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Abstract. The Rigorous Object-Oriented Analysis (ROOA) method
provides a systematic development process by proposing a set of rules
to be followed during the analysis phase. ROOA takes a set of informal
requirements and an object model and produces a formal object-oriented
analysis model that acts as a requirements specification. The resulting
formal model integrates the static, dynamic and functional properties of
a system in contrast to other object-oriented analysis methods which are
informal and produce three separate models that are difficult to integrate
and keep consistent. The model is expressed in LOTOS and provides a
precise and unambiguous specification of a system’s requirements. As the
specification obtained is executable, prototyping can be used to check the
conformance of the specification against the original requirements and
to detect inconsistencies, omissions and ambiguities early in the devel-
opment process.

1 Introduction

Developing an efficient, reliable and maintainable software system requires the
adoption of a strategy that helps software engineers to communicate without
ambiguity. Designers must be able to understand the results provided by analysts
and give an unambiguous specification to the implementors. A solution is to
provide a rigorous software development process which includes the development
of a formal requirements specification so that the requirements can be stated
precisely and unambiguously.

In [17] we describe the ROOA (Rigorous Object-Oriented Analysis) method
in detail’. In this paper, we give an example of the application of the method.
The purpose of this is to demonstrate that the method is useful in practical
situations. ROOA integrates the static properties captured in an object model
produced by any object-oriented analysis method [5, 12, 19, 21] with the dy-
namic and functional properties given in the original requirements and produces
an executable formal object-oriented model that acts as a requirements spec-
ification. Formal description techniques, such as [1, 3, 13], are usually applied

1 A shorter description of the ROOA method is presented in Portuguese in [16].
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after the requirements analysis phase, but here we are using them to help in
determining and understanding a system’s requirements. The formal description
technique we have chosen is LOTOS (Language Of Temporal Ordering Specifi-
cation) [1] which has a precise mathematical semantics and which can be used in
an object-oriented style. The resulting formal model considers the system as a set
of concurrent objects where message passing is modelled by objects synchroniz-
ing on an event during which information may be exchanged. The specification
gives an integrated description of the system which deals with both static and
dynamic properties. In other methods these properties are normally described
by different techniques which leads to problems in ensuring that the different
descriptions remain consistent as the model is developed.

As the specification obtained is executable, prototyping can be used for vali-
dation and to check the conformance of different specifications produced during
a refinement process. By combining the use of formal description techniques
with rapid prototyping during analysis, we can discover inconsistencies, omis-
sions, contradictions and ambiguities early, so that they can be corrected in the
early stages of the development process. The formal requirements specification
can subsequently be transformed into a formal design specification. Prototyping
with the same set of interface scenarios can be used to check that the observ-
able behaviour of the design specification conforms to that of the requirements
specification.

Section 2 discusses the need for formal specifications. Section 3 gives an intro-
duction to object-oriented analysis methods. Section 4 summarizes the ROOA
method. Section 5 presents the problem we use to illustrate LOTOS and the
ROOA method. Section 6 introduces LOTOS. Section 7 shows how the ROOA
method can be used to derive a formal LOTOS object-oriented analysis model.

2 Formal and Executable Specifications

The primary benefit of formal techniques is that, as they have a precise and
mathematical semantics, the resulting specifications are unambiguous. This is
in contrast to informal techniques which lead to specifications which leave much
of their interpretation to the reader. The imprecision of an informal specifica-
tion can give the implementor a freedom of interpretation which can lead to
errors and omissions in the code, resulting in high costs for support and repair.
Moreover, this imprecision leads to misunderstandings in validating the infor-
mal specification against the requirements (and the implementation against the
specification). A formal approach to specification is therefore useful. A formal
requirements specification, at least in theory, allows an implementation to be ver-
ified against the specification, although it still leaves the problem of validating
the specification against the initial informal requirements document.

Proving that a requirements specification, a design specification and the even-
tual implementation all describe exactly the same system is beyond the current
state of the art. A practical approach is to make the specification executable
and perform the validation by means of conformance testing where a series of
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interface scenarios are used to show that the different specifications and the final
implementation all exhibit the same behaviour.

Not all software engineers agree that specifications should be executable,
because a specification written in a notation that is not directly executable will
contain less implementation detail than an executable one [9]. There is also the
danger that executable specifications can overspecify a problem. Being able to
demonstrate that a specification exhibits the expected behaviour can, however,
greatly increase ones confidence in it [8]. The accusation that this is no more than
testing, 1s partially solved by using symbolic evaluation. The LOTOS SMILE
simulator allows the use of uninstantiated variables within conditions and is
able to determine when a combination of conditions can never be true [6]. Many
more behaviours can then be examined with each simulation than is possible
when all data values have to be instantiated.

3 Object-Oriented Analysis Methods

The main goal of an object-oriented analysis (OOA) method is to identify objects
and classes which constitute a system, to understand the structure and behaviour
of each object, to gather in one place (localization) all the information relating
to a particular object and class and, at the same time, show how the objects in
the system interact statically and dynamically.

In general, object-oriented methods share the following set of common tasks:

. Understand the user requirements.

. Identify and classify objects.

. Define classes.

. Identify relationships between objects.

. Identify inheritance relationships between classes.
. Construct documentation.

S O R W N

Understanding the user requirements is accomplished by reading the initial
requirements document and any other source of information where the problem,
or part of it, may be described. The users or clients of the system should also
be interviewed.

To identify objects, several methods [5, 21] suggest we look at nouns, pro-
nouns, noun phrases, adjectival and adverbial phrases in the initial requirements
document, while others [19] suggest that a better way of identifying objects is
to focus on their behaviour. Once objects have been identified, they are grouped
into classes.

A class 1s defined in terms of its static and its dynamic aspects. The static
aspect is given by a list of its attributes and services. The dynamic behaviour
is usually described by using state transition diagrams, but it plays a secondary
role in most of the methods. The set of state transition diagrams is called the
dynamic model.

Relationships between objects can be static or dynamic. The static relation-
ships are represented by their names and their cardinality and the dynamic ones
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are represented by arrows connccting the calling to the called object and arc
known as message connections. These relationships are represented in the eobject
model which is supported by a diagram based on Entity-Relationship diagrams
where enhancements have been introduced to support aggregates, inheritance
and message connections. Some methods add scenarios [21] (or usc cases [12])
to the dynamic model and show the interactions between objects for each sce-
nario by means of an event trace diagram [21] (or interaction diagram [12]).

Documentation plays a crucial role when developing software. Several meth-
ods have an cxplicit step to construct it while others let it be an implicit step.

More recent methods, such as [21, 22], also incorporate a functional model
which uses data flow diagrams to describe the meaning of the services in the
object model and the aclions in the dynamic model.

A major advantage of the object-oriented approach is that, as the concepts
used in object-oriented analysis and design are the same, the transition from
analysis to design is not difficult. Moreover, the techniques used by the object-
oriented design methods usually produce designs which are very close to code.
Sometimes they already are outline code, as when Eiffel [14] is used as a design
language.

4 The Rigorous Object-Oriented Analysis Method

The ROOA (Rigorous Object-Oriented Analysis) method involves three main
tasks. In the first task we build an object model by using any of the existing
OOA methods. In the second task we refine the object model to ensure that
it incorporates interface objects, attributes, services, static relationships and
message connections, and we identify object groupings. In the third task we
build the formal LOTOS object-oriented analysis model. The ROOA method
gives a formal interpretation in LOTOS of object-oriented analysis constructs.
ROOA uses a stepwise refinement approach for the development and for
validation of the specification against the requirements. The development process
is iterative and parts of the method can be re-applied to subsystems. Different
objects can be represented at different levels of abstraction and the model can
be refined incrementally. Figure 1 shows the composition of the two main tasks

of ROOA, Refine Object Model and Build Formal LOTOS OOA Model.

Task 1: Build the Object Model. Before we start producing the formal
model, we have to build an object model by using any existing OOA method [5,
12, 19, 21]. The construction of the initial object model can be considered as a
completely separate task from the following ones and it can be accomplished by
a different team. An advantage of starting with an object model produced by
any OOA method is that we build on the work which has already been done to
identify objects.

During the application of the ROOA method, the requirements document
and the object model may be modified.
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Fig.1. Core of ROOA

Task 2: Refine the Object Model. Before we start producing the LOTOS
formal model, we must ensure that our object model is complete by adding, if
they are not already present, static relationships, attributes, services, message
connections and interface objects.

An interface object models behaviour and information that is part of the sys-
tem interface with the system’s environment. We also define interface scenarios.
An interface scenario shows a series of services (requests and responses) that the
actors (clients or users) can require from the system. It can be seen as a list of
calls to the services offered by the interface objects together with the expected
responses. Its effect within the system is described by an event trace diagram.

In Task 2.2, we start building the Object Communication Table (OCT) which
will be completed in Task 3.1. Eventually, this table will be composed of five
columns, but now we only build the first four columns. In the first column
(Objects) we list the objects that form the object model; in the second column
(Offered Services) we list the services offered by each object; in the third column
(Reguired Services) we list, for each service offered in column two, the services
that it requires from other objects; and, in the fourth column (Clients) we list,
for each offered service, the objects (clients) which require that service. We use
the notation <object.service> to indicate that the service defined in object is
required. Event trace diagrams are used in constructing columns two, three and
four of the OCT. Part of an OCT is shown in Table 2.

In Task 2.3, we structure the object model by identifying groupings of objects
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in order to make the system easier to understand and develop. As this is difficult,
we cannot expect to do it completely and correctly in the first iteration and so we
return to this task when our knowledge about individual objects has increased.
Candidates for grouping are aggregates, a superclass and its subclasses, a set
of clients which use the same servers, and a set of servers which have the same
clients. The low level objects in the object model often remain almost unchanged
during the development, but the high level structure is less stable.

Task 3: Build the LOTOS Formal Model. During this task we create an
object communication diagram, specify objects and classes, compose the objects
into LOTOS behaviour expressions, prototype and refine the specification.

Create an Object Commaunication Diagram (OCD). This diagram is a graph in
which, in the first iteration, a node represents an object and each arc connecting
two objects represents a gate of communication between them. In later iterations
the diagram will be generalized to deal with multiple objects of the same class.
In the beginning, some of the objects may not be connected by arcs to the rest
of the diagram. As the method is applied these objects will be connected to the
others and new groupings will appear, refining the diagram.

Before we start building the OCD, we complete the OCT by adding the
column Gates which gives the name of the gates that the objects in column one
and column four use to communicate with each other. This information is then
used to label the arcs in the OCD.

We follow three basic rules to define gates of communication between a server
and its clients:

1. Use the same gate for object communications which require the same set, or
subset, of services; e.g. where there is an overlap between the set of services
required by different clients, from a given server, we use a single gate for
communication.

2. Use different gates for object communications which require a different set
of services; e.g. where there is no overlap between the set of services required
by each client from a server, we give different gates of communication for
each client involved in the study.

3. Two objects at the same level of abstraction which communicate through
a given gate cannot use this gate to communicate with other objects at a
different level of abstraction.

Specify individual objects and classes. In [17] we show how to model object-
oriented constructs in LOTOS, in particular, objects, class templates and classes.
A class template describes the common static and dynamic properties of objects
of the same kind (belonging to the same class). A class is the set of all objects
which share the common features specified by a class template. An object is a
member of a class and is created by instantiating a class template.

The behaviour of an object is specified by a class template and its state
information by one or more Abstract Data Types (ADTs) given as parameters
of the template. And so, for each individual object, we:
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1. Specify the class template by a LOTOS process definition, identifying the
events it takes part in and their order.
2. Specify ADTs to describe its attributes.

Inheritance in LOTOS is more of a problem and a theoretical study has
been made by Rudkin [20]. There are two main definitions of inheritance [11]. In
behavioural inheritance, objects of a subclass offer all the services of objects of
their superclass and can be used wherever an object of the superclass is expected.
In incremental inheritance, a subclass inherits the definition of its superclass
which it then extends and/or modifies.

We believe that, in a specification, the behavioural and incremental inher-
itance hierarchies should be restricted to be the same. Although LOTOS does
not directly support inheritance, it is straightforward to represent incremental
inheritance and an example is given in Sect. 7. In [18], we describe how incre-
mental inheritance in LOTOS can be restricted so that behavioural inheritance
is guaranteed.

Compose the objects into a behaviour expression. Following the structure of the
object communication diagram, we compose the objects into a LOTOS behaviour
expression by using the LOTOS parallel operators. We have an algorithm which
converts an OCD into a LOTOS behaviour expression and identifies the few sit-
uations in which an OCD cannot be represented in LOTOS [17]. The important
rule 1s that if a server has several clients at the same gate then the server can
either be grouped with all the clients or with none of them.

Prototype the specification. We use interface scenarios and prototyping to check
services and message connections. Any errors, omissions or inconsistencies found
will lead us to go back to one or more tasks and update the requirements, the
object model, the OCT, the OCD and the specification.

Refine the specification. The specification is refined by re-applying the whole or
part of the process. During successive refinements we may identify new higher
level objects, model static relationships, define object generators so that multiple
instances of the same class template can be created dynamically, demote an
object to be specified only as an ADT, promote an object so that it requires a
process and refine processes and ADTs by introducing more detail.

5 Automated Banking System

The problem we have chosen to show how to use our method is an automated
banking system. A brief outline of the problem is given here.

Clients may take money from their accounts, deposit money or ask for
their current balance. All these services are accomplished using either
automatic teller machines or counter tellers. Transactions on an account
may be done by cheque, standing order, or using the teller machine and
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card. 'I'here are two kinds of accounts: savings accounts and chequing
accounts. Savings accounts give interest and cannot be accessed by the

automatic tellers.

We applied the object-oriented analysis methods of OOA [5] and OMT [21]
to this problem, but only the object model produced by OMT is presented
here (see Fig. 2). The nodes in the object model represent class templates with
attributes. Relationships between objects are represented by a line connecting
two class templates. A relationship has a name and cardinality. Cardinality of
exactly one is shown as a straight line while zero-or-more is shown with an added
filled circle. An inheritance hierarchy is represented by a triangle.

Entry
Station
Cheque
Number Client
-~ Amount updates
initiates | pate Name
Account_Number Address
Payabie_To Phone
0,2
Automatic Counter m
Teller Teller updates
Number is owned by
updates Balance
-
A
‘ Other belongs
receives Bank
payment Chequin Savings
Name g
Address Account Account
Phone Period
Standing 0,2
Order Interest
updates
Amount EE— I
Date
Bank_Name Card
Account_Number is accessed Number
—— ¢
updates Code
Expiry_Date

Fig. 2. Object model produced by the OMT method

6 LOTOS Overview

LOTOS is a formal description technique developed by ISO [2] for the definition
of Open Systems Interconnection (OSI) standards, although it is also well suited
to the specification of a wide range of systems, including embedded systems [4].

It has two main components:
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— Process definition: this component describes the behaviour of processes and
the interactions between them. The approach used is based on process alge-
bra, using components from CCS [15] and CSP [10].

— Abstract data types: this component describes the data types and value
expressions. It is based on the abstract data type language ACT ONE [7].

6.1 Processes

A concurrent distributed system is described in LOTOS as a set of commu-
nicating processes. A process is like a black box and its externally observable
behaviour is its interactions with other processes. Specifying a process is defin-
ing the temporal relationships among such interactions. Process behaviour is
described using behaviour expressions that consist of external, observable events
and internal, externally unobservable events. Interactions between process in-
stantiations are achieved through synchronization. A synchronization is known
as an eveni. An event is atomic and takes place at a gate.

As an example, let us consider the object model represented in Fig. 2. As was
said in the previous section, a class template is specified as a process and one
or more ADTs, where the process describes the dynamic behaviour of the class
template and the ADTs its state information. Suppose that the class template
Account offers the services deposit to credit an account, withdraw to debit an

account and get_balance to give the current balance of an account. The process
could be specified as:

process Account[g] (this_account: Account): noexit :=
( g !'deposit 1Get_Account_Number (this_Account) 7m: Money;
exit(Credit_Account(this_account, m))
0
g 'get_balance !Get_Account_Number(this_account)
!Get_Balance(this_account);
exit(this_account)
0
g !'withdraw 'Get_Account_Number(this_account) 7m: Money;
( choice if_money: Bool []
[if_money] ->
g !'rtn_withdraw !Get_Account_Number(this_account) !true;
exit(Debit_Account(this_account, m))
a
[not (if_money)] ->
g 'rtn_withdraw !Get_Account_Number(this_account) !false;
exit(this_account)

)

) >> accept new_account: Account in Account[gl (new_account)
endproc

The process is defined recursively and uses gate g for synchronization with other
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processes. It communicates with other objects in the system by sending messages
which are represented as events with the following structure:
<gale> <message name> <object identifier> <optional parameters>

Each service in the object model has a corresponding message name in a
LOTOS structured event and each event may cause the execution of ADT op-
erations. The service and the message have the same name. For example, a
Counter_Teller can send a message to Account asking for a deposit:

g 'deposit !'acc_number !amount;
and an instance of Account synchronizes with this event by offering:
g 'deposit !Get_Account_Number(this_Account) ?m: Money;

The operator !is used in the form v where v is a value expression. The operator
7 1s used in the form 7v : s where v is a variable of the sort s. There are three
kinds of synchronization which we summarize in Table 1 [1].

Table 1. Interaction types

Process|Process Condition of Interaction Effect
A B Synchronization Type
g 'k g E> value(£1) = value(F;)[value matching |synchronization
occurs
gk g ?x:s |[sort(Ey) =s value passing after synchronization

x = value(E))

gly:w |g7xs |w=s value generation |after synchronization
v = X = v, where v is
some value of sort w

Value matching of acc_number and Get_Account_Number(this_account) is
used to ensure correct synchronization. Although a client must know the identity
of the server, a server can service many clients without knowing their identity.
Value passing is used to pass the value amount to the variable m. Value generation
allows the introduction of uninstantiated variables.

The operator [1 is the non-deterministic choice operator and the generalized
choice operator choice, used to specify the service withdraw, allows the spec-
ification of the two possible situations with an account (the account has funds
and the account has no funds). The >> is the enable operator. The behaviour
expression A>>B means that on successful completion of process A we start exe-
cution of process B. The operator accept ... in is used to pass values as we
exit from one process and enable another.
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The functions Get_Account_Number, Credit_Account, Debit_Account and
Get_Balance are defined as operations in the Account ADT. The parameter
this_account represents the object state information and is updated by the
recursive invocation of process Account.

6.2 Abstract Data Types

LOTOS models data as abstract data types using the language ACT ONE. Their
definition is rather lengthy and complex although this can be made easier by the
provision of an extensive library of predefined ADTs.

In ROOA we define the necessary equations to allow the objects to be pro-
totyped with state information and values to be passed during the communica-
tion, but without giving too much detail about how each operation is performed
internally. This helps reduce the length of an ADT, saving time during the con-
struction of the specification. More detail will be added in the design phase.

ADT operations can be classified as constructors, modifiers or selectors. In

ROOA, an ADT is built in the following way:

— Leave the modifiers without equations. This treats them as constructors of
the ADT and gives a record of the history of the events that have changed
the object’s state information.

— Define dummy equations for selectors when a particular result does not need
to be returned. More detail will be added in the design phase. A dummy
equation does not query the state of the ADT and always returns the same
constant value. It therefore adds no information that was not already in the
signature of the operation. An equation must be given as otherwise a new
constructor on the result sort would have been defined.

The dummy equations are used in conjunction with non-determinism in-
troduced in the process part, and it is there that all the different possible
situations are covered.

— Define equations for selectors that need to return a particular velue. The
selector must be defined using an equation for each constructor.

The following example ADT defines the state of an account:

type Account_Type is Account_Number_Set_Type, Money_Type,
Balance_Type

sorts Account

opns Make_Account : Account_Number, Balance -> Account
Credit_Account : Account, Money -> Account
Debit_Account : Account, Money —> Account
Get_Balance : Account —> Balance
Get_Account_Number : Account -> Account_Number

eqns forall a: Account, n: Account_Number, m: Money,
ofsort Balance
Get_Balance(a) = Some_Balance;
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ofsort Account_Number
Get_Account_Number (Make_Account(n,m)) = n;
Get_Account_Number(Credit_Account(a,m))
= Get_Account_Number(a);
Get_Account_Number(Debit_Account(a,m))
= Get_Account_Number(a);
endtype

The list of imported definitions is given after the keyword is. The sorts
section gives the name of the data sorts, the opns section defines the operations
by their signature and the eqns section specifies, in terms of equations, the
constraints the operations must satisfy. In section eqns forall we declare the
variables that are going to be used in the equations and in section ofsort we
define the result sort of the equations and then the equations themselves.

In Account_Type there is one constructor (Make_Account which creates an
account from its components), two modifiers (Credit_Account which credits
the account and Debit_Account which debits the account), and two selectors
(Get_Balance which returns a balance and Get_Account_Number which returns
an account number). For the constructors and the modifiers we give their sig-
nature and no equations. The selector Get_Balance does not need to return a
particular value of balance (it is not important for us) and so it is defined with
a dummy equation, always returning the value Some_Balance. Some_Balance is
a constant defined in the abstract data type Balance_Type.

Since we use non-determinism in the process part, the use of dummy equa-
tions in the ADT does not exclude the study of the different possible situations.
For example, the generalized choice operator in process Account enables us to
explore the two possible situations: either there is enough money in an account
or there is not enough money. Get_Account_Number, however, has to return a
particular account number and so it is defined with an equation for each con-
structor.

7 Using the ROOA Method

In ROOA, we use LOTOS to specify the required behaviour of a proposed system
by building a formal model, i.e. a model which is expressed in a language which
has a formal semantics. The model describes the required behaviour in terms of a
set of communicating concurrent objects, where each object is represented as the
instantiation of a LOTOS process and the communication between two objects
is represented by the two processes synchronizing on an event. As LOTOS has
a formal semantics, the model of the required behaviour has a precise meaning
and can, therefore, be used as a formal requirements specification of the intended
system behaviour.

In this section we show how to use ROOA, by using the automated banking
system example given in Sect. 5.
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Task 1: Build the Object Model.
The object model produced by [21] is depicted in Fig. 2.

Task 2: Refine the Object Model.

As the object model only has attributes and static relationships, we have to
complete it by adding services and message connections. In order to accomplish
this, we use interface scenarios together with event trace diagrams. We can follow
complete paths of functionality in the system, creating message connections as
we trace the message passing through the object model. For example, as our
system has to deal with accounts which can be credited or debited, deposit and
withdraw are events in the interface scenarios.

During this study we start building the OCT. Table 2 shows part of the initial
OCT for the objects Counter_Teller, Other_Bank and Account. (SO stands for
Standing_Order and ES stands for Entry_Station.)

Table 2. Initial OCT

Objects

Services Clients

Required

Services
Offered

Counter_Teller
()

open_account
deposit_cash
give_balance
ask_transfer

Account.create
Account.deposit

Account.get_balance

Account.withdraw
Account.deposit
OB.send_transfer

Interface_Scenario
Interface_Scenario
Interface_Scenario
Interface_Scenario

Other_Bank(OB)

receive_transfer
send _transfer
cheque_withdraw
remote_withdraw

Account.deposit

Account.withdraw

Interface_Scenario
CT, SO
Cheque

Interface_Scenario

Account(A) create CT
deposit CT, Cheque, OB, SO
withdraw CT, ES, Cheque, OB, SO

CT

get_balance

During this task we realized that some of the static relationships in the
initial object model were in reality message connections. The refined model is
shown in Fig. 3. The services are shown in the lowest third of each box, message
connections are shown as arrows, and the two obvious groupings of objects are

marked by dotted lines. They correspond to the inheritance structures defined
for tellers and accounts.
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Fig. 3. Refined object model

Task 3: Build the LOTOS Formal Model.

Task 3.1: Create an Object Communication Diagram. We now add gates
to the OCT (see Table 3) and show the obvious groupings: Teller composed of
Entry_Station, Counter_Teller and Automatic_Teller (AT); Bank_Account
composed of Account, Chequing_Account (CA) and Savings_Account (S4).

The OCD is built directly from the OCT. Each node in the OCD is an entry
in column one of the OCT, the arcs are given by analysing columns one and
four and named by column five. The hierarchies identified in the previous task
are shown. Teller and Other_Bank are the first clients in the system. Cheque
and Standing_Order embody the role of servers to Teller and of clients to
Bank_Account. Bank_Account is the final server and so it can only communicate
through gate ba. Figure 4 shows the initial OCD.

Notice that the objects Card and Client are not connected to the rest of the

system. This will often be the case in a first iteration, but will be corrected as
the method is applied.
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Table 3. OCT with gates

Objects Services Services Clients Gates
Offered Required
[Teller open-account(CT) |BA.create Interface_Scenario |t
[ES + CT + AT ] |deposit-cash(CT) |BA.deposit Interface_Scenario |t
withdraw_cash(ES) | BA.withdraw Interface_Scenario |t
give_balance(CT) |BA.get_balance |Interface Scenario |t
ask-transfer(CT) |BA.withdraw Interface_Scenario |t

BA.deposit
OB.send_transfer

Other_Bank(OB) |receive_transfer BA .deposit Interface_Scenario jobl
send_transfer Teller(CT), SO  |ob2
cheque_withdraw Cheque ob3
remote_withdraw |BA.withdraw Interface_Scenario |obl

Bank_Account(BA) [create(A) Teller(CT) ba

[A + CA + SA] deposit(A) Teller(CT), OB, |ba

Cheque, SO
withdraw(A) Teller(ES,CT), ba
OB, Cheque, SO

get_balance(A) Teller(CT) ba

Task 3.2: Specify Individual Objects and Classes. As our goal is to build
a formal LOTOS specification, we have to specify objects, class templates and
classes. If an object only plays a minor role in the system, it can be modelled
as an attribute of a more important object in which case it is specified as an
ADT. Otherwise, an object is specified as a process with one or more ADTs. We
can start by specifying a process and its ADTs, by specifying a set of processes
before dealing with ADTs, or start with the ADTs.

To specify the behaviour of an object we should place ourselves inside that
object and act as if we were the centre of the system. By following this strategy
we identify the events the object takes part in and their order. These events
correspond to the services the object offers to, or requires of, its environment
and are often shown as the options of a choice expression.

As an example, let us look at the specification of Chequing_Account which
inherits from the Account superclass. In Sect. 6, we presented a definition of an
Account process and of an Account ADT. The ADT remains unchanged, but if
Account is to be a superclass then the process definition must be modified.

The earlier version of Account has noexit functionality. After a service has
been handled, Account is invoked recursively. The new version of Account has
exit functionality. The reason for the change is that, within the specification of
the Chequing_Account subclass, many of the offered services are provided by
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Fig. 4. Initial object communication diagram

invoking Account. After a service defined in Account has been handled, all the
services offered by Chequing_Account must again be on offer. We must there-
fore exit from process Account so that Chequing_Account, and not Account, is
invoked recursively. We first define the Account superclass:

process Account[ba](this_account: Account): exit(Account) :=
ba !deposit !Get_Account_Number(this_Account) ?m: Money;
exit(Credit_Account(this_account, m))

O
endproc
We now define the subclass Chequing_Account by extending Account with the
additional service print_mini_statement.

process Chequing Account[ba] (this_account: Account): noexit :=
( Account[ba]{this_account)

1

ba !print_mini_statement !Get_Account_Number(this_account)
'this_account;
exit(this_account)
) >> accept updated_account: Account
in Chequing_Account[ba] (updated_account)
endproc

After a service has been handled, Chequing_Account is invoked recursively and
so all the services are again on offer.

Task 3.3: Compose the Objects into a Behaviour Expression. Once ob-
Jjects have been defined, they can be combined in a LOTOS behaviour expression
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which describes the whole or part of the system. We might, for example, initially
ignore interactions with the Cheque and Standing_Order objects. The top-level
behaviour expression would be:

( ( Other_Bank[obl, ob2, bal] (Make_Bank(...))
| [ob2] | Teller[t, ob2, bal
)
| [bal| Bank_Account[ba]
)
[[t, obl]| Interface_Scenario[t, obi]

where

process Bank_Account[bal: noexit :=
Chequing_Account [ba] (Make_Account(accl of Account_Number, 0))
1

Savings_Account [ba] (Make_Account(acc2 of Account_Number, 0))
where ...

The interleaving operator | | | indicates that the objects Chequing_Account and
Savings_Account are composed in parallel, but do not interact with one another.
The parallel operator | [ob2] | means that the objects Other_Bank and Teller
communicate with each other on gate ob2.

It is often the case, as in this example, that we require instances of sub-
classes, but not of their superclass. That is why only Chequing_Account and
Savings_Account appear in the behaviour expression for Bank_Account.

Task 3.4: Prototype the Specification. Tools are available to identify syn-
tax and semantic errors and to prototype the LOTOS specification. Interface
scenarios are used to drive the prototyping so that the specification can be vali-
dated against the object model and the requirements. The SMILE simulator [6]
allows the use of uninstantiated variables within conditions and uses a narrow-
ing algorithm to determine when a combination of conditions can never be true.
Many more behaviours can then be examined with each simulation than is pos-
sible when all data values have to be instantiated.

Task 3.5: Refine the Specification. We have not yet dealt with static re-
lationships. A relationship is modelled as an argument in the process defining
the class template. This argument is an ADT which represents either the iden-
tifier of an object or a set of identifiers, depending on the cardinality of the
relationship [17].

Let us take the example of Chequing_Account. As we can see from the object
model, it has a relationship with Card and another with Standing_Order. These
relationships are defined as ADTs given as parameters of the Chequing_Account
process. As the relationships have cardinality manyin Standing_Order and Card

directions, they will be modelled as sets. This is shown by the parameters cards
and sos.
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process Chequing_Account[ba](this_account: Account,
cards: Card_Number_Set, sos: SO_Number_Set): noexit :=
( Account[bal (this_account) >> accept new_account: Account
in exit(new_account, cards, sos)

a
ba !print_mini_statement IGet_Account_Number(this_account)
'this_account;
exit(this_account, cards, sos)
(]
ba !perhaps_deposit !Get_Account_Number(this_account)
?m: Money;
exit(Credit_Pending(this_account, m), cards, sos)
]

ba !full_deposit !Get_Account_Number(this_account)
?m: Money ?valid: Bool;
( [valid] —>
exit(Add_Credit_Pending(this_account, m), cards, sos)
]
[not (valid)] ->
exit(Sub_Credit_Pending(this_account, m), cards, sos)
)
) >> accept updated_account: Account, cards: Card_Number_Set,
sos: SO_Number_Set
in Chequing_Account[ba] (updated_account, cards, sos)
endproc

Note that the new version of Chequing_Account extends both the state and
the services that are inherited from Account. Specifying relationships as param-
eters of the process, instead of specifying them in the Account ADT, promotes
reusability of the ADTs.

During this task, we have to introduce more detail in some of the processes
to deal completely with the other objects. That is why perhaps_deposit and
full_deposit have been added. They are needed to deal with cheques. We have
also decided that Card and Client should only be specified as ADTs.

In general, several instances of a class are required and we wish to be able
to create the instances dynamically. This is achieved by means of an object
generator. In the case, for example, of Chequing_Account this is defined as:

process Chequing_Accounts[bal(accs: Account_Number_Set): noexit :=
ba !'create !cheque 7acc_counter: Account_Number
[(acc_counter notin accs) and Is_Chequing Acc(acc_counter)];
( Chequing_Account [ba] (Make_Account(acc_counter, 0),
{} of Card_Number_Set, {} of SO_Number_Set)
1
Chequing_Accounts[ba] (Insert(acc_counter,accs))

)

endproc
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The object generator holds the set of identifiers already allocated and the selec-
tion predicate:

[(acc_counter notin accs) and Is_Chequing_Acc(acc_counter)]

imposes the condition that the new object identifier differs from all existing ones.
As both kinds of account share the same Account_Number sort, ! cheque specifies
the type of account we want to create and Is_Chequing_Acc(acc_counter)
guarantees that the new object identifier belongs to the correct subrange of
Account_Number.

During this task we have also grouped Cheques with Standing_Orders to
form the subsystem Complex_Operations. The OCT has to be changed to re-
flect this grouping and the rules to name gates have to be applied again. The
refinements lead us to the object communication diagram depicted in Fig. 5.

Automatic
t Tellers

ba
ob1
Complex Operations Bank Accounts
ob2 | ’
Tellers cs ¢ ba Accounts
Counter ob2 Standing Chequin
te®
ba

Fig. 5. Final object communication diagram

The top-level behaviour expression is now:

( ( Other_Banks[ob1l, ob2, bal
(Insert(This_Bank, {} of Bank_Name_Set))
| [ob2] |
( Tellers([t, ob2, cs, ba]
| [cs]| Complex_Operations[ob2, cs, ba]
)
)
| [bal | Bank_Accounts[ba]
)

|[t, obil]| Interface_Scenariol[t, obi]

The refinement of the formal model is both incremental and iterative. As
information is added, more static relationships, attributes, services and message
connections can be identified. At all stages we must ensure that the model is
internally consistent and the final model must deal with all the essential objects
identified in the original requirements.
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8 Conclusions

The ROOA (Rigorous Object-Oriented Analysis) method consists of three main
tasks: building an object model, refining the object model and building a formal
LOTOS OOA model. The resulting formal model integrates the object, dynamic
and functional models usually proposed by object-oriented analysis methods.
The development process is iterative and parts of the method can be re-applied
to subsystems.

The dynamic behaviour of each object is specified by a LOTQOS process and
its state information can be specified by one or more ADTs. The processes are
composed, by using the LOTOS parallel operators, to specify the dynamic be-
haviour of the complete system. Therefore, we can specify a system as a set
of concurrent objects and avoid decisions that can be considered design or im-
plementation issues, such as protection techniques for the concurrent access of
shared data. Much of the concurrency will be removed in an implementation,
but we are in the analysis phase, and therefore our goal is to understand the
problem, not to propose a solution.

As LOTOS has a precise mathematical semantics, the LOTOS model is for-
mal and unambiguous. Moreover, as LOTOS is executable, the model is ex-
ecutable, and so prototyping can be used to give immediate feedback to the
clients who can check if the prototype exhibits the intended behaviour. Proto-
typing a formal specification enables omissions and inconsistencies in the original
requirements to be readily identified.

ROOA also provides the first stage in a software development trajectory
where a requirements specification is transformed into a design specification
with prototyping being used to ensure that the two specifications conform to
one another.
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