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Abstract. In object-oriented programming languages, multiple-dispatching pro-
vides increased expressive power over single-dispatching by guiding method look-
up using the values of all arguments instead of the receiver only. There have been
several programming languages supporting this mechanism and they demonstrate
its usefulness. However, efficient implementation of multi-methods is still critical
with regard to its success as a standard. In this paper, we present a new mechanism
for implementing multi-methods dynamic lookup based on automaton techniques.
Analysis and experimental results show that our strategy 1s time and space efficient.
The presented result can provide the basis for designing new object-oriented para-
digms based on multi-methods.

1 Introduction

Today most programming languages are based on the notion of types. A data type
consists of a representation and a set of operations which can be applied to instances
of the types. In many object-oriented languages, types are organized in a hierarchy
and a subtype relation is defined over them. One important feature of this subtype
relation is the subtype polymorphism [7]: if A is a subtype of B, then every instance of
A 1s also an instance of B. Operations on the instances of types are defined by generic
functions, where a generic function corresponds to a set of methods and the methods
define the type-specific behavior of the generic function. In the presence of subtype
polymorphism, method selectton must occur at run time.

In many object-oriented languages, a message (function invocation) is sent to a
distinguished receiver object, and the run time “type” of the receiver determines the
method that is actually invoked by the message. The arguments of the message are
passed on to the invoked method but do not participate in the method dispatching. For
example,in  C++ we can define a virtual function of the form float
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area (shape) ! which is dynamically dispatched based on the actual type of shape
supplied with the function invocation. However, one cannot write a virtual function of
the form displayOn (shape, device) which is dynamically dispatched based on
actual types of both shape and device. '

To surmount these limitations, some object-oriented languages include a more
powerful form of function invocation in which all arguments of a method can partici-
pate in the method dispatching (method lookup), i.e. a method is dynamically dis-
patched based on the types of all arguments. These methods are called multi-methods.
The dispatching for multi-methods is called multiple-dispaiching|8]. Perhaps the
most-known languages that support multi-methods are CLOS [6] and one of its prede-
cessors CommonLoops [5].

One fundamental issue for multi-methods is the efficient mechanism for method
lookup. Efficient implementation of multi-methods is still critical with regard to its
success as a standard. There have been several time-efficient lookup mechanisms pro-
posed [11, 13, 16]. However, by far the largest problem is that all these structures for
dynamic lookup may lead to combinatorial explosion, which leads to a space prob-
lem. Based on the result of Agrawal, et al. [2] on static type checking of multi-meth-
ods, in this paper we present a new mechanism for multi-method lookup using lookup
automatons. If n is the arity of the function invocation, then the time-complexity of
the method lookup is O(n). The main contribution of our approach compared to the
other lookup mechanisms is that it is more space-efficient while providing the same
time-efficiency as [11, 13, 16]. The results presented are intended to provide a general
technique to optimize the performance of dispatching for multi-methods.

The organization of this paper is as follows. We state the basic concepts concern-
ing the type hierarchy and multi-methods in section 2. Section 3 describes the overall
approach in order to have an intuitive idea of our approach. The formal statement of
the problem is presented in section 4. Next, sections 5 and 6 discuss algorithms to
construct and simulate the lookup automaton respectively. Experimental results are
discussed in section 7. We discuss the related work in section 8. Finally section 9 sum-
marizes the results of our work.

2 Basic Concepts
2.1 Type Hierarchy and Type Ordering

In the discussion that follows, we represent the subtype relation by < in a type hierar-
chy 9. Also we denote A < Bif A < B and A # B, in this case we say that A is
subtype of B, or B is supertype of A. Particularly, we use A <B to denote that B is the
direct supertype of A. Since relation < defines a partial order, such a system of types
forms a directed acyclic graph (DAG). There is a path from A to B if and only if
A < B. In the test of this paper, a type A in 9 is denoted by A €7, and S, a subset of
types in 7', is denoted by § < 7.

A local type ordering for a type C is a total order x. over C and its supertypes
such that if C < A or C < B, then C - A, C % B, and either A <. B or B x. A. Fur-

1. the first argument can be understood as the method receiver.
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thermore, if C <B, and if D = E in the local type ordering for type B, then D < E in
the local type ordering for the type C, and this rule is recursively applied. This rule
must be based on the restriction that there must not exist another type B'# B such that
C<B' and E x, D. If this restriction is satisfied, 9 is called consistent. In this paper,
we always assume that I is consistent.

CLOS [6] is an example of a language that uses local type ordering to determine
the type precedence. In this paper, we discuss the general lookup techniques for lan-
guages which use the local type ordering to determine the type precedence, while not-
icing possible simplified cases if 7 is a directed tree (single inheritance).

2.2 Method Applicability, Confusability, Specificity, and Consistency

The main concepts concerning multi-methods which we use in this paper are pres-
ented in [2]:

e method applicability — given a generic function invocation, m(T,,...,T,), we
say that a method my(T%,...,T%) is applicable for that invocation if and only if
T, < Torl <i<np

* method confusability — if two methods are both applicable for a function in-
vocation, we say that they are confusable. Formally, methods m,(T1,..., T}) and
my(T2,..., TH? are confusable if V i,1 < i < n, there exists a type T;, such that
T, < T} and T, < T% otherwise they are non-confusable. The equivalence
classes of the transitive extension of the relation confusable are called confus-
able sets. If Mo is a confusable set of methods and m; and ny; are in A then there
are k (= 0) methods my, my, ..., ni in AL such that my is confusable with m;, m, is
confusable with m,, ..., and m, is confusable with ;. We say that a generic
function invocation m(T,,...,T,) is covered by a confusable set A if there ex-
ists a method m’e AL such that m' is applicable for m;

e method specificity — if one method has precedence over another for a given
invocation, we say that it is more specific than the other. One mechanism is
called inheritance order precedence: while suppose m(Ti,...,T,) and
m{T,...,T%) are two applicable methods for a generic function invocation
m(Ty,..., T,), we consider their formal arguments in a prespecified order (such
as left-to-right3), and find the first argument position in which the formal argu-
ment types of m; and m; differ, say k. If T, o T’ , then m; is more specific than
m;, and vice versa. The inheritance order precedence is sufficient to determine
method specificity in a multiple inheritance language with multi-methods [2].
CLOS is an example of a language that uses inheritance order precedence to
determine method specificity.

2. Forthe sake of easy description, the method names are subscripted. Inreal system, however,
the confusable methods’ names are identical.

3. Any prespecified order can be transformed as left-to-right by exchanging the argument
location during compile time. Hence, without loss of generality, we can assume that the prespeci-
fied order is left-to-right during dispatching.
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e method consistency — two methods m(T},..., T,) = R; (R; denotes the type of
the result) and m(T,...,T,) — R; of a generic function M are mutually consis-
tent if whenever they are both applicable for arguments of types T;,...,T, and
m; is more specific than my, then R; < R;. A generic function is consistent if all
its methods are mutually consistent.

2.3 AnImportant Result

An important result presented in [2] for static type checking of multi-methods is the
tollowing.

THEOREM 1. A generic function invocation »(T,,...,T,) is covered by at most one
confusable set, which can be determined at compile time. |

Based upon this result, the task of dynamic dispatching is to find the most specific
method (in the confusable set) for the given generic function invocation. In fact, for
the purpose of dynamic dispatching, only the following property concerning
confusable sets is used: all methods in a confusable set have the same name as well as
the same arity. Although in this paper we discuss the dispatching approach in the
context of statically typed languages, yet it is still valid for dynamically typed
languages where the concept of “confusable set” can be understood as “the set of all
methods with the same name as well as the same arity”.

3 Overview of Qur Dispatching Approach

In order to have an intuitive idea of our approach, in this section we view the overall
approach of multiple-dispatching by presenting examples. We introduce a lockup au-
tomaton (LUA) to simulate the dynamic dispatching in a given confusable set. An
LUA is a deterministic finite automaton [3] and is defined as 5-tuple D = (Q, X, 6, ¢s,
F), where Q is a finite set of states; X is a finite set of input symbols; S is a state transi-
tion function, which is a mapping Q X 2 — Q; q, € Q is the initial state of the finite
state control; and F < Q is the set of final states.

Fig. 1 shows an example of a type hierarchy 7', a confusable set b, and the corre-
sponding LUA. In the LUA, we indicate the method precedence order at each state by
a list of sets of methods. Suppose that at state g the list is a,a, ... @, (where a; € M),
and method m, € @ and m, € . If i <, then method m; at state g will have higher
priority to be selected than my; if i = j, then m; and m, at state g will have the same
priority to be selected. For example, consider the list {m,, m;}{m,} at state ¢,: meth-
ods m, and m; have higher priority to be selected than the other method m,, while m,
and m; have the same priority to be selected.

The basic idea to construct the LUA is the following: in order to reduce the size of
the LUA, the number of states introduced should be as small as possible. Informally,
if states have the same precedence order, they will be “merged” together. In order to
easily catch the idea, we firstly state how to simulate this LUA. Afterwards, we de-
scribe the overall approach of how to construct it.
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Fig. 1. Anexample of a type hierarchy, a confusable set, and the
corresponding LUA

In the discussion of this paragraph, we use upper case letters to denote types and
the corresponding lower case letters to denote their instances. For example, we write a
to denote an instance of type A. Now we consider a generic function invocation m(e,
h, ¢, ). Initially we are at start state g,. There are two types A and C following state g.
We select transition d(q,, C) = g, because, in the set {A, C}, C is the most specific
supertype of the first argument type E. At state ¢,, five types B, C, D, E, and F follow.
We select transition 6(g,, F) = ¢; because, in the set {B, C, D, E, F), F is the most
specific supertype of the second argument type H. Similarly, the next state transitions
are 8(qs, A) = gip and 8(qio, F) = gis. At the final state g5, method m1; is the most spe-
cific method for the given invocation. Note that, during the LUA simulation, only the
knowledge of relation < is needed. The number of state transitions is equal to the
function arity 4.

The LUA in Fig. 1 is constructed as follows. At first, the initial state g, is created,
where three methods m,, m,, and m; may be applicable with the same priority, i.e. at ¢,
the method precedence order is {nu, mz, ms}. At the next level, the set of the first argu-
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ment types of the methods m,, m,, and m; is {A, C}. Consider the state transitions 6(g,,
A) and d(qo, C). At the state 6(qo, A), only method m, may be applicable, so that we
create a new state g, = 6(qo, A) with precedence order {m,}; at state 6(q,, C), three
methods m,, m,, and m; may be applicable but m, and ms have higher priority to be
selected than my, i.e. the precedence order is {m,, ms}{m,}. At this level, so far there
is still no state with precedence order {m,, m;}{m,}. Thus, a new state g, = d(qo, C)
with precedence order {m,, ms}{m,} is created. Now consider the situation at the next
level. At state g,, only m, may be applicable, so that only state transition 6(q,, B) is
considered (B is the second argument type of m,). We create a new state ¢; = 3(q., B)
with precedence order {m,}. At state ¢,, the possible applicable methods are m,,
mz, and ms, so the state transitions 6(g.. B), (g2, C), and d(g,, D) must be considered.
Since the state d(q,, B) is with precedence order {m;, }, which is the same as the prece-
dence order at state g, we define 6(g,, B) = ¢,. Similar to the situation of state transi-
tion d(g,, C), the new states ¢, = 6(¢», C) and ¢s = d(g», D) are created. Now, at ¢, we
have introduced the transitions 8(g., B), (g2, C), and 6(g,, D). In order to simulate all
possible cases, however, it is still necessary to introduce additional transitions (g, E)
and d(¢,, F). We will explain this in the next paragraph. Going on with this procedure,
at last we construct the whole LUA, where the final states are with double circles, and
the most specific methods at final states are underscored.

Now we turn back to discuss why at state ¢, it is necessary to introduce the addi-
tional transitions d(q,, E) and 8(g,, F). Consider the case that these additional transi-
tions are not introduced. Recall that m; is the most specific method for the above in-
vocation m(e, h, c, f). For this function invocation we consider the LUA simulation
again. At first, for the first argument type E, we select transition d(g,, C) = ¢;. Consid-
er the second argument type H. As types E and F are not introduced at g, in the set of
the remaining types {B, C, D}, finding the most specific supertype of // needs knowl-
edge of the relation xyrather than the relation <. By the relationship C «y D (since
C =, D holds and 7 is consistent), we know that, in set {B, C, D}, C is the most spe-
cific supertype of H with respect to «, . Thus, at state g, the state transition 6(g,, C) =
g is selected. Clearly the simulation is not correct — since eventually the most spe-
cific method m; is not in the path following g,. Therefore, a backtracking is required
to re-select the state transition as d(g., D) instead of d(g,, C). Hence, if the types E and
F are not introduced at state g,, there will be two consequences during the simulation:

e the knowledge of relation « instead of relation < is needed, and
¢ the backtracking is required.

Given a confusable set and a type hierarchy, there is another possibility to construct
the LUA. At first, one can simply enumerate all possible dispatching cases and then
represent that by a finite automaton. Afterwards, standard techniques to minimize this
automaton can be employed. This seems to be a natural way for constructing the
LUA. However, there are some problems with this approach when used for larger sys-
tems. The main weakness is that, before minimizing the automaton, a large memory
overhead may take place because representing all possible dispatching cases may lead
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the automaton to be combinatorial explosive.* Consequently, the procedure to mini-
mize the automaton can become very expensive. In an approach presented in this pa-
per we overcome this weakness by addressing the construction and minimization of
the LUA simultaneously: the procedure to reduce the size of the LUA is performed at
the time of constructing the LUA. Consequently, with our approach the large memory
overhead is prevented because unnecessary states of the LUA are never created.

4 Formal Statement of the Problem

In this section, we present the terminology and notation which we will be employing
throughout the paper. Moreover, we indicate the several associated results.

4.1 The Operator 1 and the Function M,

In the following we always assume that b is a confusable set of methods with arity ».
Let % be the set { a1a,...a, | p >0, & € M, a;Na; = &, for i #j}. The list @,a,...a, is

L4 )4
represented by n a; and each ¢; (i = 1, ..., n) 1s called a factor of H a,. Note that the
i=1 i=1

order among the factors is important, e.g. a,a,# a,a,. An operator 1: R X R — R is

9 2 P 9
definedby AT B =[] ]_[(aiﬂbj),for A= []a,andB= []b,e R.Clearly A M B
=1 i=1
€ . In this paper, we always assume that all factors of elements in R are not empty.
Therefore, if a factor in A I B is empty we omit it. For A, B € R, we say A = B if and
only if they have the same factor list after omitting all empty factors. A function do-
P P
main: F — 27 is defined by domain(A) = \Ja,, for A = [Ja, € T. Let m, m, €
i=1 i=1

domain(A) then we say that m; € g; precedes m; € g; with respect to A, if i < j.

i=1j=1

The function Tyy: A — T is defined to map a method to its &b argument type,
e, Tymt,ty....t)=1t, for m(t,t,....,t,)€M. An inverse function
Ty : 9 — 2 can be defined by means of Ty (1) = {me M | Tyy(m) =1t }. More-

{
over, we define a function Mg 9 X 27 — % by means of My (1,S) = [] Ty (),
i=1

where (..., 1)) is a type precedence list over ¢ with respect to the set {t' €S | ¢ < ('}
suchthat ¢, <, ¢,,,,forl < i<l

ProposITION 2.V A, B, and C € R, the following holds:

(@) (associativity) ATIBYTTC =AM (B C);
(b) (conditional commutativity) A T1 B =B M A, if A or B consists of only one
factor;

(c) (identity element) A I Mo =M M A=A, if we regard M e R;

4. Insection 7, experimental results will show the degree of this combinatorial explosion.
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(d) domain(A M B) = domain(A) N domain(B);
(e) V ted, My(t, Ty(M)) €P represents a precedence order for the methods (in
M) whose kh argument types are the supertypes of ¢;

() VieTandVScT, AN My(t,S)=A T My(t,S 0 Ty(domain(A))).

PROOE.  (a), (b), (¢), (d), and (e) can be directly derived from the corresponding defi-
nitions.

() V s € §- Ty(domain(A)), we have domain(A) N Ty'(s) = &. By definition,
M, 8) = H T, (1), where (1,,...,t,) is a type precedence list over ¢ with respect to
the set {t' € S | ¢ =<'} such that ¢ t,H,forl < i< [ Suppose that {1y,...,5} N
Ty(domain(A)) = {1, ,....1, } and A = ﬂa Thus,V £ € {t,....6,} = {¢ ¢}, we

e tighs
i=1

P
have domain(A) N Ty'(t') =@. Therefore, A T Mg(1,S) = [] ]_[(a, ﬂT(;)l(tj)) =
i=1j=1

ﬁ ﬁ(a, n T(;)‘(t,j)) =A T My(t, S N Ty(domain(A))). [
=1j=1

i=1

The operator 1 and the functions domain and T, are easy to implement. Howev-
er, the implementation of M (¢, S) will rely on the algorithm of how to determine the
type precedence list (t;,..., ;) over ¢ with respect to the set {t' €S | ¢ < ¢'} such that

t, %, ¢, for 1 < i< [ Ducournau, e al. [10] discussed this supertype lincarization
problem in general. In the context of CLOS, however, Bobrow, et al. [6] proposed a
concrete algorithm to determine the type precedence list. For every ¢ €7, define R. =
{(c, ¢, (c1, €2, wn (Cors €)}, Where ci, ..., ¢ are the direct supertypes of c,
and ¢;x, c,.,for 1 < i< k. Let T, be the set of type ¢ and its supertypes. Let R
= |J R.. To compute the precedence list for ¢, topological sorting proceeds by finding

cET,

a type ¢ in 7, such that no other type precedes that element according to the elements
in R. The type c is placed first in the result. Remove ¢ from T;, and remove all pairs of
the form (c, ¢'), ¢'eT,, from R. Repeat the process, adding types with no predecessors
to the end of the result. Stop when no element can be found that has no predecessor.
Using this approach, we compute the type precedence list (#y,...,,) over ¢ with re-
spect to T,. Therefore, in order to compute Mz, S), we can extract all £ € § from the
list (¢,,...,¢,). If 9" is a directed tree, the algorithm will be much simpler. We will not
describe these algorithms any further.

4.2 The Functions GLB, closure, and LUB,

Given two types s, ¢ € T, we define the set of greatest lower bounds for s and ¢ by
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GLB(s, )= {ueT | u<s,u<t,and -3 u'e T suchthat u<u'<sandu<u'<t}’

For a subset of types S — 9, we say S closed if V s, t € S, GLB(s, t) < S. The closure of
a subset S, denoted by closure(S), is defined as the intersection of all closed subsets T
such that S ¢ T c 7. Clearly closure(S) is also closed.

On the other hand, V r € 9 and S < 7, we define the set of least upper bounds for ¢
and S by

LUB(t,S)={se 5|t < s,—3s'e Ssuchthatr <s'<s }.6

For example, in the type hierarchy 9 shown in Fig. 1, GLB(C, D) = {E, F}, clo-
sure({C,D})={C,D,E,F},and LUB(G, {A,C,D})={C,D}.

The following propositions are the direct results of the definitions of GLB and
LUB,.

PropPOSITION 3. Let s, £, £, €9 such that s<1, and s<t,. Then 3 s'e GLB(t,, f,) such
that s<s'. |

ProrosiTioN 4, Letie 9,Sc 9, andse S.If t <s, then I s'e LUB.(t, §) such that
<5’ <s. [ ]

THEOREM 5. Let S ¢ 9. Then § is closed if and only if ¥V ¢ €T, LUB(t, S) contains at
most one element.

ProOOF. if: Let sy, s, € S. It suffices to prove that GLB(s,, 5;) < S. Let s € GLB(s,, 87).
By proposition 4, 3 5!, s5, € LUBo(s, S) such that s< s!< g for i = 1, 2. By assump-
tion, LUB(s, S) contains at most one element. Hence, 5| = s}. Now s € GLB(s1, 52)
implies that s = s} € LUB(s, S) c S.

only if: Let S be closed and ¢ €. Furthermore, let s,, s, € LUBo(t, S). Clearly if ¢
€S then s, = 5, = 1. Thus, we assume that 1 ¢ S. This induces ¢ ¢ GLB(s), s2), as S is
closed. Furthermore, we have ¢ < s; and ¢ < s,. Therefore, by proposition 3, 3 s
€ GLB(s,, 5,) such that 1 <s. Hence, by the definition of LUB,, s = 5, and s = s, hold.
This implies that | LUB(t, S) || < 1. |

The following is the algorithm for closure and the algorithm for the function
LUB.. Initially, a topological sorting is performed on the types of 9 with respect to
the relation <. Let 7 be the number of types of 9" and let TT1], 7121, ..., and T{z] be the
types of I such that 7] < T[;] holds only if i < j.

In the function closure, a variable u of type array(l..z] of {not in clo-
sure,in_closure} is needed. Initially, u[i] = not _in_closure,for 1< i<t.

5. Inorder to keep things simple, we borrow the notation GLB which is originally defined in
lattice structures, where GLB is a unique element. However, in a DAG, we define GLB to be a
set.

6. Inorder to distinguish our notion from the well-known standard notion LUB defined in lat-
tice structure, we use the notation LUB..
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function closure(S)

1 { fori=7downto 1do

2 if T[i] € S then u[i] < in_closure

3 else

4 {4 < {j| T <TYj], and ulj) = in_closure}

5 if A # & then

& [ Jmin<—mind

7 if 37 €A — (i), such that ~(T{ja] <7T1j]) then

8 uli] < in_closure

9 else /*V jeA — {min}> TUmn) <TIjl- So Tli] & closure(S).
9" is updated in the following. */

10 foreach T[i'] €9 such that T{i'] Z171i] do

11 delete the edge from T7[i'] to T1/] and add the edge from
T1i'] t0 Tjimin)

12 }

13 }

14 return {T[j] | ulj] = in_closure, 1 < j <t}

15}

The function uses a for-loop (lines 1-13) to scan all types of I, where 9 may be
updated (c.f. lines 10-11). Let ', (1< k < 7) be the updated I when the for-loop has
been executed £ times. In 9, we denote the relations <, <, and 2 by <, =<, and
Z.. Therefore, in the function closure, the relations < and 2 (used at lines 4, 7, and
10) must be understood as <;, and <., in the corresponding 9 .. Now we define

T, = {Tli]1 €T, | ulil = in_closure or i < k}.

Before proving the correctness of the function closure, it is necessary to introduce the
following lemma.

LeEMMA 6. When the for-loop of function closure has been executed k times, the fol-
lowing properties hold:

(a) Y a,beT, the relation a <, b holds if and only if the relation a <» in 9" holds;
(b) Given a number &, 1< k=<rv, let T[j] € T, with uljl=in_closure and TTk-1] <,
T(j]. There must be a number j', & < j' < j, such that T[k-1] <, T1j'] <. T1j]

and u[j'] = in_closure. |
THEOREM 7. The function closure returns the correct result. |

The proofs of lemma 6 and theorem 7 are stated in the appendix.

Remarks:

(a) If 9 is a directed tree (single inheritance), then every subset S < 7 is always
closed, i.e. closure(S) = § holds;

(b) As we have mentioned, at line 7 the relation < must be understood as <, in
... By the definition of A (c.f. line 4), we have T[j} € T,_,, for j 4. Accord-
ing to lemma 6(a), at line 7 the relation <,_; can be treated as the relation < in
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7", In order to make subtype relationships tests fast, Agrawal, et al. [1] proposed
a structure to maintain a compressed transitive closure of the subtype relation.
An index and a set of ranges are associated with each type. If the index of one
type falls into a range of another type, then the first type is a subtype of the
second. Using this technique, we can test subtype relationships in constant time
if the type hierarchy is a directed tree (single inheritance). If the type hierarchy
is a DAG (multiple inheritance), experimental results show that subtype rela-
tions can be tested in essentially constant time [1], and, in the worst case, in
O(log(r)) time, where 7 is the number of types in the type hierarchy;

As the type hierarchy may be updated, it is necessary to make a copy at the
beginning. Furthermore, at line 10, it is necessary to find all direct subtypes for
a given type. Therefore, the data structure for the copy of the type hierarchy
must efficiently support this operation;

A topological sort of the types of 9" is performed only once. This sorting will be
used in later stages;

The time-complexity of the function closure is O(t + ¢), where ¢ is the number
of edges in 7.

In later sections, we will see that the function LUB(s, S) is invoked at run time,
only in the case that S is closed. The following is the algorithm of LUB(s, S) under
the condition that S is closed.

function LUB(s, S)

1 { SupposeS={Tli), Tlia], ..., T{ix]}, where 1 < i, <ir<..<i, <t
2 Suppose s =T[{]
3 forj=1tokdo
4 if ; = land s<TT[j;] then return {T7[;]}
5 return &
6}

Remarks:

(a) The correctness of the function LUB, is a direct result of theorem 3, i.e. the

(b)

4.3

result of LUB(s, S) contains at most one element;
The worst time-complexity of the function LUB. is O(||S]|).

The Central Result

Having introduced the basic concepts, we can now state the central result.

THEOREM 8. Given the types ¢,,...,t, € T, let

(@)
(b)

k
R.=R(t,....t) = I] M1, Tob)). (1)

Let a be a factor of R, and m € a. Thena = {m' € Mo | m and m’ have the same
first k£ argument types}.

R(t,..., t;) represents the precedence order of the methods (in Ab) whose first k
argument types are respectively the supertypes of 1,,. .., t,.
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ProoE (a) Let my(¢},.... &%, ...y and my(e),..., 85, ...) eR. Suppose that 3 i, 1 < i < k
such that ¢ # ¢. Hence, methods m, and m, are not together in a factor of
M1, T o(AMo)) nor in a factor of R,. On the other hand, it is clear that if m and m' have
the same first £ argument types, then they are both together in one factor.

(b) The proof is by induction on k. When & = 1, then R(1,) = M, {t,,T,,(M)) and
the result follows from proposition 2(e). By definition, we have R(¢,..., t) =
R(ty,.o 2 M M(*k)(tk, T(k)(ﬂb)). Suppose Ry, = R(¢,,...,t,_;) defines the precedence
order of the methods (in Ab) whose first k-1 argument types are respectively the su-
pertypes of fy,...,¢_,. By proposition 2(e), Mt T (b)) (abbreviated by M)
presents the precedence order of the methods (in Ab) whose 4™ argument types are the
supertypes of #. Let X, e R be the precedence order of the methods (in Ab) whose first

k argument types are respectively the supertypes of ¢,..., t,. Note that X, satisties the
following properties:

e domain(X,) = domain(R, ;) N domain(M,,);

o let my, my € domain(R,_\) N domain(M{,). If m, and m, are in different factors of
R,.,, then m, and m, will be in different factors of X, and the order between them
must be kept. On the other hand, if m, and m, are in a same factor of R,_,, then
m, and m, have the same first k~1 argument types. Therefore, the order between
them presented in X, will be determined by their order presented in My,.

Hence, by means of the operator M, X, =R, [T M{,, = R(¢,,..., ;) holds. n

COROLLARY 9. Let the function invocation m(t,,...,,) be covered by M. R(¢,,...,¢,)
represents the precedence order of all applicable methods (in Ab) for that invocation.
If R(¢y,...,1,) #= @, then each factor of R(¢,...,¢,) includes only one method. I

We can calculate R(#,,...,t,) recursively by referring to (1) and proposition 2(f) as
follows:
R = Ry 11 Mgty Tyo(Mo))
= Ry 1 11 Myt To(Mo) N Ty(domain(R, )
= R 11 Miy(te, Ty (domain(R . _,))) )
where k> 0, and R, = M.

Now we can discuss mechanisms for constructing and simulating the LUA based on
the above results.

5 Constructing the LUA

In this section, we present an algorithm to construct the LUA D = (0, %, d, ¢, F),
which depends on the type hierarchy 9 and the confusable set M.

The following routine construct constructs the LUA through calculating the value
of R(¢,..., ) using formula (2). In the following, for each state ¢ € Q the attribute
q.pord holds the precedence order at state g.
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routine construct()
{ create a start state ¢,
qo.pord < M
0 < Qo < {40}
for k=1to ndo
{ Q<O
foreach g € Qg do build next_states(k, q, Q)
Q<-0QUgQ
Q<
}
0 F<—0
1}

—

(S B N OVEN S

A SNSRI VRN

In the above routine construct, Q, represents the set of all states built at level k.
The subroutine build_next_states(k, ¢, Q) attempts to construct all possible state tran-
sitions d(g, t) (t €T) at level k, where the argument Q, represents the set of all states
built so far at level k+1. After subroutine build next statestk, g, Q,) has been
executed, ¢, may be expanded and then represents the new set of all states built so far
at level k+1. The following proposition is necessary for the subroutine
build_next_states.

ProposiTioN 10. Let m™ © Ao with m*= @.V t € closure(Tym’)) and 1< k< n,

m N domain(M ilt, Tw(m"))) # @ holds.

Prook  Clearly closure(Tm’)) = @.V t € closure(Tym’)), 3 1'e Ty(m’) such that ¢
< ¢,ie.Im(t,...,1,) € m such that 4 = ¢'. The definitions of domain and Mj, imply
that m(t,,....t,) € domain(Te'(t)) < domain(Mit, Te(m'))). ie. m(n.....1,)

emnn domain(M?k)(t, T(,()(m*))) = . |

subroutine build_next_states(k, g, Q)
{ T < Ty(domain(qg.pord))
T' < closure(T)
T<ZUuT
foreach € 7" do
{  pord < gpord N My(.,T)
if ¥ = n then pord < the first factor of pord
if 34’ € Q, such that ¢’ pord = pord then
g, )< q’
else
{ create a new state g,,, and add it to Q,
Gnew-pord < pord
3(q, 1) < Guow

-
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Remarks:

(a)

(b)

Lines 4-14 define a loop, in which a temporal variable, pord €%, is introduced
to calculate the attribute 6(g, t).pord and to decide whether d(g, £) is a new state.
However, the fact pord # & is important so that “the first factor of pord” ex-
ists, as stated in line 6. This can be proved as follows: we have pord = g.pord 1
M:k)(t, T(k)(domain(q.pord))), where ¢ € closure(T(k)(domain(q.pord))) and1 < &k
< n. Assume g.pord = @, and let m” = domain(q.pord). Then m’ = &. By prop-
osition 10, ¥ ¢ € closure(T(m’)), we have m™ 0 domain(Mit, Tw(m'))) = @.
By proposition 2(d), we can derive domain(pord) # @, i.e. pord # ©. There-
fore, the above fact can be easily proved by induction on £. As a direct result, V
ge Q,q.pord = . This result will be used in the stage of LUA simulation;

In line 7, we need to compare the equality between g'.pord and pord. By theo-
rem 8, ¢'.pord = R(1,,..., 1) and pord = R(t,,..., 1), for appropriated types
and 4 (i = 1, ..., k). Let a be a factor of ¢’.pord, and b a factor of pord. By theo-
rem 8(a), either ¢ = b or @ Nb = @ holds.” This fact is useful to simplify the
implementation of the equality test between g'.pord and pord: in order to
compare the equality between two sets ¢ and b, we can just compare the small-
est elements in ¢ and 6.3

Let’s explain the above algorithms in the context of the example shown in Fig. 1.
Suppose that we have already constructed all states and transitions at level 2, where

Qo=

{43, 4s. s, Gs, g7}. Now we are going to construct states and transitions at level 3.

Firstly, the subroutine build next states(3, gs, Q,) 1s invoked, where

O = ;

gs.pord = {mi}, s0 T = T (domain(gs.pord)) = Ta({mi}) = (B}, and T' = clo-
sure(T) = {B};

In the loop body (lines 5-14), pord = gs.pord T Mu(¢,T) = {my} T {my, my} =
{m,}, when ¢ = B. Therefore, a new state gs with precedence order {m,} should
be created and then 8(gs, B) = gs. Now O = {¢s}.

Afterwards, two other subroutine invocations build_next_states(3, q., Qi) with 0, =

{gs}

and build_next_states(3, gs, Q1) with Q, = {gs, ¢,} are executed. Now Q, be-

comes as {gs, g, gi0}. Consider the next subroutine invocation build next states(3,
qs, Q1), where

01 =1¢s. 4o, quo};
gs.pord = {ms}{m}{mi}, so T = T(3)(domai"(f]6-P0"d)) = Te({mi, mp, ms}) =
{A, B}, and T' = closure(T) = {A, B};

7.

Assume m €a Nb #Q. By theorem 8(a), a = {m’ e M | m and m' have the same first &

argument types} = b.

8.

We can pre-sort all methods in Ab, so that in each subset of Ab, we can find the smallest

element with respect to that order.
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¢ In the loop body (lines 5-14), pord = gs.pord M M1, T)

_| UmsHm{mu}) 11 {ma} = {ms), ifr=A4;

| UmsHmal i }) T (i, mo (ms}) = {msHma) (i}, if £ = B.

Therefore, when ¢ = A, the equality pord = {ms} = qio.pord yields 6(gs, 1) = quo
(as .0 € 01); when ¢ = B, a new state g,; with precedence order {ms}{m,}{m,} is
created and then 6(gs, 1) = g1 Now Q, = {gs, g, 10, qu1 }.

Likewise, the last subroutine invocation at level 3 is build next states(3, q,, Q,) with
01 = {gs, 45, quo, qu}, in which a new state g, is created. Consequently, 0, = {gs, g,
Gio» Gu1, 412} 1s the set of all states constructed at level 3.

6 Simulating the LUA

We have described the approach to construct the LUA for each confusable set. Ac-
cording to theorem 1, a function invocation m(#,,...,t,) is covered by at most one
confusable set, so that only one LUA should be simulated for that invocation. Further-
more, we know which LUA has to be simulated (we say that this LUA covers the
function invocation m(t,,...,t,)). In order to reduce the space-complexity, the LUA
does not identify all possible dispatching cases. Generally, given a function invoca-
tion m(t,...,4,) and a LUA that covers m(t,,...,t,), it is not possible to directly
employ the standard automaton simulation technique. Rather, a special algorithm to
simulate the LUA is necessary where the knowledge of the relation < is used. In this
section, we present the algorithm to simulate the LUA.

6.1 Approach

In the following, let level(q) denote the length of the path from state g, to state g (i.e.
the number of transitions from the start state to g). From the routine consiruct, we can
see that level(g) is independent of the selected path. For example, in Fig. 1, level(gs) is
2 and there are three different paths from ¢, to g;. Moreover, we introduce a notion

Op(g, *) = {t X | 8(q, ¢) is defined}.

By the subroutine build_next_states,¥ q € Q — F, we have
Op(g. *) = closure(T(,M,(,‘))(domain(q.pord))).

Hence 0,(q,*) is closed, forge Q — F.

THEOREM 11. LetSc I, ¢t e€d. V k, 1 <k <n, the following holds:

) 9, if LUBo(t, closure(S)) = ;
My, S)={ | . ..
Myt S), if LUBo(t, closure(S)) =&, and ¢’ is the

unique element in LUB (¢, closure(S)).

PROOR If LUBo(1, closure(S)) = @, then {s € S | ¢ <5} = & and hence M;y(1,S)= 2.
On the other hand, if LUB(t, closure(S)) #= &, by theorem 5, LUB(t, closure(S)) =
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!

{t'}. By definition, Mgy(1,S) = [] T (1), where {#,...,u} =1{s€ § | =35}, and
i=1

t,x,t,,, for 1 < i<l Proposition 4 implies that {se€ S | t<s}={se §| ¢ <s}

Meanwhile by the restriction on the relation o, ¢, ¢, still holds for 1= /<p.

!
This means that M(,(¢', ) = [] T (1), L.e. Miu(t,S)= Mg(Z', S). [
i=1

Let m(t,,...,t,) be a function invocation covered by Ab. By theorem 11 and for-
mula (2), we can recursively calculate R, = R(¢1,..., 1) (with Ry = M € R) as follows:

Ry = R 1 My(t,, Ty (domain(R,_,)))
@, if LUB(t,, closure(Ty(domain(R,_,)))) = &;

Ry T M(t, Te(domain(R,_ 1)), (3)
if 3 (unique) ¢ € LUB s(ty, closure(T g(domain(R,_1)))).

The task of the LUA simulation is to find a final state g such that g.pord is equal to
the first factor of R,. We can accomplish this by tracing a list of states g, .....,q,, with

qik.pord = R, (or the first factor of Ry, if & = n). According to the formula (3) and the
definition of Jp(g,*), we have the relation ¢, = 6(q,-k, 1), where teLUBo(
i, Op( g, *)). Formally,

ProrosiTION 12,  Let the LUA D = (Q, X, 8, qq, F) cover the function invocation
m(ty,...,1,). Let g € Q—F be a state with g.pord = R., where k = level(g). If
LUBG(tis1, Op(gq, *)) =D, then 6(q, £).pord = Ry, (or its first factor, if k+1 = n), for the
unique ¢ € LUBo(ts1, Op(g. *)).

ProOE  Since d,(q,*) = closure(T(k+ 1)(domain(q.r))) is closed for g € Q - F, by theo-
rem 5, ¢ € dp(qg,*) is unique. If k£ + 1 < n, we have

0(g, t).pord = q.pord N M('“])(z, T(,m)(domain(q.pord)))

=R, T M(',m)(t, T 1(domain(q.pord)))
=R (by formula (3)).

Especially, if £ + 1 = n, 8(q, 1).pord = the first factor of R,. u

The following function simulate reads the type-list f,,...,t,, and then returns ei-
ther the most specific method (if any exists) in AL or the predefined error-handling
function if there is no applicable method in Ab.

function simulate()
[ 9< 9
fork=1tondo
{ T < LUBo(%, 6p(g, )
if T = & then ¢ < d(q, t), wheret €T

B o by
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5 else return the predefined error-handling function
& }
7 return the (unique) method in the (unique) factor of g.pord
8 )
Remarks:

(a) Inline 3 the function LUB. (%, 3p(g, *)) is invoked, where & (g, *) is closed. Un-
der this condition, the implementation of LUB,, has been stated in section 4.2;

(b) In the run time environment, the function simulate just uses the knowledge of
the relation =<, the knowledge of the relation o is not needed any more;

(c) Line 7 refers to the attribute g.pord, which consists of one factor only that in-
cludes only one method at the final states (c.f. subroutine build_next_states). In
fact this is the only place referring to the attribute g.pord in the time of simula-
tion. From the view of implementation, it is not necessary to store the attribute
g.pord, ¥ q € Q —F, to the run time environment, e.g. in Fig. 1 only the under-
scored methods at states g3, ¢1s, and ¢;s need to be saved;

(d) According to proposition 12, it is easy to prove the correctness of the function
simulate by induction.

6.2 Improvement

The time-complexity of function simulate depends on the implementation of the func-
tion LUB,. As stated in Section 4, the worst time-complexity of the function call
LUB(s, S) is O(||S]l) when S is closed. Consequently, the total time-complexity of
function simulate will rely on the size of d,(g, *) in line 3 of simulate.

In the following we consider an improvement for the time-efficiency of function
simulate. Let ¢ be a predefined constant independent of any concrete type hierarchy
and LUA. During the compile time, V g € X, if |0,(g, *)|| > ¢, we can extend the state
transitions d(g, r) with respect to the domain of ¢ from d,(g, *) into  in the following
way:

8(g, 1), if LUBs(t,0p(q, *)) =D,
8g,1) = so 3 unique '€ LUB(t, 0p(g, *)));

g1 if LUB(t, dp(g, *)) = D,
where g, is the predefined failure state.

Here, it is necessary to attach an attribute (1-bit) to the state g to indicate whether the
corresponding d,(g, *) is extended or not. The following is the improved version of
the function simulate, after the LUA is extended as above.

function simulate() [* improved version */
{ g<=q
fork=1tondo
[ if dp(g,*)is extended then
{ g<d(q.u
if ¢ = g, then return the predefined error-handling function

B Lo b e

n
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6 }
7 else /* (g, *) is not extended */
& { T LUBo[tx065(q.%)
9 if T = & then g < (g, 1), where t €T
10 else return the predefined error-handling function
11 }
12 }
13 return the (unique) method in the (unique) factor of g.pord
14}

Remarks:

(a) In section 4.2, we performed the topological sorting on ¥, so 9 = {IT1],

(b)

(©)
(d)

7121, ..., Tzl}. In the aspect of the LUA representation, V g € X, the function
(g, #) with respect to the argument ¢ €I can be converted into function f(i) =
d(g, TTil) with respect to the number argument i. On the one hand, for g X
with dp(g,*) = T (i.e. the (g, *) is extended), the argument domain of f; is
[1,7]. In this case, f, can be represented by a linear table so that the time-com-
plexity of f, is O(1); on the other hand, for g € X with d,(q,*) # 7 (i.e. the
d,(g,*) is not extended and ||6,(g, )|l < c¢), the argument domain of f; is a sub-
set of [1, ], with size ||0,(g,*)|| =< c. In this case, f, can be represented by a
hash table or a binary tree. Since ¢ is the predefined constant, the time-com-
plexity of f; is O(1) also.

A related question is, V ¢ €7, how to get a corresponding number ¢ with ¢ =
TTi] at run time? As the topological sorting on 9 is performed at compile time,
each type ¢ € can be identified by the number £, which can be attributed to ¢.
Therefore, V ¢ €7, getting the number i such that ¢ = TTi] can be preformed of
the time-complexity O(1) at run time.

Conclusively, the time-complexity of the improved function simulate is
O(n), where n is the method arity;

If all transitions d(g, f) are extended for all g € Q, then even the knowledge of
relation < is not needed in run time environment, since lines 8-11 are never
executed;

The extended LUA does not create any new state except the predefined failure
state q-;

The value of the predefined constant ¢ influences the number of transitions in
the LUA and the efficiency of the simulation: a higher value of ¢ would save
space but would make the algorithm run slower; conversely, a lower value of ¢
would yield the opposite effects. More experience is necessary to find a good
value.

7 Experimental Results

Having discussed the algorithms of the LUA construction, we can see that the size of
the LUA heavily depends on the structure of the type hierarchy " and the confusable
set M. These factors make it difficult to properly evaluate the average space-com-
plexity of the LUA. An alternative way to evaluate the LUA’s space-complexity is to
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11 A6l arity(Ab) Q]| lIF i Il /1l
30 86 2 117 900 7.69
20 49 3 139 6,092 43.83
35 87 3 296 30,019 101.42
21 103 4 613 194,481 317.26
18 73 4 396 103,976 262.57

Table 1. Experimental results of five large applications

investigate several large applications chosen at random. For each application, we cal-
culate the following parameters:

o [T the number of types in 7,

o ||l the number of methods in A,

e arity(M)  the arity of methods in Ab,

o |0 the number of states in the corresponding LUA = (Q, 3, 8, qo, F),
and

o || the number of all possible dispatch cases, where

& = {function invocation m covered by M | I m’ € M such that
m' is applicable for m}

Since other lookup structures proposed in [13, 16] needed to prefill all possible
dispatch cases F (we discuss this in section 8), as a comparison point, we calculate the
parameters ||Qll, |||, and ||F||/||Q| for each application. For the example shown in Fig.
1, the values of these parameters are [|T| = 8, ||| = 3, arity(M) = 4, ||0]| = 16, [|F|| =
751, and ||F||/IQIl = 46.94. We tested five large applications. Table 1 shows these ex-
perimental results. Generally, the size of LUA is far less than the size of the other
lookup structures [13, 16], i.e. the value ||Q|| is far less than ||F||. Moreover, it seems
that a greater benefit of our LUA technique reveals when the arity of M becomes
greater.

8 Related Work

Some related research has been discussed in previous sections. CLOS [6] and its pre-
decessors CommonLoops [5] and Flavor [15] pioneered the use of multi-method dis-
patching using inheritance order precedence. In the Flavor system, Moon [16] pro-
posed the lookup structure which is organized as a set of hash tables, in which all
possible dispatch cases are prefilled. In the presence of multi-methods, however, the
number of all possible cases is combinatorially explosive. For a generic function with
n arguments, the number of possible cases is in the order of ¢” as indicated in [11] (c.f.
Table 1). Rodriguez, et al. [13] introduced another technique for multiple-dispatching
running in CLOS. Similarly, this approach requires to prefill all possible dispatch
cases. As a comparison, Dussud [11] suggested a dynamic cache technique to over-
come this drawback. The dynamic cache requires memory only for called methods. In
the time of dispatching, the search begins in the cache. If the selector has no entry, a
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dynamic lookup provides the method procedure address. This address is then stored in
the cache. Cache filling is then randomly distributed at execution. That overhead may
not be reasonable for real-time systems. However, saved memory is great in large sys-
tems where execution deals with few selectors. Essentially, all these techniques are
based on hash functions over all argument types, but the problem of combinatorial
explosion is not resolved.

Agrawal, et al. [2] presented a basis for introducing multi-methods in languages
with static type checking and for designing new object-oriented paradigms based on
multi-methods. In the time of type checking, they suggested a swrategy to find the
most specific applicable method, by introducing a method precedence graph for a
confusable set. If this technique was applied to dynamic dispatching, the space re-
quired would be less than that in our lookup automaton, but the time-complexity
would be O(||M|| X n), where n is the method arity. For large systems, the number
L]l can reach to the order of 10 Consequently, this strategy would be very expen-
sive when extended to dynamic lookup for large systems.

Lécluse and Richard [14] characterized multiple-dispatching in terms of structural
subtyping. Whenever two confusable methods are not ordered by argument subtype
precedence, they require that additional methods are defined to insure that a most spe-
cific applicable method for any given set of arguments can always be determined by
the use of argument subtype precedence alone. Mugridge, ef al. [17] discussed multi-
method dispatch with static type checking. They described a method-specificity rule
that only partially orders the methods of a generic function. They defined the cover of
amethod m(t,,...,¢,) as the cross-product of all possible argument types: {(s,,....s,)
| ¥ i, s; < t,}. Method applicability is defined in terms of the non-empty intersection
of the covers of the function call and the method definitions. Given a call, applicable
methods are found by intersecting corresponding covers. Since the method prece-
dence rule does not totally order methods, if two applicable methods are found that do
not have an order defined between them, such a call is declared ambiguous.

Finally, in the presence of single-dispatching, Dixon [9] and André, et al. [4] ap-
plied the minimal coloring theories to construct lookup tables. In single-dispatching,
only the types of receivers are of interest. Although all possible dispatch cases are
prefilled in the lookup tables, yet the memory overhead may not be so crucial than in
multiple-dispatching. On the other hand, Ingalls [12] introduced a simple approach to
simulate multiple-dispatching in a system that just supports single-dispatching.
Single-dispatching can be applied to each interesting argument in turn, to simulate the
effect of dispatching on all interesting arguments. However, this approach may result
in a combinatorially explosive situation, such that even the minimal coloring tech-
niques are still powerless to reduce the space-complexity of the lookup tables.

9 Conclusions and Discussions

We have presented a mechanism for implementing multi-method dynamic lookup
based on the lookup automaton (LUA) technique. For a given type hierarchy and a
method confusable set, the corresponding LUA is constructed at compile time and is
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simulated at run time. Several characteristics of this dynamic lookup strategy can be
concluded as follows:

L]

The dynamic lookup is transformed into the LUA simulation. For each generic
function invocation, we trace the precedence order R(¢,,...,t,) on a list of the
corresponding states of the LUA. The most specific applicable method (if any
exist) can be found in the final state;

For any function invocation, the number of state transitions is not greater than
n, where n is the function arity. The total time-complexity for the LUA simula-
tion is O(n);

In the run time environment, the knowledge of the relations « is not nceded.
The LUA simulation can be performed solely on the knowledge of the relation
<. In some special cases, even the knowledge of relation < is obsolete:

The size of the LUA heavily depends on the structure of the type hierarchy and
the confusable set. In general, the size is far less than the current cache tech-
niques [13, 16]. This is because in LUA the states (at the same level) can be
“merged” together if they have the same precedence order. Our experience sup-
ports this claim;

The procedure to reduce the size of the LUA is performed at the time of
constructing the LUA. The advantage of this approach is that a large memory
overhead can be prevented both at compile time and at run time.

We assume that, once the structure of the type hierarchy or the confusable set have
been updated, the LUA must be rebuilt, even in the case that only one method is add-
ed or removed. In this case, one particular question is whether it is possible to update
the old LUA rather than to compute it again from scratch. To answer this, it might be
necessary to look at the dynamic behavior of the closure function, e.g. how to calcu-
late closure(S —{x}) or closure(S U {x}) from closure(S). To determine the LUA’s dy-
namic behavior, more research and experience are needed.
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Appendix

In the following the proofs of lemma 6 and theorem 7 are presented.

LEMMA 6:

Proor. We prove (a) and (b) by induction on & from 7 down to 2. The case k = 7 is
obvious. Assume that the lemma holds for all £ with [ <k < 7. We prove that the lem-
ma holds when k=1> 1.

(@) Leta,beT,. Clearlya <, b implies a <,,, b, so that, by the assumption of the

induction, @ < b holds. It remains to prove that ¢ < b implies ¢ <, b. Let a = T1i,]
and b = T{z]. The assumption of the induction is @ <, b. If u[k] = in_closure, then



430

Ty =T wn sothat g <, b holds; if u[k] = not_in_closure, then I, # .. Since a < b,
there must be a path P from ¢ to b in T, If TTk] is not in P, then the relation ¢ <, b
must conform with ¢ <., b; if T[k] is in P, then T[i,] < T[k] < T[i,] holds. Since Tlk]
¢ T, and T{i,,] € T,. the relation T[i,] < TIk] < T[i,) must hold such that i, < k < i,
and u(i,] = in_closure. Hence, by assumption (a), TTi\] <,. Tk] <uu Tliy) and pufis]
= in_closure hold in T, ,. By assumption (b), in T, ,, 3 i k+1 < i < iy, such that
Tlk] <in TUS) <ot Tl In Ty, ulk] = not_in_closure holds, i.e. when the loop-vari-
able i is equal to &, lines 10-11 are executed, where T j.,] <ju T1:%] holds. Moreover,
Tljmin] <4 T[é%] =<, Tlix] must also hold in fk, so that TTi\] < Tl vields Tli\] <,
Tli,].

(b) By (a), we know that the relation T[k-1] <, T[j] (in T') implies T[k-1] < T[]
(in ). IfTTk-1) < T1j]. then TTk-1] <, T1j] holds so that ;' = j is the result; otherwise
Japath P from TTk-1T 0 T[jlinJ,and 3 1, k~1 <! < J» such that TTk—1] 2T <
T If ulll = in_closure, then j' = [ is the result; otherwise we consider the hierarchy
1. By the assumption of the induction, T{!] <,,, T[;] holds, while 3/, I+1 < ' <
J, such that T11) <., TII'} <. T]. In G, ull) = not_in_closure, 1.e. when the loop-
variable i is equal to [, lines 10-11 are executed, where T{j..] <. T[!']. Hence,
Tk-1] <, Tljm»] (updated at line 11). This relation must also be keptin 9, i.e. T[k-1]
25 Tljma). BY (@), TUjnin] <ta1 TI'] incurs T(j,] < TU'] 50 that Tljna] < T[!'] holds.
Hence, j' = j. is the result.

It is still necessary to prove (a) for the case k = 1. Since ', = 5 and T, < T, hold,
so the relationship <, conforms with <, in T,. By the assumption of the induction,
the relationship <, conforms with < in 7, so that <, conforms with < in 7). |

THEOREM 7:

Proot Let 8" = {Tljl € T, | uljl = in_closure, 1 < j < 7). Clearly § < S’ and it
suffices to prove that §” is closed and S’ < closure(S).

Let T1i\], T1i2] €S and Tlj} € GLB(TT1i\), Tlix]). Assume T[j] ¢ S’. Then neither
1] < Tli2] nor T1i;] < T[] holds. Hence j < min(iy, iz). In 9., we have uli,,] =
in_closure. By lemma 6, T{j] <. 1li12] holds and 3 i} and %, such that Tj] <,,, T1i}]
< Tlal, for [ =1, 2. Clearly i # i} holds (otherwise T{j] ¢ GLB(11i,]. Tli])). Con-
sider the case that the loop-variable i is equal to j. For the variable j,, (c.f. line 6) we
have T1j] 2,-,,1 ] <j T1if] <500 TTi] and TTj] €8, for £ = 1, 2. But this implies
T1j] ¢ GLB(T1i,], T[i;]). This is a contradiction and hence S’ is closed.

Next, we prove ' < closure(S).i.e. V k, 1 < k < 7, if u[k] = in_closure, then T|[k]
e closure(S). The proof is by induction on £ from 7 down to 1. The case k = 7 is ob-
vious. Assume that it is true for all £ with / < k£ < 7. Consider the case k={ = 1. When
the loop-variable i is cqual to £, then since u (k] = in_closure, line 8 is executed. Thus,
djed ,j # junsuch that u(j] = pljnn) = in_closure and T(j,,] <., T1/] does not hold
in 9., Now it suffices to prove that T[k] € GLB(TT}), Tljn)). Clearly T(j] <, Tl
does not hold, i.c. 7[/] and 7{},.,] are not comparable with respect to the relation <,
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in 7.,. Suppose that T{k] & GLB(TI}], Tlj.]). By proposition 3, 3 k', k < k' < min(j,
Jmin), SUch that T{k] <., TTk'] € GLB(Tj], Tljuxl). Since S’ is closed, T{k'] €S’ holds,
i.e. u(k') = in_closure in Ty,,. By lemma 6(b), in Te+1, 3 k", k” < &', such that TT[k]

Zinr TIK"} <pw TIK') and ulk"] = in_closure. Therefore, k" < k'< ju, holds. But by
the definition of j,

(c.f. line 6), we have j,,, < k”. This contradiction completes
the proof.



