used:
p = new Person(name, age);

which is equivalent to:

p = new(heap) Person(name, age);

where heap is a global variable initialised to the system heap.
When creating collected objects, the programmer can decide case by case

where to allocate them. In summary, the following are the alternatives for object
allocation:

335

Heap Classes Creation

uncollected uncollected new/malloc
copy collected collected new

 user collected collected new(heap)

where we call collected those classes which inherit from GeObject and uncol-
lected all others.

With the CMM, object allocation is not tied to the type of an object as in
other proposals, so a programmer can design his classes without committing to
a particular memory policy. The policy can be decided later, or even be different
in different portions of an application. For instance, in the PoSSo solver, one sets
the variable heap to the heap implementing the stack policy before starting the
simplification. Throughout the simplification, all objects (monomial, polynomial,
large precision integers, lists and so on) are allocated in this heap and freed in
a single step at the end of the simplification. After simplification, one reverts to
the normal heap. It is essential that this can be done without changing a single
line in the user code.

9 Heap Classes

To manage a heap one normally has to maintain the set of roots for the objects
in the heap, manage the pages where objects are allocated and implement the
memory allocation and recovery primitives. A suitable encapsulation for these
functionalities is provided by the Heap class.

9.1 The Heap Class

A class implementing a heap must supply definitions for the following pure vir-
tual functions: allocate and reclaim, implementing the memory allocation
strategy, collect to perform collection, and scavenge, the action required to
preserve live objects encountered during traversal. Heap classes are derived from
the abstract class Heap, defined as follows:

class Heap

{

public:
int Index(); // identifies the heap
Heap () ; // initializer

virtual GcObject* allocate(int 0ObjSize) = 0;
virtual void reclaim(GcObject* ObjPtr) = 0;
virtual void scavenge(GcObject **ptr) = 0;
virtual void collect() = 0;

336

// Operations on the Root Set:

void register(GcObject *); // add an element

void register (GcObject **);

void deregister(GcObject *); // remove an element

void deregister(GcObject *x*);

void ScanRoots(Heap *heap); // scan the roots

bool outside(GcObject *ptr); // checks if ptr is outside

// this heap
void visit(GecObject *ptr) {
if (! ptr->IsMarked()) {
ptr->mark();
ptr->traverse();
}
}

private:
int index;
RootSet *roots;

}

roots is a pointer to an instance of class RootSet, used for registering po-
tential roots. Depending on the particular type of RootSet used, the collector
can be conservative, type-accurate or both. The simplest RootSet considers as
possible roots only the objects explicitly registered by the user. The derived class
ConservativeRootSet scans also the system stack, the process static data area,
and registers for possible roots.

The CMM provides three predefined heap classes:

— Bartlett heap: encapsulates the primary collector of the CMM and imple-
ments a copying discipline;

— uncollected heap: it provides the standard manual allocation discipline. It is
available through the default new operator or the functions of the malloc
library. Objects not inheriting from GcObject are allocated in this heap.

10 Implementing Heaps

This section illustrates the CMM programmer interface for implementing new
heaps. We describe the mechanism through an example, which is a simplified
version of the actual heap used in PoSSo.

10.1 The HeapStack

A foremost algorithm in the PoSSo algebra system is the one for computing of the
Grobner basis of a set of polynomials. Dependencies between temporaries and
persistent data make the use of explicit memory allocation/deallocation nearly

337

impossible, so use of a garbage collector was essential. The main step of the
Buchberger algorithm [6] consists in the simplification of a polynomial which
involves many operations creating a lot of intermediate polynomials of which
only the last one is relevant and is inserted into the basis. Once this polynomial
has been computed, all the temporary structures allocated can be removed.

The peculiar dynamics of the problem offers an opportunity to try out the
CMM facilities to implement a specific memory management. We created a heap
in which the allocation is stack-like (and thus fast), and the garbage collector
called synchronously after each step.

We present a simplified solution in which the size of the stack is fixed, and
a copying collector which uses two areas. The real solution we adopted for the
problem is more complex and uses a list of areas, and a copying collector.

10.2 The HeapStack

First we define the HeapStack class as a Heap consisting of two areas which

implement the FromSpace and the ToSpace of the collector, and a RootSet to
register the roots to use for the collection:

class HeapStack: public Heap
{
public:
void scavenge(GcObject **ptr);
GcObject* allocate(int words);
void reclaim(GcObject* ObjPtr) {};
void collect();
HeapStack(int size = 100000);

private:
pages FromSpace, ToSpace;

int FromTop, ToTop;
}

HeapStack: :HeapStack(int StackSize)

{
FromSpace = allocate_pages(StackSize, index);
ToSpace = allocate_pages(StackSize, index);

inline GcObject* HeapStack::allocate(int size)
{
int words = BYTEStoWORDS(size);
int *object = FromSpace + FromTop;
if (words <= (FromSize - FromTop)) {
FromTop += words;
return (GcObject *)object;

338

}
else return (GcObject *)NULL;

The collector uses the root set to traverse the roots using its traversing strat-
egy. After having moved to ToSpace all the objects reachable from the roots,
it traverses those objects in order to move all further reachable objects. The
specific action required for scavenging objects is as follows:

void HeapStack::scavenge(GcObject **ptr)
{
GcObject **01dPtr = ptr;

if (OutsideHeap((int *)*ptr)) return;
GcObject *p = GetBeginning((int *)*ptr) ;
if (outside(p)) visit(p);
else if (*ptr->forwarded()) ToBeForwarded(ptr);
else {
*ptr = moveTo(ToSpace, *ptr);
01dPtr->SetForward (xptr) ;

This code relies on support provided by classes GeObject and HeapStack.
As the final step the collector exchanges the roles of FromSpace and ToSpace.

void HeapStack::collect()
{
pages *TmpSpace;
GcObject *0bjPtr;
// Throughout this collection use our scavenge:
::scavenge = (void (%) ())&scavenge;
// First traverse the objects registered as roots
ScanRoots(this) ;
// Now traverse the objects already moved into ToSpace
0bjPtr = ToSpace;
while (0bjPtr < ToSpaceEnd) {
ObjPtr->traverse();
ObjPtr = 0bjPtr->next();
}
// swap FromSpace and ToSpace
TmpSpace = FromSpace; FromSpace = ToSpace; ToSpace = TmpSpace;
FromTop = ToTop; ToTop = 0;

In our implementation of the Buchberger algorithm we register as roots of
the heap two variables containing the base of polynomials and the list of poly-

339

nomial pairs which are the only objects which need to be preserved after each
simplification step when collect is invoked explicitly.

11 Assessment

Having chosen to base the design of the collector on inheritance and specialisation
proved to be convenient to achieve an open design which can be easily extended.
But what are the drawbacks of such choice?

11.1 Space Overhead

One objection is that all collected objects must inherit from class GCobject
which declares a traverse as a virtual function and therefore space overhead
is added to each object. Some overhead is however inevitable to enable garbage
collection. Other solutions either add one word of header to identify the type of
objects in the heap or allocate objects in a separate region for each type, which
also cause some waste of memory. On the other hand we were able to avoid any
space overhead except what C++ needs for implementing objects with virtual
functions and 2 bits per word in global tables.

11.2 Overloading new

The CMM exploits the placement syntax of the new operator to determine where
and how to allocate an object. This of course limits user code from using this
feature, even though just for collected objects. It is hard to assess how bad is this
limitation: in fact Ellis and Detlefs [10] argue that there is no reason to overload
nevw for a collected class, whose allocation is performed by the garbage collector
methods. On the other hand, in the CMM, class GCObject is just a class defined
in a public library whose code is accessible, so there is no difficulty in defining
derived classes from it, with suitable specialisation of its new operator.

One case in which we found this useful was to define collectable objects of
variable size.

Consider the following example:

class BigNum {
BigNum(int 1) {
length = 1;
limbs = new int[1];
}
int length;
int *1limbs;

}

With this definition of Bignum, creating a BigNum will require two memory

allocations and accessing the array 1imbs will require an extra pointer indirec-
tion.

340

To improve this solution, one may define the class GeVarObject as a derived
class from GeObject, which provides a new operator with an additional param-
eter for the size of the variable member. The following example illustrates its
use:

class BigNum : public GcVarObject

{

int length;

int limbs[1]; // size determined at object creation

I

BigNum *num;
BigSize = 2566 * sizeof(int);
num = new(BigSize) BigNum;

The object num is created in the default heap and has room for 256 integers.
The implementation of class GeVarObject might be however compiler dependent.

11.3 Array of GeObjects

Recently the ANSI standard committee has introduced overloading of the new[]
operator for allocating arrays of objects. Using this feature, we could define
the new[GcObject] operator so that an array of GecObjects is allocated in the
collected heap. Right now, if we define

class Person: GecObject {
char *name;
int age;

}

Person *Table = new Person([n];

the compiler will invoke the system malloc to allocate memory from the
uncollected heap for Table and all of its elements.

For the time being the CMM provides the GecArray template class allocating
arrays in the collected heap, as in this example:

GcArray<Person> &Table = new(n) GcArray<Person> ;

11.4 Performance

We have received quite satisfactory reports on the performance of CMM by the
partners in the PoSSo project who used it in particular for implementing a linear
algebra package [12].

To compare the performance of the CMM and the original Bartlett’s imple-
mentation, we run several classical test cases for the Buchberger algorithm. We
report here the results of a couple of these (known in the literature as Katsura5
and Valla), providing details on the timings of memory operations: alloc, the

341

primitive allocator; scavenge, the primitive which copies objects to the new
space; gc, overall time spent in garbage collection; gc calls, the number of
calls to the collector. Times are in seconds on a SparcStation 10 with 32 Mbytes
of memory:

CMM CMM
Bartlett | gefault | HeapStack
Katsurad 30.7 35.9 22.5
alloc 4.95 8.3 0.83
scavenge 1.9 1.36 2.2
ge 4.51 3.0 3.1
gc calls 178 218 54
Valla 112.0 112.0 71.6
alloc 28.98 32.25 9.3
scavenge 10.64 5.26 3.36
ge 19.74 10.86 8.73
gc calls 506 502 118

There are two factors which contribute to the improvement in performance:
less time spent in collection and less time spent in allocation. While the over-
all improvement is approximately 38% in both examples, the contribution to
the improvement is split differently: 90% improvement in allocation and 0% in
collection with Katsura5, 75% improvement in allocation and 20% in collection
with Valla.

It is also interesting to notice that the CMM default algorithm has similar
performance to Bartlett’s original, despite the overhead due to its use of member
functions.

12 Related Work

The Boehm-Weiser collector [5] is a well known collector for C++ which is totally
conservative and therefore quite convenient to use. However it is not customis-
able and is subject to unduly retention of space and memory fragmentation since
it cannot compact memory. Our copying collector has some advantage in per-
formance not having to reconstruct a free list after collection and being more
accurate in tracing live objects.

Work on adding garbage collection to C++ has been done by D. Samples
and D. Edelson. Samples [13] proposes modifying C++, to include a garbage
collection environment as part of the language. This may be a good long term
approach for garbage collection in C++ but is not suitable for a project like
PoSSo which needs portable garbage collection facilities as soon as possible.
Our feeling is that this work demonstrates how the flexibility of object oriented

342

languages can be used to implement a very complex environment, like CMM,
without requiring modifications to the language.

Edelson [8] has been experimenting with the coexistence of different garbage
collection techniques. The flexibility of the solutions he adopts in his approach
allows the coexistence of different garbage collectors, but he does not provide any
interface to the user to customise and/or define his own memory management
facilities.

Ellis and Detlefs [10] propose some extensions to the C++ language to allow
for collectable object. The major change is the addition of the type specifier ge
to specify which heap to use in allocating the object or a class. They also pro-
pose to change the operator new T to call the collector allocator when T is a gc
type, and as a consequence of this, the overloading of new and delete operators
for gc classes is forbidden. While the gc keyword is compatible with our solu-
tion of inheriting from the base class GecObject, the constraint on new needs to
be relaxed to allow overloading of new when additional arguments are present.
Otherwise this constraint will block the possibility of using different heaps for
the same kind of objects in different portions of a program. Other suggestions
from the Ellis-Detlefs proposals are quite valuable, for instance making the com-
piler aware of the garbage collection presence and avoid producing code where a
pointer to an object (which may be the last one) is overwritten. This can happen
for instance in optimizing code for accessing structure members.

13 Conclusion

The CMM offers garbage collection facilities without significant compromises.
Programmers can use a generic collector, a specific collector or no collector at
all, according to the need of each algorithm. The algorithm can be in control
when necessary of its memory requirements and does not have to adapt to a
fixed memory management policy.

The CMM is implemented as a C++ library, produced with extensive revi-
sions from the original Bartlett’s code. It is being heavily used in the implemen-
tation of high demanding computer algebra algorithms in the PoSSo project.
The CMM provides the required flexibility without degradation in performance
as compared to versions of the same algorithms performing manual allocation.

The next challenge would be to incorporate in the C++ compiler the minimal
facilities required for CMM support: the addition of the gc keyword, proposed
by Ellis and Detlefs, could facilitate this.

14 Availability

The sources for CMM are available for anonymous ftp from site ftp.di .unipi.it

in the directory /pub/project/posso. Please address comments, suggestions,
bug reports to cmm@di.unipi.it.

343

15 Acknowledgements

Carlo Traverso and John Abbott participated to the design. J.C. Faugere pro-
vided the idea for this work. Joachim Hollman and Fabrice Rouillier helped in
testing the first prototype implementation. Discussions with J. Ellis were useful
to ensure compatibility of his proposal with our framework. Comments from L.
Semenzato helped to improve the presentation.

References

1.

2.

10.
11.
12.
13.
14.
15.

16.

17.

J.D. Ichbiah et al. “Rationale for the design of the ADA programming language”,
ACM SIGPLAN Notices, 14(6), 1979.

G. Attardi and T. Flagella “A customisable memory management framekwork”,
Proceedings of USENIX C++ Conference 1994, Cambridge, Massachusetts, April
1994.

. J.F. Bartlett “Compacting garbage collection with ambiguous roots” Tech. Rep.

88/2, DEC Western Research Laboratory, Palo Alto, California, February 1988.

. J.F. Bartlett “Mostly-copying collection picks up generations and C++", Tech.

Rep. TN-12, DEC Western Research Laboratory, Palo Alto, California, October
1989.

. H.J. Boehm and M. Weiser “Garbage collection in an uncooperative environment”,

Software Practice and Experience, 18(9), 1988, 807-820.

. B. Buchberger, “Grobner bases: an algorithmic method in polynomial ideal the-

ory”, Recent trends in multidimensional systems theory, N. K. Bose, ed., D. Reidel
Publ. Comp. 1985, 184-232.

. D. L. Detlefs, “Concurrent garbage collection for C++", CMU-CS-90-119, School

of Computer Science, Carnegie Mellon University, 1990.

. D.R. Edelson “Precompiling C++ for garbage collection”, in Memory Manage-

ment, Y. Bekkers and J. Cohen (Eds.), Lecture Notes in Computer Science, n. 637,
Springer-Verlag, 1992, 299-314.

. D.R. Edelson “A mark-and-sweep collector for C++", Proc. of ACM Conference

on Principle of Programming Languages, 1992.

J.R. Ellis and D.L. Detlefs “Safe, efficient garbage collection for C++”, Xerox
PARC report CSL-93-4, 1993.

G. Nelson, editor “Systems Programming with Modula3”, Prentice Hall, 1991.

F. Rouillier “Personal communication”, 1994.

A.D. Samples “GC-cooperative C++", Lecture Notes in Computer Science, n. 637,
Springer-Verlag, 1992, 315-329.

D. Weinreb, D. Moon and R.M. Stallman “Lisp Machine Manual” Massachusetts
Institute of Technology, Cambridge, Massachusetts, 1983.

E. P. Wentworth “Pitfalls of conservative garbage collection”, Software Practice
and Experience, 20(7), 1990, 719-727.

P.R. Wilson “Uniprocessor garbage collection techniques”. in Memory Manage-
ment, Y. Bekkers and J. Cohen (Eds.), Lecture Notes in Computer Science, n. 637,
Springer-Verlag, 1992, 1-42.

B. Zorn “The measured cost of conservative garbage collection” Technical Report

CU-CS-573-92, Department of Computer Science, University of Colorado at Boul-
der, 1992.

