A Specification Language for Object-
Oriented Analysis and Design

Ted L. BriggsT
Intergraph Corporation
Huntsville, AL 35894

email: tlbriggs@ingr.com

John Werth
Department of Computer Science
University of Texas at Austin
Austin, Texas 78712
email: jwerth@cs.utexas.edu

Abstract

This paper introduces and illustrates the use of ObjLog, an algebraic specification language
for Object-Oriented Analysis and Design. ObjLog is fully abstract, i.e., it specifies the message-
passing and instantiation of objects without explicit use of state. Object behavior is abstractly
defined by traces composed of message send and response events, including instantiation
requests. ObjLog extends equational algebraic specification techniques to specify these traces
and to reason about state dependent transitions in objects. Unlike most existing specification
languages, ObjLog is sufficiently expressive to specify the full range of value-based message-
passing and instantiation behavior exhibited by sequential object-oriented programming
languages. In this paper, ObjLog is used to specify a simple example which is difficult to fully
specify using other specification languages. The resulting ObjLog specification is then refined in
three different ways: subtyping by extension, specialization, and aggregation.

Keywords: Specification Language, Object-Oriented Specification, Object-Oriented Analysis,
Object-Oriented Design, Message-Passing, Object Types

1 Introduction

Although a number of methodologies [3, 6,7, 22,23, 24] for Object-Oriented Analysis
(OOA) and Object-Oriented Design (OOD) have been proposed and are currently in use,
they all are based on informal models of objects and use informal specification
languages. Consequently, the resulting specifications may be ambiguous or inconsistent
[(13]. In contrast, the use of a formal specification language for OOA/OOD ensures pre-
cise specifications, a formal model of objects, and a well-defined notion of abstraction. A
formal specification language also provides the ability to state and prove correctness pro-

perties, as well as to reason about the system.

This paper introduces and illustrates the use of ObjLog, an algebraic specification

T Work doe while at the University of Texas at Austin.

366

language for OOA/OOD. ObjLog is fully abstract, i.c., it specifies the message-passing
and instantiation of objects without explicit use of state. Object behavior is abstractly
defined by traces composed of message send and response events, including instantiation
requests. ObjLog extends algebraic (equational) specification techniques to specify these
infinite traces and to reason about state dependent transitions in objects. An ObjLog
specification is potentially executable, i.c., terms can be reduced automatically through
term-rewriting.

1.1 Specification Languages for OOA/OOD

A specification language for use with Object-Oriented Analysis or Design should reflect
the unique and interrelated nature of OOA/OOD. Both OOA and OOD differ from their
traditional counterparts in that the resulting specifications are object-based. Because
OOA and OOD share a common set of objects, a specification language for OOA/OOD
must express refinment of a requirements specification into a design specification. In
contrast, Structured Analysis, results in a purely functional model which requires transla-
tion into state-based modules for Structured Design.

During Object-Oriented Analysis, objects are used to denote entities in the problem
domain, while in Object-Oriented Design, objects are used to denote software modules.
In both cases, interactions are modeled through message-passing. Hence, an object-
oriented requirements specification defines how entities interact to specify system
behavior, while an object-oriented design specification defines state-dependent module
interfaces and their interactions. In addition, objects are used to model dynamic entities
and it is necessary to also specify the instantiation of objects. However, current
specification languages, both informal and formal, cannot express the full range of
message-passing and instantiation behavior exhibited by sequential object-oriented pro-
gramming languages.

A specification language for OOA/OOD must also support the use of abstraction dur-
ing the analysis and design process. In particular, during Object-Oriented Design,
module interfaces are represented by the message-passing interfaces of objects and
specification of the (imperative) message-passing interface abstracts the module internals
and allows design and implementation decisions to be hidden [20, 21]. This ensures that
implementation decisions and internal design decisions of a module can be changed later
without affecting the system behavior.

1.2 Formal Specification Languages for 00OA/OOD
Specification languages which are formal are especially important for OOA/OOD. First,
they permit one to prove that a particular correctness property is extensible, i.e., it contin-
ues to hold when the system is modified, either by the addition of new objects or by
modifications to existing objects. Second, they provides the capacity to formally reason
about complex system behavior. This is important because many object-oriented
development methodologies are essentially bottom-up: objects are specified and then
composed to form systems. Hence, system properties must be deduced from object
specifications. Although object methods themselves are seldom complex, object interac-
tions and dependencies often are.

However, at present, most formal specification languages are not well suited for

367

OOA/OCD (See Section 7). In contrast, a number of useful OOA/OOD methodologies
have been developed which are informal. A representative list of popular OOA/OOD
methodologies would include Booch [3], Coad and Yourdon [6,7], Rumbaugh [22, 23],
and Shlaer and Mellor [24]. These methodologies typically incorporate three separate
modeling techniques: entity-relationship diagrams, state machines or Statecharts
[11, 12], and data flow diagrams. Hence, they do not present a unified, coherent model of
objects, but rather three interrelated models. Consequently, it is possible that a
specification may define an inconsistent set of models [13]). Moreover, due to the collec-
tion of models used, it often is not possible to reason effectively about the behavior of the
system under development. In an effort to deal with these problems, this approach was
refined by Hayes and Coleman [13], who defined a coherent model of objects and a
specification language based on Objectcharts {2, 8]. However, this work, like all these
specification languages incorporates state machine models, which limits their expressive-
ness.

1.3 Organization of the Paper

In this paper, a simple example is used to introduce and illustrate the use of ObjLog. The
corresponding ObjLog requirements specification is presented and the underlying formal
semantics is briefly discussed. Behavioral properties are expressed in ObjLog through
the use of equations. ObjLog supports the three common forms of refinement often used
in OOA/OOD: subtyping by extension, specialization, and aggregation. The expressive-
ness of ObjLog is demonstrated by the range of traces which may be expressed. The for-
mal development of the underlying trace model is given in a companion paper [5].

The paper is organized as follows. Section 2 informally defines the underlying
notions of objects and types in ObjLog. In Section 3, the example problem is introduced,
the analysis model is defined, and the syntax for services is fixed. Section 4 introduces
our trace model of object behavior and gives selected traces for the example. This also
provides the basis to later discuss the expressiveness of other specification languages. In
Section 5, the requirements specification for the example is given using ObjLog. Section
6 illustrates the use of three types of specification refinement in ObjLog. Section 7 com-
pares and surveys related work. Finaily, Section 8 concludes the paper.

2 Objects, Messages, and Types in ObjLog

This section informally defines the underlying notions of object, message, and type in
ObjLog. It is useful to clarify these notions due to the diversity of related concepts often
used in object-oriented development.

2.1 Objects

Objects act both as clients and servers which interact through messages. Each object has
a label and a set of history-sensitive services. The parameters and return values of ser-
vices are stateless abstract data type values called primitive values. An object is per-
manently labeled by a unique, immutable object identifier. Object identifiers are con-
sidered primitive values, but may not be otherwise manipulated except to compare for

equality.

368

A signature is a set of service names with their respective parameter and return types.
A subsignature is any subset of a signature. The object signature of an object is the sig-
nature consisting of all the services provided by the object. An object safisfies every sig-
nature which is a subsignature of its object signature.

In contrast to the abstract ObjLog approach, objects in object-oriented programming
languages have a label and a state-based implementation. The implementation of an
object is a set of attributes and related set of methods. An attribute is an instance vari-
able declaration, i.c., a name and data type. A method is a specific implementation of a
service, i.€., it is an m-ary operation on primitive values which may side-effect the
instance variables. The value returned by a method is a function both of the instance
variables and method parameters.

2.2 Messages

Objects interact only through messages. A message is a term <0, m(Xy, .. .,X,)> with
object identifier o, service name m, and parameters X, . . . , X,. A message send event is
a request by an anonymous client for a specific service from a specific server. A
response event to such a request is the value returned by the service. A trace is a count-
able sequence of message send and response events. The observable behavior of an
object consists of all possible traces of events involving the object as either a client or
server. Note that objects often require the services of other objects, i.e., servers may act
as clients while evaluating messages. Further, objects may provide services which
instantiate other objects.

2.3 Types

An abstract object type or simply type is the set of objects which satisfy a given signature
and exhibit (:quivalc:nt1 behavior on that signature. In this paper, two traces are con-
sidered equivalent if there exists a permutation of object identifiers which will map one
trace into the other. Informally, this means that objects of the same type can be substi-
tuted for each other without affecting the behavior of the system. A type T, is a subtype
of T, if the objects of T, are also of type T,. These are polymorphic types, i.e., objects
have many abstract object types.

Programming languages, in contrast, typically support two different notions of type:
classes and signature types. A signature type is a weaker notion of type: the set of
objects which satisfy a given signature. This is purely syntactic classification which does
not enforce any constraints on object behavior. A class is a stronger notion of type: a set
of objects with a common implementation. Consequently, the objects of a class are
always of the same abstract object type, regardless of the notion of equivalence. Con-
versely, abstract object types are always partitioned into classes, i.e., the same observable
behavior may arise from several implementations. A class C, is a subclass of C, if the
objects of class C, are also objects of class C,, i.e., they incorporate the same implemen-
tation as the parent class.

1 Several notions of equivalence can be considered to address different concerns for object types. At the very least, trace
equivalence must be introduced to model instantiation of objects with arbitrary object id ifi For a di ion of

various other possible ideas of equivalence sce the companion paper on the formal development of the underlying trace
model [5].

369

3 Example Problem and Initial Analysis

This section introduces the example problem which will be specified using ObjLog. The
example problem is defined, an object-oriented model produced, and the object signature
defined.

3.1 Requirements Statement
The problem is to develop a simple graphical drawing system which allows a user to
draw, connect, and move lines2. For simplicity, we will assume that the user interacts
directly with the objects, rather than indirectly through an event manager.

Definition 1. (Problem Statement)

Consider an infinite two dimensional plane with integer valued coordinates. A line is defined by
two distinct endpoints labeled "left" and "right". (The "left" label denotes the endpoint with the least x
coondinate and, if the x coordinates of the two endpoints are equal, then it denotes the endpoint with the
greatest y coordinate.) The set of lines on the plane is called a diagram. Initially the diagram is an
empty set. However, a user may create a new line for a given endpoint coordinates or may move an
existing line a given displacement.

A user may also attach two lines which share a common endpoint. A line may be attached to at
most one other line at each endpoint. Newly created lines are not attached at either endpoint. The
attached lines and their endpoints form a graph: two lines are connected if they are in the same path.
When a user moves a line, all connected lines are also moved. For simplicity, a line cannot be con-
nected to itself.

The services which a line object with identifier line provides a user are:

User Services Description

getX(s) Return the x coordinate of endpoint s.

getY(s) Return the y coordinate of endpoint s.

hasAttached (s) Return whether endpoint s has a line attached.

isConnected(s, I) Return whether line is connected by an endpoint s to a line L.

isSamePt(s,, 1, 5,) Return whether an endpoint s, of line is the same point as endpoint s,
of line .

move(x, y) Move line and all connected lines by the given displacement.

attach(s, 1, s,) Attach two lines at a common point. Attach the endpoint s, of line and

the endpoint s, of line I. Return a boolean indicating whether I was
attached to line.

connect(s,, l, s,) Connect the endpoint s, of line to the endpoint s, of line / by creating a
new line attached to both endpoints. Return a boolean indicating
whether the endpoints were connected.

3.2 Object-Oriented Model

An object-oriented analysis produces an object-oriented model which specifies system
behavior. The first step is to identify the objects, their interactions and collaborations.
This can be conveniently represented in graphical fashion by an interaction diagram.
Specifically, an interaction diagram is a labeled directed graph in which nodes denote
types and edges denote sets of services called contracts3. An out-edge denotes a set of
services which are required and an in-edge denotes a set of services which are provided.

2 This is an adaptation of the problem used by Hayes and Coleman [13]. Itis simplified by the elimination of boxes, but
illustrates a wider range of behavior by the inclusion of additional services.

370

This is similar to the configuration diagrams of Coleman and Hayes [13], the Object
Communication Model of Shlaer and Mellor [24], and the collaboration graphs of Wirfs-
Bock et.al. [26].

For this simple example, the resulting object-oriented model consists of two object
types: User and Line. It also includes two contracts: User ~Line and Line -Line. The
interaction diagram for the drawing system is given below in Figure 1. The User -Line
contract is defined above in the requirements statement. A object of type Line provides
this set of services to the user. The user does not provide any services and is shown only
to illustrate the services it requires.

)

Line User

Figure 1.: Interaction Diagram.

The Line -Line contract must now be defined to permit line objects to collaborate and
provide the required services to the user. Line objects themselves will require a set of
services similar to those provided to the user: getX, getY, hasAttached, isSamePt, and
isConnected. However, the move and attach services cannot be used recursively: hence
two additional services must be introduced: MoveAttached and doAttach. An object with
identifier line also provides these two additional services to other objects:

Additional Services Description
MoveAttached(s,x,y) | Move all lines connected by endpoint s to line.

doAttach(s,, 1, 5,) Attach the endpoint s, of line [to the endpoint 5.

The move service moves attached lines at both endpoints, while the MoveAttached ser-
vice only moves an attached line at a specific endpoint. The attach service involves two
objects, while the doAttach only affects the state of a single object.

3.3 Signature
The next step is to define the signature of Line objects. The set of primitive abstract data
types, Prim, used in this model contains the following primitive data types: object
identifiers, integers, sides, booleans, and void. These are denoted respectively by the fol-
lowing data types names or sorts: Objld, pos, int, side, bool, void. Object identifiers
will be denoted 0,, 0,,.... A special data type void is used to indicate that a returned
value will be ignored. The enumerated type side = { left, right } is used to label the end-
points of lines. A function opp maps one side into the other.

The signature of Line objects is defined in Figure 3 (where services have already been
divided by the ObjLog approach into selectors and updates). The parameter and return
types are defined with functional notation, similar to the way signatures for abstract data

3 ObjLog does not introduce explicit notation for contracts. Rather, a conmtract (sometimes aiso called a view) is
represented simply as a subsignature.

371

types are often defined. Hence getX and gerY both take a single argument of type side
and returns an integer. The notation Objld (LineSig) denotes the set of object identifiers
of all objects with signature type LineSig. A constructor is a special service provided by
a special system object, which creates new objects of the given object type. This signa-
ture also specifies a signature type LineSig.

4 Object Behavior: A Trace Model

This section defines object behavior in general, as well as the behavior of line objects in
particular, using a trace model. The trace model adopted here differs from many other
models in that it permits nested service. The services provided by objects are not local,
atomic actions, but rather correspond roughly to remote procedure calls. Message-
passing involves a pair of events: a send and a response. The formal development of
traces and the definition of abstract object types is given in a companion paper [5].

4.1 Messages and Traces

The message-passing behavior of objects will be defined by a sequence of message sends
and responses. A message send is written as a term "send(o, request)" where o is an
object identifier value and request is a request term which consists of a service name fol-
lowed by parameter values. A response is indicated by the term "ret(value)". A
sequence of events is written using the ";" operator. For example, given a Line object
with object identifier 0,, a message send event which requests the x coordinate of the left
endpoint followed by a response of "4" would be written:

send(o,, getX(left)); ret(4)

A trace is a countable sequence of message send and response events starting with a
message send. In ObjLog, objects are assumed to be sequential, i.e., a message sequence
is processed sequentially one message at a time. For example, the message sequence to
first move the line ¢, and then return the left x coordinate is written:

send(o,, move(S, -5)); send(o,, getX (left))
The resulting trace is written:
send(o,, move (S, -5)); ret(void); send(o,, getX (left)); ret(9).

An object satisfies an signature if it responds to messages containing its method
names with data values of the correct type. The behavior of an object can be character-
ized by an infinite set of all possible traces. The ObjLog specification language, how-
ever, is based on defining the algebraic properties inherent in such traces.

4.2 Instantiation

Instantiation of objects is treated in ObjLog as a special type of message. The system is
regarded as a special object with object identifier sys which can act only as a server and
does not require the services of any other objects. Objects are instantiated by a construc-
tor message to the system object. The constructor is prefixed by a signature or type name
to allow overloaded constructor names. For example, the message to instantiate an object
of signature type LineSig is written send(sys, LineSig.new(0, 0, 2, 3)). The sys object
guarantees the uniqueness of object identifiers by returning object identifier of previously
uninstaniated objects.

372

4.3 Object Behavior in the Example Problem
The requirements statement provided only an informal and incomplete specification of
line object behavior. The behavior of line objects in a specific diagram can now be
specified precisely by a selected set of traces. Traces will also be used as a basis for dis-
cussing the expressiveness of other specification languages. To this end, the services an
object provides will be classified as local, non-local, nested, trigger, and recursive.

A diagram which might be produced by the finished drawing system is shown below
in Figure 2. Each line is labeled by its object identifier. Attached lines are indicated by a
circle at the attached endpoint.

03

ol

02

Y

- N W h O

1 23 456 78

Figure 2.: Example of a diagram.

Assuming that the system allocates object identifiers sequentially, the diagram above
could be created by the following sequence of messages:

send(sys, Line.new(4, 4, 4,6)); send(sys, Line.new(4, 2,7, 5));

send(o,, connect(left, 0,, right)); send(sys, Line.new(4, 2, 2, 2))

A local service is the simplest form of service provided by a object: it generates no
additional messages and hence does not require the services of other objects. The trace
of a local service is a message send followed by a response. A Line object has four local
services: getX, getY, hasAttached, doAttach. An example of a local trace is:

send(o,, hasAttached(left)); ret(true).
An object with only local services can be modeled formally as a state machine where the
message send events are interpreted as input and response events are interpreted as out-
put.

In general, services may be non-local, i.e., require the services of other objects. In
this case, a server, which is has received a message, sends a message to another object.
The response to this secondary message must be returned before the server itself can
return a response. Hence this results in nested traces. For example, the isSamePt service
can be defined using the getX and getY services from the line in question.

send(o,, isSamePi(right, 0,, left));
send(0,, gelX (left)); ret(4);
send(o,, getY (left)); ret(2);
ret(false)
The resulting trace is indented to show the nesting level. In this case, the object 0, gen-
erates a sequence of messages to object 0, before the response is returned.

373

A trigger service is a special case of a non-local service whose trace always contains
only void responses. The effect is to simply trigger services from other objects without
requiring a return value. Trigger services are the most general non-local services which
can be expressed by Statecharts or Objectcharts. A Line object has two trigger services:
move, MoveAttached. The move service triggers MoveAttached services in every con-
nected line as shown below:

send(o,, move(2, 2))
send(o,, MoveAttached(left, 2, 2));
send(o,, MoveAttached(right, 2, 2)); ret(void),
ret(void);
ret(void)
The nesting level reflects the fact that object ¢, has two lines connected by its /eft end-
point. Note that each Line object must know the object identifier of its attached lines as
well as the label of the endpoint of those attached lines.

A recursive service is another a special case of a non-local service. The trace length
and nesting level are data dependent. This type of service cannot be expressed using Sta-
techarts or Objecicharts. A Line object has three recursive services:
move, MoveAttached, and isConnected. The isConnected service is a recursive service,
which recurses over the connected lines until it finds a matching object identifier. For
example, the trace for zero attached lines is

send(o, is_connected(right, 0,)); ret(false)

and the trace for three connected lines is:

send(o,, is_connected(left, 0,));

send(o,, is_connected(right, 0.));
send(0,, is_connected(left, 0,)); ret(false)
ret(false);
ret(false)
Space does not permit further characterization of the trace behavior of Line objects in

general and the attach, doAttach, and connect services in particular.

5 Specification with ObjLog
This section illustrates how the example problem is specified in ObjLog. The ObjLog
signature is defined and the distinction between selectors and updates is discussed. Then
the ObjLog requirements specification is defined and the informal semantics are dis-
cussed. Finally, we sketch how one uses equations in ObjLog to reason about objects.
An ObjLog specification abstracts the internal attributes and state values by utilizing
only the elements of the signature to specify object behavior. This requires only a
specification of the selector, update, and constructor services, which are often implicit in
other specification techniques. Given these services, the syntax used to define object
behavior is minimal: message-passing, assignment, and primitive data type operations.
This is similar in style, except for the additional data type operations, 1o a pure object-
oriented programming language.

5.1 ObjLog Signature
An ObjLog signature is partitioned into selectors, updates, and constructors as shown in
Figure 3 below. This partition of services into selectors and updates is, in fact, just a

374

generalization of the usual division into attributes and methods, respectively, in state-
based languages. The set of primitive data types Prim is assumed to be formally
specified in a many-sorted algebraic specification language, e.g., OBJ3 [10]. Every prim-
itive data type is also assumed to have two infix operators: relational equality, written
" == ", and a conditional, written " if _ then _ else _".

Type Signature LineSig=
Primitive Types: Prim

Selectors:
getX, getY: side —» int
isSamePt: side, Objld (LineSig), side — bool

hasAttached: side — bool
isConnected: side, Objld(LineSig) ~ bool

Updates
move: int, int — void
MoveAttached: side, int, int = void
attach: side, Objld (LineSig), side = bool
doAttach: side, Objld (LineSig), side — void
connect: side, ObjId (LineSig), side — bool
Constructors
new: int, int, int, int = Objld (LineSig)
End

Figure 3.: ObjLog Signature for Line .

A selector service is an abstraction of the internal object states. It denotes a fixed, n-
ary function on the primitive data types, for each internal state. An update service is an
abstraction of the internal state transitions. An update message affects the response to
subsequent messages by changing the internal state characterization. For example, a
sequence of getX selector services each returns the same response, but a move update will
change this response.

send(o,, getX (left)); ret(4); send(o,, getX (left)); ret(4)

send(o,, getX (left)); ret(4); send(o,, move(4, 5)); ret (voidy, send(o,, getX (left)); ret(9)
5.2 ObjLog Requirements Specification
An ObjLog specification consists of an ObjLog signature and a definition of the effect of
updates and constructors on selector services. The difference between ObjLog require-
ments specifications and design specification is one of refinement and not syntax. The
ObjLog requirements specification for the example problem is given below in Figure 4.
It incorporates the signature LineSig and adds two hidden selectors AttachedLine and
AttachedLinePt and a hidden update doMove. The two hidden selectors are required to
define the object identifiers of the attached lines and the endpoint at which they are
attached. The hidden update simplifies the specification of move and MoveAttached. In
addition, some of the selectors in the LineSig signature are classified as dependent selec-
tors.

375

Object Type Specification Line =

Primitive Types: Prim
Selectors:
geX, getY: side —» int
hasAttached: side — bool
Hidden
Antachedline: side — Objld (Line)
AttachedLinePt: side — side

Dependent:
isConnected: side, Objld(Line) —» bool
isSamePt: side, Objld(Line), side — bool
Definitions

isConnected(s, 0) |-
if not hasAttached(s) then false

else if AutachedLine (s) == o then true
else send(AttachedLine (5), isConnected(opp (AttachedLinePt (s), 0))) fi fi

isSamePt(s,, 0, s,) >
getX (s,) == send(o, getX(s,)) and getY(s,) == send(o, getY(s,))

Updates
move: int, int —» void
MoveAttached: side, int, int — void
attach: side, Objld (Line), side —» bool
doAttach: side, Objld (Line), side — void
connect: side, Objld (Line), side —» bool
Hidden
doMove: side, int, int — void
Definitions
move(x, y):
MoveAttached(left, x, y);
i hasAttached(right)

then send(AttachedLine (right), MoveAttached(opp (AttachedLinePt), x, y)) fi
MoveAttached(s, x, y):
doMove(x, y);
if hasAttached(s)
then send(AttachedLine (s), MoveAttached(opp (AttachedLinePt), x, y)) fi
doMove(x, y):
getX (left) 1> getX (left) +x, getY (left) |- getY (left) + y,
getX (right) 1 getX (right) +x, getY (right) > getY (right) + y
attach(s, 0, s,):
if not hasAttached (s,) and isSamePt(s,, 0,s,)
and not send(o, hasAttached(s ,))andnotisConnected(opp (s), 0)
then doAttach(s,, 0, 5,); send(o, doAttach(s,, self, s,)); return(true)
else return(false) fi
doAttach(s,, o, s,):
hasAttached(s) 1> true, AttachedLine > o, AttachedLinePt |— 5,
connect(s,, 0, 5,):

if not hasAttached(s,) and not send(o, hasAttached(s,)) and not isConnected(opp(s,), 0)

then let line = send(sys, Line.new(getX (s,), getY (s,), send(o, getX(s,)),
send(o, getY (s,))))
side = if send(line, isSameP1(s,, line, left)) then left else right fi
in doAttach(s,, line, side); send(o, doAttach(s,, line, opp (side)));
send(line, doAttach(side, self, s)); send(line, doAttach(opp (side), 0, 5,));
return (true)
endlet
else return(false) fi

376

Constructors
new: int, int, int, int = Ob jld (Line)
Definitions

new(x , y,,X;, ¥,):
ifx,<x, or (x, ==x, and y, zy,)
then getX (left) > x,, getX (right) 1= x,, getY (left) 1> y,, getY (right) > y,
else getX (right) \— x,, getX (left) = x,, getY (right) b» y,, getY (left) > y,
EndSpec
Figure 4.: ObjLog Line Type Specification .

5.3 Semantics
ObjLog extends algebraic specification techniques to specify traces. Space permits only
a brief sketch of the formal semantics of ObjLog.

5.3.1 Selector Services

Several kinds of selectors are used in ObjLog specifications: primary, hidden, derived,
and dependent. In the requirements specification above, only primary, hidden, and
dependent selectors are used. Later examples will use and discuss derived selectors. A
selector is an n-ary function in the primitive data type algebra. A selector algebra is an
extension of the primitive algebra. A universe is the set of all possible such selector alge-
bras.

A hidden selector is a function which may be used only within the body of the
specification to simplify expression of interface behavior, to indicate design choices in a
design specification, and to permit expression of behavior which could not otherwise be
expressed. Similarly, hidden updates are used to simplify the specification, but cannot
used outside the body of the specification.

A dependent selector is expressed as a function of other selectors and messages to
other objects. It denotes a function which is dependent on other objects and is defined by
a transition function. In the specification above, isSamePt is mapped into the boolean
expression which contains two messages. A dependent selector is not directly affected by
updates. Hence, the effect of updates and constructors on dependent selectors need not be
defined. Dependent selectors are typically required to specify services which involve
instantiation or services required from other objects.

5.3.2 Update Services and Constructors

Updates and constructors denote transition functions on the selectors. These are defined
component-wise on each selector using the notation u:s |- e, to denote that u is an
update which will map the selector s into the expression e,. By convention, the map for
any selector s which is not explicitly given is assumed to be the identity map, u: s |- s.
A transition function maps all selectors simultaneously. If an update also returns a non-
void value, the notation "return(value)" is used. A conditional operation is used for tran-
sition functions with the assumption that the " else " branch is either defined or it is the
identity map. Constructors denote transition functions which define the initial selector
values.

A transition function extends to a homomorphism on selector algebras. Hence the set
of updates is a monoid under the ";" operator. An ObjLog specification which does not
contain messages denotes a transition monoid defined over a universe. A configuration is
a transition monoid and a specific selector algebra.

377

5.3.3 Messages

The environment is a special object which contains object configurations and allows
objects to interact. More precisely, it provides a selector service which maps object
identifiers into configurations. A send operation is an update service of the environment,
which reduces the request term in the appropriate configuration. The order of reduction
for expressions is fixed as left to right.

53.4 Satisfaction

An ObjLog specification defines an abstract object type, i.e., it defines a class of traces.
An object satisfies a specification if it exhibits all of the traces defined by the
specification.

5.4 Equational Reasoning

ObjLog uses equations to specify object behavior. Thus far, we have used traces to illus-
trate object behavior. An equation provides a concise representation which specifies how
traces are generated. Object behavior has two important aspects which must be specified:
the value returned and the effect on subsequent services. ObjLog introduces two kinds of
equations to specify and reason about both aspects: data type equations and transition
equations respectively.

5.4.1 Data Type Equations
A data type equation denotes equality of data type values and is written using the stan-
dard equational notation " = ". Because selectors denote functions on the primitive data
types, data type equations can be used to define the response of a particular selector. For
example, the initial selector value of hasAttached (s) for a Line object can be written as
hasAttached = false. If o € Objld(Line), then this equation represents the trace:
send(o, hasAttached), ret(false).

Data type equations can also be used to express invariant relationships between ser-

vices. (Expressions and parameter lists are assumed to be evaluated left to right.)

true = not isConnected(s, self)

true = not hasAttached (s) => not isConnected(s, 0)

true = hasAttached(s) or isConnected(s, 0) or notisSamePt(s, 0,s,) = notattach(s, 0,s,)
true = hasAttached(s) or isConnected(s, 0) => not connect(s, 0, s,)

5.4.2 Transition Equations
A transition equation denotes equality of transition functions and is written " = "
Because updates denote transition functions, transition equations can be used to specify
properties of updates. For example, a sequence of two move operations is equivalent to a
single move for Line object:

move (x,,¥,); move(x,, y,) = move(x, + Xy, +¥3)
Transition functions compose under sequencing. Hence, this transition equation is
satisfied because both updates denote the same transition function:

getX (s) > getX (s) +x, getY(s) > getY(s) +y.
Any such sequence of two observations in a message sequence could be replaced by a
single observation without affecting the behavior of the remainder of the message

378

sequence. This represents the behavior of an infinite number of traces each characterized
by selector values. Transition equations express invariant properties of objects. ObjLog
is unique in that one can specify update behavior directly through transition equations.

A partial set of the transition equations derived from the requirements specification
are given below in Figure 5. The identity transition function is denoted id. The move
service is absorptive and commutative and has inverses. Both attach and connect are
idempotent.

move(0,0) = id

move(x, y); move(~x, -y) = id

move(x,, y,); move(x,, y,) = move(x,, y,); move(x,, y,)

move(x,, y,); move(x, y,) = move(x, +X,,y, +,)

attach(s,, o, 5,); attach(s,, 0, s,) = attach(s,,0,s,)

connect(s, 0, 5,); connect(s,, 0, s,) ® connect(s,,0,s,)

Figure 5.: Transition Equations for Type Line.

6 Refinement of Specifications in ObjLog

This section illustrates three major forms of specification refinement and their expression
in ObjLog. A specification may be refined by extension subtyping, specialization, or
aggregation. Refinement of specifications may occur during either the analysis or design
phases as well as the during transition from analysis to design. Typically, a requirements
specification reflects an abstract view of system functionality which must be refined into
a design specification that reflects specific system assumption and design choices for
objects.

6.1 Refinement by Extension Subtyping ,
An extension subtype extends the functionality of the parent type with additional selec-
tors, updates, and constructors. Subtype T, is an extension subtype of T,, if every imple-
mentation of T, is also a implementation of T,, i.e., a class of type T, is also of type T).
Extension is often called abstract implementation or data refinement in the context of
abstract data type specification. This is useful in analysis and design when the func-
tionality of the requirements is extended. Design for reuse typically also extends the
specification to a wider range of applications.
Object Type Specification ExtLine =
Incremental Refinement of: Line
Subtype of: Line
Selectors:
getMoveCnt: - int
Updates:
reset: —» void
Definitions
move(x, y): getMoveCnt 1> getMoveCnt + 1
reset: getMoveCnt > 0
Constructors:
new: int, int, int, int — ObjId (ExtLine)
Definitions
new: getMoveCnt t— 0
EndSpec
Figure 6.: Extension Subtype of Line.

379

An extension subtype ExtLine of Line is specified above in Figure 6. It adds a new
selector getMoveCnt and new update reset. An additional map is added to the move
update and new constructor to define their effect on the new selector. This is expressed as
an incremental refinement which specifies update and constructor definitions to add to
existing update and constructor maps.

An ExiLine object satisfies the same set of transition equations in Figure 5 as a Line
object, provided we restrict ourselves to the Line subsignature. However, if the full Ext-
Line signature is used, ExtLine will not satisfy the transition equation:
move(x,,y,); move(x,,y,) = move(x, +X,,y, +y,). The use of the getMoveCnt ser-
vice will distinguish these two message sequences.

6.2 Refinement by Specialization Subtyping
A specialization subtype redefines the parent type specification to specialize its represen-
tation. A specialized subtype generally permits a simpler specification than the parent
type. For example, a horizontal line is a specialization of a Line object which requires
only a single y coordinate. Another example is a square which is a specialization of a
rectangle which is a specialization of a polygon. A polygon must be specified by one
point for every vertex, a rectangle requires only two points, and a square requires only
one point and a length.
Object Type Specification HorizLine =
Incremental Redefinition of: Line
Subtype of: Line

Selectors:
Hidden
yPos: — int
Derived:
getY: side —» int
Constraints

getY(left) = getY (right)
getY (left) = yPos

Updates
Hidden Definitions
doMove(x, y):
getX (left) 1> getX (left) + x, getX (right) +— getX (right) + x, yPos — yPos +y
Constructors
new: int, int, int, int — Objld (HorizLine)
Definitions
neW(X,, ¥, X5, ¥5):
ifx,<x, or (x,==x, and y, 2y,)
then getX (left) > x, getX (right) > x,, yPos - y,
else gelX (right) > x,, getX (left) k> x,,, yPos - y,
EndSpec

Figure 7.: Horizontal Line as a Specialized Subtype.

The Line type is specialized to a horizontal line in the specification given in Figure 8.
A hidden selector yPos is introduced to define the y coordinate of the line. The getY
selector becomes a derived selector which depends on yPos. The constraints express the
property of horizontal lines that both endpoints share the same y coordinate. Only the
doMove update and new constructor need be specified in order to define their effects on
yPos. The other updates used, but did not update gerY. This is expressed as an

380

incremental redefinition which specifies update and constructor definitions to replace
existing updates and constructor definitions, analogous to overwriting in object-oriented
programming languages. In this simple example, the correctness of the subtype is
ensured by rewriting portions of the Line specification to replace getY (s) with yPos.

A derived selector can be expressed as a function of primary selectors, e.g., gefY is a
function of yPos. The effect of updates and constructors on derived selectors is implicitly
defined and need not be specified. Hence, the use of derived selectors simplifies the
definition of updates and constructors, resulting in a more concise specification. Further,
by reducing the number of primary selectors, reasoning about the behavior the object is
simplified.

A constraint is an equation which is always satisfied. Constraints are used to define
derived selectors and help to simplify specifications. In the specification above, the
values of gefY (left), getY (right) and yPos are always equal. The derived selector gerY
always denotes an integer such that both constraints are satisfied, i.e., gefY for both sides
is equal to yPos.

6.3 Refinement by Aggregation

An ObjLog specification can be refined by aggregation in which local services are pro-
vided by a component object. This is useful, especially in design, to simplify compli-
cated objects and permit sharing of component objects. The effect of aggregation is to
transform primary, derived, and hidden selectors into dependent selectors. This requires
that updates and constructors which map these selectors be redefined using messages to
the component objects.

In the interest of space, we only sketch the details of this form of refinement. The .
Point object type must specify selectors for x and y coordinates and a move update. The
aggregate line type AggLine is then parameterized by the Point object type, indicating
that AggLine objects require the services of Point objects. Parameterization allows us to
build one specification from another. A selector must be added to AggLine which
specifies the component objects. The selectors getX and gefY then become derived selec-
tors. The local update doMove is rewritten to send a move messages to the component
objects.

7 Comparison to Related Work
The basis of our approach can be summarized by the following four properties which dis-
tinguish ObjLog from other specification languages for OOA/OOD:

» Full Abstraction Objlog specifications are property-based and fully abstract, i.e.,
specify only the message-passing and instantiation behavior of objects. This ensures
that internal design decisions can later be changed without affecting the system
behavior. This approach is equivalent to the responsibility-driven design approach of
Wirfs-Bock et.al. [26]. In contrast, other specification languages are typically
model-based, e.g., explicitly use attributes and state machine models. Specifically,
the observable behavior of an object is expressed as a trace of message sends and
responses, extended to model the instantiation of objects. An ObjLog specification
defines the algebraic properties of such traces.

381

* Fully Expressive The expressiveness of a specification language is the range of
message-passing and instantiation behavior which can be specified relative to sequen-
tial object-oriented programming languages. ObjLog fully expresses message-
passing based on abstract data type values?. However, existing specification
languages, both formal and informal, typically express only a limited range of
message-passing and instantiation behavior.

» Equational Reasoning ObjLog uses equations to specify and reason about interface
properties. Specifically, data type equations define the response to a particular ser-
vice as well as expressing invariant relationships between services. Transition equa-
tions express invariant update properties of objects. ObjLog is unique in that one can
specify update behavior directly through transition equations.

+ Executable Specifications Objlog specifications are potentially executable, i.e., can
be reduced automatically through term-rewriting. Equations can then be mechani-
cally evaluated by comparing the reductions of two expressions. Such executable
specifications provide the user with a prototype of the abstract system. In contrast,
specification languages which require a general first order theorem prover also gen-
erally require interactive assistance from the user.

We classify related approaches to specification languages for OOA/OOD into three
categories: informal methodologies, algebraic specification, and other specification
approaches.

7.1 Informal Methodologies

The informal methodologies discussed in Section 1.2 each provide an informal
specification language which permits a complete specification of the message-passing
interface. However, a state machine model with special semantics, is typically adopted to
model message-passing. This in tumn limits the expressiveness of these languages and
restricts specification of non-local services to the special case of trigger services. Hence,
in the example considered in this paper, recursive services, such as move, MoveAttached,
and isConnected, cannot be specified by these languages. Initial values of attributes may
be specified, but instantiation cannot be specified and constructors are generally not
defined.

For example, the Object-Oriented Modeling Technique (OMT) methodology of Rum-
baugh et. al. [22,23] is comparable in approach and modeling power to other metho-
dologies, including Booch [3], Coad and Yourdon [6, 7], and Shlaer and Mellor [24]. It
adopts the Statechart [11, 12] representation of state machines. However, the Statechart
model does not adequately express interacting objects because it uses a broadcast model

4 Some object-oriented programming languages also allow message-passing based on pointers or functions. The use of
pointers in a "mixed" language such as C++ typically compromises encapsulation. All "pure” object-oriented languages

implicitly use closures (called blocks in Smalltalk) as arg; Acl is a function plus an environment, i.e., it can be
executed outside s original environment and also preserves encapsulation of atiributes. Conditionals (if-then-clse
function) are impl d in "pure” languages as ges to Boolean objects with the two branches as closure arguments.

This can be modeled in ObjLog by the use of boolean functions which will later be implemented as messages to Boolean
objects.

382

of communication. Object interactions are modeled by sending events which may be
directed to a single object or a class of objects. However, every object which can accept
the event, will do so concurrently. Reasoning is difficult because data flow events are
used to trigger state machine transitions.

The approach of Coleman and Hayes [13] is based upon formalizations of the three
models used in the OMT methodology: the HP-SL type system, Objectcharts, and Hoare
Logic. This permits the definition of consistency of models, but proofs involve induction
on system structure and hence are not practical. The Objectchart [2, 8] model refines Sta-
techarts by adopting a uni-directional model of message-passing. A transition may gen-
erate of a set of messages, but response values cannot be defined.

7.2 Algebraic Specification

A number of algebraic specification languages have been proposed specifically for
object-oriented programming. Unfortunately, they are not suitable as OOD specification
languages. Each suffers limitations in specifying the message-passing interface or adopts
a model of message passing which limits the expressiveness of the language.

The approaches of McKenzie [17], and Breu [4] model message-passing correctly,
but specify stateless, functional interfaces, i.e., classes are modeled as abstract data types
of objects. Object identity is not modeled. McKenzie supports message-passing with
multiple targeting, similar to the CLOS (Common Lisp Object System) language.

FOOPS (Functional and Object-Oriented Programming System) [9] is an algebraic
specification language for classes in which classes are modeled as algebras of methods
acting on objects. The methods are parameterized by the object identifiers of objects of
the class. Message-passing is modeled by the functional composition of services which
restricts update services to object identifier return types. Update services with different
return types can be modeled, but requires the introduction of additional selectors.
Further, the use of functional composition precludes dynamic instantiation. FOOPS can-
not express a design which has multiple constructors because only a single constructor
with a variable number of parameters is provided. Equational reasoning for data types is
supported, but transition equations are not.

Maude [18] is a concurrent, communication based, specification language for objects
based on rewrite logic and order-sorted algebra. The object system is represented as a
term which evolves under rewrite by messages. However, messages in Maude are uni-
directional, i.e., they do not return values. They also include the sender’s object
identifier, i.e., they are not anonymous. Each visible attribute gives rise to a pair of
implicitly generated communications and a rule. The rewrite rules for an update which
returns a value must generate an explicit reply. Maude does not provide an mechanism
for object instantiation, rather it must be modeled explicitly by instantiating a system or
class object. Further, sequencing is implicit in the rewrite rules, and additional, inter-
mediate states may be required. Rewrite, rather than equations, are used for reasoning.

7.3 Other Approaches

A number of other approaches have also been proposed for formal models and formal
specification languages. However, there are often limitations in the model of objects and
behavior specified.

383

Several existing specification languages have also been used to specify objects, e.g.,
VDM [19] and LOTOS [16]. These approaches have the advantage of using existing
languages and tools. However, these specification languages do not directly support
object abstractions and hence extraneous abstractions must be introduced to model
objects. VDM is a model-based language. The use of YDM introduces YDM primitives
into the specification. LOTOS is a property-based language based on processes and alge-
braic specification language. Mayr [16] uses LOTOS to model objects as processes, but
this results in the explicit introduction of channels in the specification.

There has also been considerable interest in verification using Hoare Logic. How-
ever, this is necessarily based upon explicit representation of state with attributes. The
use of first order logic also limits the extent to which reasoning can be mechanized. The
Larch language has been extended and used to specify C++ objects [25]. America and de
Boer [1] have provided a sound and complete proof system for SPOOL. Leavens and
Weihl [15] incorporate message-passing and inheritance, but do not model updates.

Helm, Holland, and Gangopadhyay [14] define an informal specification language
for contracts and their composition and refinement. Contracts are specified through type
obligations, which define the variables and external interface to be supported, and causal
obligations, which define a sequence of message to be sent and a postcondition to be
satisfied. Invariants, which the collaborators must maintain, can be specified in first
order logic. This is a state-based approach, defined in a high level language based on
sending messages and updating variables.

8 Conclusion

In this paper we have informally introduced the ObjLog specification language and
shown examples of its use in analysis and design. A simple problem was defined and its
behavior characterized with traces. The requirements specification in ObjLog specified
this behavior, while other specification languages could only specify a selected subset of
traces. Three types of specification refinement were illustrated which are representative
of both analysis and design, as well as the transition from analysis to design. The
abstract, property-based nature of ObjLog specifications was illustrated in the examples
and through the use of equations.

The trace model is useful to describe the behavior of objects and provide a basis for
comparing the expressiveness of specification languages. A formal trace model of
objects has been defined and used with testing equivalence to define abstract object types
[5])- The full, formal algebraic semantics are currently under development. We are also
investigating correctness proofs for a variety of systems.

References

[1] P. America and F. de Boer, "A sound and complete proof system for SPOOL,"
Technical Report 505, Philips Research Laboratories, May 1990.
[2] S. Bear, P. Allen, D. Coleman, and F. Hayes, "Graphical Specification of Object-

Oriented Systems," QOPSLA/ECOOP °90 Conference Proceedings, Phoenix,
Arizona, 1990, pp. 28-37.

(3]
(4]
(5]
(6l
(71
(8]

9

[10]
[11)
[12]
[13]

(14]

[15]

[16]
(17]
(18]

(19]

384

G. Booch, Object-Oriented Design with Applications, Benjamin/Cummings Series
in Ada and Software Engineering, Benjamin/Cummings Publishing, 1991.

R. Breu, Algebraic Specification Techniques in Object-Oriented Programming
Environments, LNCS 562, Springer Verlag, 1991.

T. L. Briggs and J. Werth, A Trace Model for Objects, University of Texas,
(Technical Report in preparation).

P. Coad and E. Yourdon, Object-Oriented Analysis (2nd Edition), Yourdon Press,
Englewood Cliffs, NJ, 1991.

P. Coad and E. Yourdon, Object-Oriented Design, Yourdon Press, Englewood
Cliffs, NJ.

D. Coleman, F. Hayes, and S. Bear, "Introducing Objectcharts or How to Use
Statecharts in Object-Oriented Design," IEEE Transactions on Software
Engineering, 18(1), Jan. 1992, pp. 9-18.

J. Goguen and J. Meseguer, "Unifying Functional, Object-Oriented and Relational
Semantics with Logical Semantics," in Research Directions in Object-Oriented
Programming, B. Shriver and P. Wegner (editors), MIT Press, 1987, pp. 417-477,
(also as CSLI-87-7 July 1987).

J. A. Goguen and T. Winkler, "Introducing OBJ3," Technical Report SRI-CSL-
88-9, Computer Science Laboratory, SRI International, Aug. 1988.

D. Harel, "Statecharts: A visual formalism for complex systems," Science of
Computer Programming, 8, 1987, pp. 231-274.

D. Harel, A. Pnueli, J. Pruzan-Schmidt, and R. Sherman, "On the formal semantics
of Statecharts," Proceedings, Logic in Computer Science ’87, 1987, pp. 54-64.

F. Hayes and D. Coleman, "Coherent Models for Object-Oriented Analysis,"
OOPSLA ’91 Conference Proceedings, 1991, pp. 171-183.

R. Helm, 1. M. Holland, and D. Gangopadhyay, "Contracts: Specifying Behavioral
Compositions in Object-Oriented Systems," OOPSLA/ECOQOP '90 Conference
Proceedings, Phoenix, Arizona, 1990, pp. 169-180.

G. T. Leavens and W. E. Weihl, "Reasoning about Object-Oriented Programs that
use Subtypes," OOPSLA/ECOOQOP ’90 Conference Proceedings, Phoenix, Arizona,
Oct. 1990, pp. 212-223.

T. Mayr, "Specification of Object-Oriented Systems in LOTOS," in Formal
Description Techniques, K. J. Turner (editor), North-Holland, 1989, pp. 107-119.
R. J. McKenzie, An Algebraic Model of Class, Inheritance, and Message Passing,
PhD Thesis, Univ. of Texas at Austin, 1992.

J. Meseguer, "A Logical Theory of Concurrent Objects," OOPSLA °89 Conference
Proceedings, Oct., 1989, pp. 101-115.

C. Minkowitz and P. Henderson, "A Formal Description of Object-Oriented
Programming Using VDM," VDM 87, 1987, LNCS 252, Springer Verlag, pp.
237-259.

(20]

(21)
[22]
(23]

[24]

[25]

[26]

385

D. L. Parnas, "Information Distribution Aspects of Design Methodology," in
Information Processing 71, C. V. Freiman (editor), North-Holland, 1971, pp. 339-
344, (Proceedings of the IFIP Congress 71, Ljubljana Yugoslavia Aug. 23-28,
1971).

D. L. Parnas, "On The Criteria To be Used in Decomposing Systems into
Modules," Communications of ACM, 15(12), Dec. 1972, pp. 1053-1058.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-
Oriented Modeling and Design, Prentice Hall, 1991.

J. Rumbaugh and M. Blaha, "Tutorial Notes: Object-Oriented Modeling and
Design," OOPSLA °91 Conference Proceedings, 1991.

S. Shlaer and S. J. Mellor, Object-Oriented Systems Analysis: Modeling the World
in Data, Yourdon Press Computing Series, Yourdon Press, Englewood Cliffs, NJ,
1988.

J. M. Wing, "Using Larch to Specify Avalon/C++ Objects," IEEE Transactions on
Software Engineering, 16(9), Sept. 1990, pp. 1076-1088.

R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing Object-Oriented
Software, Prentice Hall, 1990.

