Generalizing Dispatching in a Distributed Object System

Farshad Nayeri, Ben Hurwitz, and Frank Manola

GTE Laboratories Incorporated
Waltham, Massachusetts 02254 USA

Abstract. Today's distributed computing environment presents a jungle
of systems that use different object models, programming languages, and
paradigms. Taking maximum advantage of these diverse resources
requires that they be able to interoperate. We report on a series of
experiments in a distributed object system that show how a flexible
notion of dispatching can be used to integrate objects belonging to
different models, systems, and paradigms.

Introduction

Today, many different object models are employed in various programming
language implementations, database management systems, expert systems,
and operating systems services. This proliferation of object models hinders
reuse because code written in one model typically cannot interoperate with
code written in another. While global interoperability could be achieved by
the adoption of a particular object model, it is likely that no one model will
achieve universal acceptance. Hence, the best achievable interoperability solu-
tion may be to create mappings between the features of the various models.
Achieving such inter-model mappings is complicated by the distinct features
that distinguish individual systems, including:

mechanisms for dispatching, such as classes or generic functions

computing paradigms, such as imperative, rule-based, or functional

object composition features based on inheritance or delegation

synchronous and asynchronous communication based on messages or events,

¢ ® o o

In this paper, we focus on the process of dispatching and its variations in
different object systems. Through a number of feasibility experiments, we
show how we can integrate a diverse set of object models and paradigms by
taking advantage of a flexible notion of dispatching in the context of our
prototype distributed object manager, called DOM.

Organization of this paper. Section 1 explains why it is important to focus on
dispatching in different object systems, briefly relating our work with the
previous work in this area. Section 2 describes flexible dispatching and its
implementation in DOM. Section 3 reports on a series of experiments to inte-
grate several object models and systems using flexible dispatching. Section 4
surveys related work. Section 5 reflects on the lessons learned and some of the
open issues. Section 6 concludes by summarizing the paper.

451

1 Motivation

Inherent in every object model is the mapping of invocations on objects to
their behavior. Dispatching is the process of finding the appropriate behavior
for a particular invocation. Most object systems provide a single and most
often fixed form of dispatching that is built into the implementation of their
object model. For example, the Smalltalk [1] system performs the following
steps upon invocation:

find the receiver of the message
search through the class of the receiver and its superclasses
until a class is found that contains a method with the same
name as the message selector
if such a class is found then
apply the method to the receiver and the other arguments
else signal messageNotUnderstood

Different object models employ different dispatching mechanisms in order
to provide support for their flavor of computation, or to address implementa-
tion goals. In some models, such as C++ [2], dispatching takes place implicitly
through subclassing, while in other models, such as Self [3] dispatching plays a
more explicit role through delegation. CLOS [4] allows for some variations on
the basic theme of dispatching, while keeping the overall process fixed.

DOM is a distributed object system intended to support interoperability
among heterogeneous components. Because our main goal is to integrate
objects from different object models and systems, we do not assume a single,
fixed form of dispatching. Instead, DOM allows different objects to employ
different dispatching paradigms. This is achieved by requiring object imple-
mentations to specify explicitly how dispatching should take place. Hence we
allow for objects belonging to different dispatching paradigms to coexist
within the same system.

After collecting the common Kinds of useful dispatching patterns, we can
define higher-level abstractions that seem useful and safe in practice. In this
sense, our explicit notion of dispatching can be considered “the ‘goto’ of
object run-times”: it serves as a crude but powerful method of defining a
portion of the behavioral aspects of an object model. We believe that, just as
was the case with the development of programming languages, gaining famil-
iarity with explicit lower-level constructs such as dispatching will help us
define better higher-level abstractions needed to integrate future distributed
object systems.

2 Dispatching in DOM

From the perspectives of the DOM user or the client, the most fundamental
abstraction in the object model is the invocation. Every request for object func-
tionality is an invocation. The body of an invocation is a grouping of objects
(071 02 ... 0y).

452

When DOM receives an invocation, it picks the first argument in the invo-
cation, called the receiver, and forwards the rest of the arguments to the
receiver. The real responsibility of finding and executing the code implement-
ing the invocation semantics rests with the receiver.

From the perspective of the implementor of an object, the most fundamental
abstraction in DOM is the object’s dispatcher. A dispatcher is a piece of code;
when an invocation is forwarded to an object, the object’s dispatcher is
executed. All objects within DOM - including primitives such as integers or
strings, add-on abstractions such as object ids and classes, and “foreign” or
legacy systems — provide their functionality to the system by specifying their
dispatchers.

The role of the system is to translate incoming invocations into calls to
dispatchers of receiver objects; the dispatchers in turn determine and execute
the appropriate pieces of code in response to invocations. Since the system
makes no assumptions about the representation or behavior of an object, the
object can be implemented in practically any language or any system, as long
as it provides a dispatcher to act as an interface between the system and the
object’s functionality.

Bootstrapping core objects. Starting at the lowest level of the system, the
objects representing basic data types — such as integers, strings, symbols, and
vectors — are called the core objects or core primitives. DOM uses core objects to
implement its basic functionality. In DOM, core objects do not have a special
status; they are implemented like ordinary objects by designating dispatchers.
As a trivial example of using a dispatcher to define object functionality in
DOM, we present the Modula-3 code that implements integers in DOM:1

TYPE Integer = Obj.T OBJECT
value: INTEGER;
OVERRIDES
dispatcher := IntegerDispatch;
END;

PROCEDURE IntegerDispatch (self: Integer; args: Args.T): Obj.T
RAISES {Obj.Exception} =
VAR
selector := Args.GetSelector (args),
BEGIN
IF (Text.Equal (selector, “printString”)) THEN
(* return a a printed representation. *)
Args.CheckNumberOfArguments (args, 1);
RETURN MakeString (Fmt.Int (GetInteger(self)));
ELSIF Text.Equal (selector, “add”) THEN
(* add the argument to self, return the result. *)
Args.CheckNumberOfArguments (args, 2);

1 Modula-3 [5] is the underlying implementation language for most DOM primi-
tives.

453

RETURN Makelnteger(Getinteger (self) +
Getinteger (Args.Element (args, 1)));
ENDIF;
(* could not find the requested selector. *)
RAISE Obj.Exception (Exception.badFunction);
END IntegerDispatch;

By creating a Modula-3 type Integer, we have provided for all the integer
objects within the system to share the same dispatcher. The dispatcher for
integer objects responds to two messages: printString with no arguments, and
add with one argument. Otherwise, an exception is raised.? The basis of flexi-
ble dispatching in DOM is the ability to create such customized dispatchers for
objects using different paradigms.

From invocations to dispatching. To make invocations in DOM, most clients
call the Modula-3 procedure Obj.Invoke. This procedure provides a uniform
method for invoking operations on all DOM obijects. For example, the follow-
ing Modula-3 fragment defines two Integer objects using the Modula-3 NEW
primitive, and invokes an add operation on them:

IMPORT Obj;

VAR
a = NEW (Integer, value := 5);
b := NEW (Integer, value := 6);
¢ := Obj.Invoke (a, “add”, b);

Within Obj.Invoke’s body lies the assumption that the first argument of an
invocation is the receiver for a message. Upon invocation Obj.Invoke calls the
receiver’s dispatcher, including the other arguments in the invocation. Obj.In-
voke hides the notion of dispatching from clients; all the clients know is that
they are invoking an operation on an object.

Obj.Invoke assumes that its second argument is the name of the invoked
operation. Using Obj.Invoke denotes a message-passing style of invocation,
which we most often use. DOM provides a more general invocation procedure
Obj.InvokeN, which does not assume the message-passing style.

Scripting Language. Some examples in this paper are written in the DOM
scripting language. The scripting language is not an essential part of DOM; it is
merely syntactic sugar for defining and using objects more easily. It is not a
full-fledged programming language, but the bare minimum for our experi-
ments.

We followed the spirit of Scheme [6] by providing a simple, lexically-scoped
interpreted language. Special forms such as DEFINE and IF provide their own
evaluation rules, and are in upper case by convention. All other expressions

2. Efficiency of core objects is not a direct goal here, since we envisage computa-
tion-intensive tasks taking place on local systems, and that the core objects be
used only to communicate between different systems.

454

are either variable references, literal objects, or invocations which take the
form (0; 07 ... 0p). To process an invocation, the interpreter for the scripting
language evaluates all objects in an invocation and calls Obj.InvokeN with the
invocation as an argument. Obj.InvokeN will then call the dispatcher of the
first object in the invocation. For message-passing invocations, the second
argument - the message name - is a symbol, as is the case for (aRectangle
‘draw). For functional invocations, the second argument of the invocation is
not restricted to be a symbol. For example, the object aRectangle is an argu-
ment of an invocation on the function draw in (draw aRectangle). The follow-
ing is a DOM script that parallels the above Modula-3 fragment:

(DEFINE a 5)
(DEFINE b 6)
(DEFINE c (a ‘add b))

The scripting language itself was implemented using DOM primitives. One
of the interesting applications of ﬂex1ble dispatching is the implementation of
closures in our scripting language.3 Closure objects in DOM contain a parse-
tree representing the body of the closure, and a symbol dictionary representing
the environment where the closure was defined:

TYPE
LambdaClosure = Obj.T OBJECT
body: Obj.T;
environment: Obj.T;
OVERRIDES
dispatcher := LambdaDispatcher;
END

Upon invocation, the dispatcher of a closure binds the invocation argu-
ments to the formal parameters of the closure and evaluates its parse-tree in its
environment. This implementation is straightforward since the notion of a
dispatcher in DOM is similar to that of a closure in Scheme. The difference is
that by relaxing the implementation requirements on objects with dispatch-
ers, we can allow them to be implemented in a variety of languages and
systems.

Comparing the LambdaClosure definition to the Integer definition given
earlier shows how DOM objects differ from each other: in their state, and in
the procedure acting as their dispatcher.

3. A closure is a “free function” that gets created when a LAMBDA special form is
evaluated. For example, (LAMBDA (x) x) evaluates to the identity closure.

455

3 Experiments with Dispatching

In this section, we report on some of the experiments that we performed in
our study of dispatching in object systems. The two major goals for our exper-
iments were:

s feasibility — show that employing a simple but customizable notion of dispatching
allows us to integrate diverse object models

¢ observing commonality — observe the common patterns of dispatching in different
systems.

In our experiments, we attempted to examine a wide range of models,
systems, and paradigms, including:

class-based and generic function-based object models
client-server and distributed object concepts
object-oriented databases

rule-based systems.

Using DOM, we have integrated code written in a wide variety of systems
and models, including: Modula-3, C, C++, Macintosh Common Lisp, CLIPS
rule-based system, Sybase relational database, and Ontos object-oriented data-
base system. As our experiments show, the flexible dispatching design of DOM
made it easier to integrate diverse systems and models.

3.1 Class-based dispatching

In a classical object model, invocations are based on a message-passing para-
digm: an invocation is interpreted as a message sent to a particular object in
the invocation, called the receiver. The outcome of dispatching for a particular
form is solely determined by the receiver argument in an invocation. Thus, to
handle a new kind of message, the programmer needs to add a new handler in
the code for the anticipated receiver of the message.

Many classical object systems use the notion of a class as their central
abstraction and grouping facility. Such systems are usually called class-based.
Classes typically play one or more of the following roles in a class-based
system:

e implementation sharing: a central place for a group of objects to share behavior
« interface sharing: a central place for a group of objects to share external interfaces
» factory: an object that can create new objects that share behavior or interface.

Traditional object systems such as Smalltalk make fundamental assump-
tions about the role of classes as built-in parts of the overall model of the
system. Classes in such a system are often treated specially. More recent object
model designs for systems such as Emerald [7] and Self [3] do not include a
built-in notion of class. Instead, they employ notions such as delegation to
provide capabilities similar to the inheritance capabilities provided by most
class-based systems.

456

In this experiment, we explore how we can use DOM'’s flexible dispatching
to support the 1mp1ementat10n and interface sharing roles of classes in an
object system To do this, we first examine the typical characteristics of
dispatching in a class-based system:

* cach object has a class
* classes have superclasses; the set of all superclass relationships is the class hierarchy
* when a message is sent to an object, the system searches the class hierarchy in some

predefined order to find a piece of code (a method) whose name matches the selector
for the invoked message.

This class-based dispatching process is usually fixed as part of the object
model of class-based systems. In addition to the characteristics listed above,
many object systems make other assumptions about dispatching. For example,
in Smalltalk, objects cannot include individual behavior outside the context of
their class.

In DOM, since we do not necessarily know the representation or behavior
of objects within the system, we cannot make such unilateral assumptions.
Instead, we allow for the class notion to be an add-on service applied only to
objects participating in a class-based model. Other objects do not have to
comply with restrictions of the class-based paradigm. (In particular, DOM can
support multiple class-based paradigms.)

Class-based dispatching in DOM. The essence of our implementation of
classes is similar to that of the traditional class-based model. Objects adhering
to a class-based paradigm contain a reference to their class, and provide a
“custom” dispatcher that implements class-based dispatching:

TYPE ObjWithClasses = Obj.T OBJECT
class: Obj.T;
OVERRIDES
dispatcher := ObjWithClassesDispatch;
END;

The dispatcher for class-based objects searches up the superclass hierarchy
to find a method whose name matches the selector for the invocation:

PROCEDURE ObjWithClassesDispatch (self: Obj.T; arguments: Args.T):
Obj.T RAISES {Obj.Exception} =

VAR
selector := Args.GetSelector (arguments);
class := self.class;
op: Procedure := NIL;

BEGIN

4 We omit the discussion of the factory role of classes in this paper.

457

(* Search the inheritance hierarchy to find the right class. *)
WHILE class # RootClass AND op = NIL DO

op := Lookup (selector, class);

class := Obj.Invoke (class, “super”);
END;

(* If a “method” is found, apply it; otherwise raise an error. *)
IF op = NIL THEN RaiseException (“method not found”); END;
RETURN ApplyPieceOfCode (op, self, arguments);

END ObjWwithClassesDispatch;

A different class-based paradigm (for example, one that uses multiple-inher-
itance) can be implemented by defining a new dispatcher, and possibly more
state for the participating objects. Also, as in Self [3], we can avoid the meta-
regress problems of systems such as Smalltalk, by implementing class objects
themselves using a different dispatcher from ObjWithClassesDispatch.

subclass of o ™ method
class : i‘f
<" dispatching flow

instance of

receiver

Figure 1. Dispatching in a class-based system: the system
searches the class hierarchy beginning with the receiver’s class
to find the method to execute.

3.2 Generic function dispatching

Sometimes it is useful to consider parts of an invocation other than the
receiver in the dispatching process. Chambers [8] provides some examples:

« (aShape ‘draw aDevice) where aShape is a graphical shape and aDevice is a graphical
device, such as a laser printer or an X Window. In this case, the piece of code that
needs to be run depends not only on the kind of shape we are drawing, but also on
the kind of device we are drawing onto.

* algebraic operations such as arithmetic (add or multiply) or ordering (=, <, >).

In the above cases, the decision of which piece of code to run is based not
only on the receiver, but also on other arguments of the invocation. In this experi-
ment, we describe how we can modify the dispatching process to involve all
the arguments in an invocation without changing DOM’s basic model of
computation.

458

Consider coding the Shape object in the first example above in the classical
model. One solution is to do a case analysis on the second argument of the
invocation (aDevice) in the body of the receiver (aShape), but this solution
produces code that is error-prone and hard to maintain. To avoid this case
analysis, we can apply a technique called double dispatching [9]. In a classical
object model, the only significant argument in the dispatching of a message is
the receiver; to make a different argument significant, we must make it into a
receiver. We do this by switching the order of arguments in the code for the
draw method of aShape. This introduces a case analysis problem in the body of
the Device objects. To avoid this second case analysis, we tag the draw message
(sent to the Device object) by the different kinds of Shape objects (to create, for
example, drawRectangle). By tagging messages, we are making the case analysis
implicit within the dispatching process.

The main disadvantage of double dispatching is that it relies on the disci-
pline of the programmer in making sure that the messages are forwarded
correctly. Also, in the case of multiple dispatching, where we may want to
dispatch on more than one argument, we will have to write code to repeat the
same kind of technique for each significant argument.

Generalized object systems such as the Common Lisp Object System (CLOS)
[4] support groupings of pieces of code, called generic functions, that differ from
those used in classical object models. A generic function is a grouping of
methods that implement the same functionality over some set of classes in the
system. A CLOS programmer considers “draw” to be a generic function, since
all draw methods implement variations of the same functionality. In CLOS,
definitions are centered around the generic function itself. CLOS does not
support a notion of a receiver; all arguments of a particular operation are
considered in dispatching. Methods specialize on one or more arguments of a
generic function, by providing a piece of code to be run when the arguments
of a generic function match the types specified in the method declarations.
For example, CLOS code to implement the draw generic function to support
dispatching based on Device objects looks like:

(defgeneric draw (aShape aDevice))
(defmethod draw ((aShape Rectangle) (aDevice X-window)) ...)

Generic functions provide a convenient grouping when the dispatching
decision is based on more than one argument. In the generic function
approach, there is no need for the programmer to redirect the dispatching. On
the other hand, because of its generalization, the system’s dispatching process
is more complicated.

Generic functions in DOM. We aimed to capture the essence of the generic
function concept, while keeping within the classical model of invocation. We
started by observing that the computational model of CLOS is centered
around the concept of a generic function, or an operation, being applied over a
number of objects.

459

To implement generic functions in DOM, we aimed to maintain the opera-
tion grouping explicitly by creating a generic function object which provides for
registering pieces of code that together implement a particular generic opera-
tion. Here, DOM’s flexible dispatching plays a key role: upon invocation, the
dispatcher of a generic function object delegates the work to the appropriate
piece of code depending on the parameters of the invocation.

-...generic
- function

.. method “lassical object

Figure 2. Generic functions in DOM (left) and how
they can be integrated with classical objects (right).

Merging the classical model with the functional model. We can provide
generic function capabilities for ordinary objects in DOM which adhere to the
classical model. For example, suppose we were to create shape and device
objects that support a draw operation so that (aShape 'draw aDevice) would
mean to call the draw operation of a shape aShape on a device aDevice. To
support this form of invocation, all we have to do is to ensure that upon invo-
cation, the dispatcher of aShape calls the generic function draw while passing
arguments (including the receiver aShape, but excluding the selector ‘draw). In
this sense, aShape is a classical object (i.e., it has its own dispatcher), but its
dispatcher is not classical (i.e., it supports the generic object model).

Implementation details. Code for defining the generic function draw in our
scripting language looks like:

(DEFINE draw
(GENERIC-FUNCTION (shape device))

(ADD-METHOD draw (shape device)
(AND (is-rectangle shape) (is-printer device))
code for drawing a rectangle on a printer...)

(ADD-METHOD draw (shape device)
(AND (is-circle shape) (is-window device))
code for drawing a circle on a window...)

460

Like the CLOS Metaobject Protocol (MOP) [10], we have added a layer of
syntactic sugar (special forms GENERIC-FUNCTION and ADD-METHOD) to ease
programming. GENERIC-FUNCTION simply creates a new generic function
object. ADD-METHOD turns its condition clause into a syntactic closure to be
evaluated when the generic function is invoked. Upon invocation of a
method, if the condition closure evaluates to true, the body of the method is
executed. Since closures are just like ordinary objects in DOM, we can define a
generic function from outside the scripting language by replacing the condi-
tion closure with an ordinary object invocation. Like Dylan [11] this design
allows us to run methods as “type-checked” closures outside the context of a
generic function.

Unlike CLOS, we do not assume the existence of classes. To augment generic
functions to include a class notion similar to that of CLOS, we must extend
the class-based dispatching to provide:

* a class membership test for instances
¢ a way of checking whether a class implements a particular invocation

The generic function dispatcher can use the information provided by the
class system to find the appropriate method, similar to CLOS MOP. We can
change the generic function dispatcher to provide for CLOS-style “before” or
“after” methods and “eql specializers”.

Like Dylan, we treat generic functions and methods as first-class citizens of
the object system, providing the usual benefit of uniform access. One conse-
quence of this choice is that DOM may allow two different generic functions
to have the same name in different contexts, for example, (draw aShape
aDevice) vs. (draw aGun). CLOS distinguishes generic functions by name, thus
relying on namespace management to address possible conflicts.

3.3 Dispatching to Distributed Objects

The notion of a network message between components in a distributed system
can be realized as an invocation in an object model [12, 13]. DOM’s basic
model of computation does not include a built-in notion of remote invoca-
tions. By utilizing flexible dispatching, we can allow for the remote invocation
without changing DOM's basic model of computation.

In this section, we describe how we used flexible dispatching to build the
two key abstractions of our distributed object implementation. A key charac-
teristic of our design is that it does not enforce a canonical representation for
object references. Instead, each system using DOM is free to define its own
representation for object references. We also address the issues of concurrency
and describe how network dispatching can be optimized.

Network objects: client-server computing in DOM. The client-server model
of distributed computing can be mapped to DOM’s basic model of computa-
tion in the following way: the client (invoker) invokes an operation on the
remote server (receiver). To extend the local notion of invocation to a distrib-
uted one, we must:

461

« modify the dispatching to allow for calls to remote servers over the network (i.e., cre-
ate a new dispatcher that allows for network invocations)

+ provide an object to represent the server in the client’s system. The client can make
invocations on this object.

We introduce the abstraction of a network object to be a local representative
for a remote server. (Others have called network objects “surrogates” [13] or
“proxies”[14].) Upon invocation, the dispatcher for network objects performs
the following steps:

e open a connection to the server it represents
e convert the invocation arguments to a network-neutral format

¢ send the contents of the message over to the server it represents; wait for server to
respond

¢ convert the server’s response from the network-neutral format to the local format
¢ close the connection
e return the reply of the server as its return value.

Somewhere on the local system, we must leave enough information so that
the network object can forward invocations to the network server it repre-
sents. In DOM, the network object itself contains the information it requires
for making network connections to the server it represents. In this sense, a
network object encapsulates the local portion of the dispatching process from
the client, delegating the rest of dispatching to the remote server. Under TCP/
IP, the representation for network objects needs to contain a host name and a
port number:

TYPE NetObj = Obj.T OBJECT

hostname: TEXT;

portnum: CARDINAL;
OVERRIDES

dispatcher := NetObjDispatcher;
END

Network objects not only allow for the extension of DOM’s basic computa-
tion model to include the notion of distribution, they also allow objects to be
implemented in virtually any language, system or even networking protocol,
while keeping the user’s abstract model the same. For example, using network
objects we can invoke operations remotely on a name server or on a legacy
system.

Exporting object references. There are times when a server needs to manage
a large number of individual objects. In these cases, it is often convenient for a
server to export references to objects residing on the server to the outside
world. For example:

* a file server may want to pass a handle to a file

462

* an object-oriented database may want to hand out references to objects in the data-
base

* a process may want to send references to its DOM objects to other processes in the
system.

We call such a reference an object id, or oid for short, and a server capable of
exporting references a component. Using the oid for an object, the client can
directly invoke messages on the remote object without having to worry about
the component to which the oid belongs. Since an oid must reference an indi-
vidual object within a server on the network, it must contain, at least:

* a network address: the network location of the component where the referenced
object belongs
* an object index: an identifier for the object within the remote component.

Network addresses can be represented by network objects. Our design does
not make any assumptions about the representation of the object index,
except to preserve it across invocations. The interpretation of the index can be
left as the responsibility of the remote component. In DOM, oids are first-class
objects. Since DOM does not enforce a canonical representation for oids, each
component is free to define its own representation for oids. The representation
of oids in Modula-3 looks like:

TYPE Oid = Obj.T OBJECT

component: NetObj;

index: INTEGER;>
OVERRIDES

dispatcher := OidDispatcher;
END;

Supporting invocations. We also have to make sure that local invocations on
the oid trigger invocations on the object within the remote component which
the oid represents. First, we need a way of instructing components to make an
invocation on an object residing within that component. We do this by
enforcing a uniform protocol across components for network invocations. All
components are required to handle the network message invoke that takes a
vector of objects representing arguments in an invocation, for example:

(file-server ‘invoke (VECTOR “/proj/foo” ‘append “/proj/bar”))

Sending an invoke message to a component triggers an invocation on that
component.

S For simplicity, in the implementation described here, we assume that the object
index is always an integer.

463

We program the dispatcher for oids to:

* package the arguments into a vector

¢ execute an “invoke” operation (with the argument vector) on the network object
representing the remote component

¢ return the result from the invocation made on the network object.
For example, the invocation (an-oid ‘add 42) is translated into:
(a-server ‘invoke (VECTOR an-oid ‘add 42))

where an-oid is an oid referencing an object exported by a-server.

Oids as logical references. We can generalize the notion of an oid to include a
logical identifier for components. This gives components freedom to relocate
to different port numbers or machines on the network without affecting their
clients. To implement this, we replace the network address in an oid with a
component identifier. The mapping from component identifiers to network
objects is maintained by a simple network service called the location broker or
the locator for short. We change the dispatcher for oids to ask the locator for
the network object representing the remote component. The dispatcher then
uses the obtained network object to make the remote invocation. Hence,
components can migrate readily from one machine to another without affect-
ing téxeir clients. In this role, DOM resembles an Object Request Broker (ORB)
[15].

client’, . netobj for - ;
system, . locator, * =% |
~ i al - P
L ‘ fior - *\ oid| clienf' [\oid, .
client / client S NPRR locator
. S netobj for | .- e netobj for -
netobj for () - remote . ! remote { !
remote server_\\ . component A component’,
-) - -y
dispatching flow \ \
% remote ;7 remote
Jobject .object
/ /
{ ! ‘
remote fremote {remote
server -component Icomponent

Figure 3. Three levels of network interaction: client/server inter-
action (left), using oids to encapsulate servers (middle), and
using the locator to get rid of location dependencies (right).

Concurrency and DOM’s basic model of computation. A component may
need to respond to network invocations at any time. Often, when a network
invocation arrives, a component may be servicing an ongoing task, for exam-
ple, an invocation from a local script interpreter. Using Modula-3 threads, we
can allow for multiple concurrent invocations on objects in DOM. To service

6 To make the design scalable, we must allow for the location service to be repli-
cated. We do not address this issue here.

464

network requests, each component spawns a thread upon start-up which waits
for network invocations after registering the component’s network address
with the locator. The component then goes on to perform its local tasks as if it
did not have to deal with network interactions. To avoid deadlock, we spawn a
new thread for servicing each network invocation, We have protected the crit-
ical sections in DOM code. Protection of the critical sections within the code
for the object itself is left to the programmer.

In the absence of a multiple-threaded environment, it is possible to achieve
similar behavior by using an event-driven invocation mechanism or by
supporting asynchronous message-passing [16]. We chose this synchronous
model of invocation because it allowed us to keep DOM’s basic computation
model simple [12].

Optimization. In our first implementation, we sacrificed efficiency for clarity
and simplicity of code. Because of this, we held off on implementing all opti-
mization strategies. Once the basic model is implemented, we can apply a
range of optimizations. For example, memoizing or caching is an optimization
technique that is common in implementations of both Metaobject Protocols
[10] and distributed systems [12]. In our implementation, there are two obvi-
ous areas where memoizing can speed up invocations on distributed objects:

» network objects: each invocation on a network object requires opening and closing a
network connection with a remote server. The dispatcher for network objects can
memoize the state of the network connection.

* oids: each invocation on an oid requires a lookup of a network object from the loca-
tor. The dispatcher for oids can memoize the network object after the first lookup.

We can also modify the dispatcher for oids to optimize away network access
for oids that point to objects within the local component. Efficiency was not a
direct goal for our implementation; however, because we are able to create a
clean design by employing flexible dispatching, applying the above optimiza-
tions is a straightforward task.

Thus, we have shown that by using flexible dispatching, we can allow for
invocations on remote and foreign systems without changing DOM'’s basic
model of computation. We presented two key elements of our distributed
object implementation that utilize flexible dispatching, namely, network
objects and oids.

3.4 Dispatching to objects in a database

Object-oriented databases preserve the structure of a program by retaining the
identity and relationships of persistent objects. Different object-oriented data-
bases employ different object models to accommodate their flavor of compu-
tation. With respect to dispatching, issues of integrating persistent objects are
quite similar to those of distributed objects. To support integration of persis-
tent objects, we must provide for:

e exporting references to persistent objects outside the database

465

 invoking operations on persistent objects from other systems. This invocation mech-
anism must support class-based and generic function models.

Hence, to provide access to objects in an object-oriented database, we can
apply techniques similar to those described in Section 3.3. It is straightforward
to represent the object-oriented database server itself as a network object. In
this experiment, we elaborate on how flexible dispatching can be used to
provide for the notions of identity and invocation in an object-oriented data-
base. This generic invocation interface to an object-oriented database is effec-
tively a database object adapter as described in [15].7

We can treat a database adapter as a network component, as long as it
adheres to the required protocol. Recall that components must be able to
export references and support invocations.

Exporting references. The database adapter interprets oids in the following
way:

* the component id in the oid denotes a unique number referring to the database adapt-
er’s component id.

¢ the object index is a key into a mapping of indices to native database object refer-
ences. When an invocation is forwarded to a database, we swizzle the oids in an
invocation into native object references. We maintain the mapping of indices to
nativesreferences within the database, so external references remain valid across ses-
sions.

Supporting invocations. To support invocations on objects within the data-
base, we require a database adapter to support the invoke network message,
just as we do for all network components. In our implementation, we used the
dynamic invocation facilities provided by the particular object database that
we were using. Upon the receipt of an network invocation, the database
adapter:

» swizzles arguments of the invocation into native format. For basic data types, such as
integers and strings, this amounts to a simple conversion. Oids are only valid if their
component identifier matches that of the current adapter. Valid oids are swizzled
into native
object references.

- For this experiment, we used Ontos, a commercial object-oriented database
management system which is built on top of the C++ object model. Ontos pro-
vides services typical of object-oriented databases, such as persistence and query
capabilities, run-time typing, and dynamic invocation facilities.

This implementation of a mapping from oids to references is not very efficient.
The identity mapping can be made more efficient by applying better search
techniques (like hash-tables) or by having better knowledge of database’s persis-
tent identity criteria and providing a functional mapping instead. Since DOM
does not make assumptions about the representation of object indices, we can
change their representation easily.

8.

466

e packages all the arguments into an argument list and calls the native dynamic invo-
cation mechanism to process the argument list (causing an internal dispatch to take
place within the database system)

» returns the result to the caller. If the result is not a basic data type, the adapter swiz-
zles the resulting reference into an oid whose component id matches that of the
database adapter.

In the absence of dynamic invocation facilities, handling the invoke
messages could be accomplished by statically generating “wrappers” to take
care of swizzling and unswizzling incoming invocations. (Such wrappers can
be generated automatically.)

Thus we can transparently integrate objects belonging to object-oriented
databases within the DOM environment. We have indirectly taken advantage
of flexible dispatching in this experiment, since the bulk of our work here used
the notion of an oid, and oids are implemented using DOM’s dispatching
mechanisms.

By creating an adapter that supports DOM'’s abstract notion of invocation,
we have encapsulated the rest of the system from the details of the dispatch-
ing process that the object-oriented database uses.

oid space
. P Ontos class
hierarchy

i : !

(class . A = /
\ ¢/ -y dispatching flow
\ R ey

R - instance of

. RIS
!20\\21) bods

Ontos & object adaptor

Figure 4. Dispatching to objects in an object database. Note the
similarity of this interaction with the distributed object case.

3.5 Dispatching to rules in a rulebase

A traditional rule-based system uses a “closed” architecture, or at most
includes an interface to a database system for retrieving data needed to process
the rules. Recently, rules have started to play an important part in systems
such as databases and programming languages, because rules tend to be a flex-
ible method of specifying behavior. In this experiment, we explore how we
can use DOM'’s flexible dispatching to allow for interoperability between the
rule-based and object-oriented paradigms.9

467

The rule-based model. Traditional rule-based systems consist of two parts:
rules and facts. The heart of a rule-based system is the rule engine, which takes
the rules and facts and uses them to reach a particular goal or computation.
For example, here is a fragment of a simple rule-based program that calculates
weekly pay for employees based on their salary kind (annual vs. hourly):

;;; Depending on the kind of an employee asserted by this rule
;;; rulebase will fire either Pay-week-annual or Pay-week-hourly.
(defrule Employee-kind

(employee ?enumber)

(empl-kind ?enumber 7k)
=> (assert (kind ?k)))

;; Pay-week-annual fires only for employees with annual salaries.
(defrule Pay-week-annual

(kind “annual”)

(annual-salary ?s)
=> (bind ?*weekly-pay* (/ ?s 52)))

;; Pay-week-hourly only fires for employees who are paid hourly.
(defrule Pay-week-hourly

(kind “hourly”)

(worked-hours ?h)

(hourly-rate ?r)
=> (bind ?*weekly-pay* (* 7r ?h)))

The only way to provide data in a traditional rulebase is to declare facts. In
practice, rulebases require access to large amounts of data, so many rule-based
systems are integrated with database management systems. In such a system
the user can write programs as rules in the rule language, and enter the data as
tables within the database system.

Rules accessing distributed objects, rule system as a distributed object. To
integrate rulebases in a distributed object system, we allow rule-based systems
to access data that is outside the rule system. We provide a general mechanism
for rules to make network invocations on distributed objects. In particular,
rules can use the distributed invocation mechanism to access remote database
objects. Finally, the rulebase system itself can be encapsulated as a distributed
object.

Rules as methods of an object. To include rules as a part of the computation
of a distributed object, we simply change the dispatcher for the object to dele-

% For this experiment, we used C Language Interface Production System (CLIPS), a
rule-based system available from NASA with support for rules and (foreign)
functions, and Sybase, a commercial relational database system.

468

gate the computation to the rulebase upon certain invocations. For example,
an employee object may use a rulebase to implement a computePay message.
As discussed above, the rulebase can access a database in order to decide which
rules to fire.

In this sense, the applicable rules are similar to methods in a traditional
object-oriented language, like Smalltalk. At the same time, the data contained
in the database can be thought of as the state of a Smalltalk object. Just as in
the case for methods in Smalltalk, rules in our scenario access the data in the
database directly.

Rules accessing data via methods of an object. We can improve the system
design by restricting access to the state of an object, such as the employee
object, to special accessor methods of the employee object. This arrangement
gives the designer of the object control over how to manage the object’s state
[3, 11]. For example, the designer of the employee object may want to
memoize the employee Kind, rather than always looking it up in the database.

To implement this design, instead of passing the rule system a key to access
data within the database, we modify the dispatcher of the object to:

* pass a reference to itself to the rulebase
¢ add accessor methods responsible for maintaining the data which the rulebase may
access.

When the rulebase requires some state information, it can obtain it through
an invocation on the distributed object. The interface to the rule system is
simplified to include:

¢ an invoke operation similar to Obj.Invoke that allows the rulebase programmer to
make invocations on DOM obijects
¢ a self function that returns the identity of the managing object.

To use the new interface, we change the Employee-kind rule at the beginning
of this section to:

(defrule Employee-kind
(employee (id 7enumber))

=> (bind ?k (invoke (self) “kind"))
(assert (kind 7k)))

For the self invocations to be implemented on top of a synchronous
network invocation mechanism, we must allow for multiple threads to run
through the distributed object. Otherwise the object cannot respond to an
incoming accessor invocation while it is blocking for an outgoing network call
to the rulebase.

469

- abstraction =~ abstraction
. ,L\(ob]ect))) L ~(object)
dispatching flow T m
. \\. . //‘ \x‘_ ‘-\\
state. . " ibehavior staté { lbehavior
(database) I~ (rulebase) (database) (rulebase)

Figure 5. Two forms of interaction for accessing objects from a rule-
base: Smalltalk-like interaction model (left) where state is accessed
directly from behavior of an object and Self-like interaction (right)
where state is accessed through callbacks to the object itself.

Hence, we have shown how we integrated rules as an effective method for
implementing behavior in a distributed object system. Moreover, by relating
our dispatching design to findings of recent object-oriented language designs
such as Self [3], we were able to modify the dispatching process to provide
more freedom to the object designer.

4 Related Work

We based our work on a broad collection of work done earlier in several areas.
For a comprehensive survey of related developments, see [17].

The diversity of dispatching in object-oriented languages, especially Emer-
ald [7], Self [3], Smalltalk [1], C++[2], and CLOS [4] prompted us to study vari-
ations of dispatching in different object systems. Each of these systems
provides a different flavor of dispatching, yet all of them have a built-in
method of dispatching.

CLOS Metaobiject Protocol [10] and other work in meta-level architectures
and computational reflection such as OpenC++ {18] provide “open implemen-
tations,” allowing for applications to customize system services in a number of
different areas, but they do not directly address the issues of interoperability
across diverse object models, programming languages and paradigms. Tech-
niques described in this paper can be applied readily in the context of a system
with meta-level access to the dispatching process, such as [18].

Cecil [8, 23] provides a number of high-level structures on top of a classical
static base, including ones related to dispatching. Cecil does not employ
reflective techniques. Instead, its flexibility is designed by the language
designer to cover all the conceivable high-level constructs, while allowing for
static compilation as much as possible. We intend to explore how, by combin-
ing primitive notions in our object model, we can create higher-level
constructs, like those of Cecil.

The OMG Common Object Request Broker Architecture (CORBA) [15]
describes an architecture whose goals for interoperability are similar to those
of our prototype. However, CORBA only supports a single object model, and
requires other object models to be mapped to that one via an Interface Defini-
tion Language (OMG IDL). CORBA does not address implementation issues

470

directly. Instead, implementation issues such as dispatching are handled by
“object adapters” for different systems. In this sense, our flexible dispatching
design can be used as a basis for building object adapters in CORBA.

Perhaps the closest match for DOM in CORBA systems is the IBM Distrib-
uted System Object Model (DSOM) [19]. DSOM is a distributed extension of
the System Object Model (SOM) [20, 21] which allows for sharing libraries
across language boundaries by employing an explicit meta-architecture. As
both systems need to address dispatching issues in different models, our work
is similar to DSOM in the context of dispatching. We address coarse integra-
tion of diverse object models, while DSOM focuses on a tight integration of
more popular classical object models.

The design of the DOM scripting language was inspired by Scheme [6].
Oblig [22] and DEC SRC’s Modula-3 network objects implementations [13]
have some goals in common with DOM, for example in building a lightweight
interpreted language for network objects. However, our approaches are
complementary: Obliq and SRC network objects emphasize efficiency, while
we aim at achieving flexibility.

5 Lessons Learned and Open Issues

Some of the lessons learned and interesting issues which we encountered in
our experimentation effort were:

Modelling invocations explicitly. Our initial design split the notion of an
invocation into two parts, a receiver and an argument list to be sent to the
receiver. Often it is convenient to treat the whole invocation, including the
receiver, as an explicit entity.

Call-space problems. There are a few places where our abstract notion of
invocation breaks down:

* A message sent to a proxy can be construed in two ways: either a message sent to the
proxy object itself, or a message sent that needs to be forwarded to the object which
the proxy represents.

* Good-citizen messages are messages that all objects in the system support. For exam-
ple, objects respond to a printString message by returning a printed representation of
themselves. What happens if we send a printString message to the closure that results
from evaluating (LAMBDA (x) x)? We must decide either to follow the printString con-
vention, and return something like “#[function]” or apply the closure and return the
result.

A number of generalizations can be made in order to accommodate the call-
space problems. For example, we can make the different call-spaces explicit by
allowing for a notion of context (system vs. user) in an invocation. Or we can
allow for the same object to have multiple dispatchers. We need to examine
the implication of such changes in the design.

471

Concurrency control. The experiments described here do not address concur-
rency control problems that take place in large distributed systems. We are
currently investigating how to modify the dispatching process to accommo-
date different concurrency control mechanisms like those described in [24].
Implementing pessimistic control using locks similar to [18] is straightforward
within our dispatching framework. Optimistic concurrency control is more
challenging.

Metaobject Protocols. We intend to organize the meta-level access to the
system that the dispatchers provide by using MOP techniques similar to ones
described in [10,18]. As we noted earlier, programming with explicit dispatch-
ing is similar to programming with explicit “goto” statements: its flexibility is
both useful and dangerous. After understanding the useful and common ways
of dispatching, we can use MOP techniques to construct “higher-level”
abstractions.

Separation of meta- and base-levels. Dealing with a mix of meta- and base-
level calls to the same object - for example, meta-level calls to add methods to
the generic function (draw ‘addMethod aMethod) vs. base-level client invoca-
tions on the generic function (draw aRectangle aDevice) - tends to confuse the
programmer. Part of the confusion is due to the fact that we use the same
mechanisms (dispatchers) to allow access to both meta-level notions and base-
level notions.

Optimization. We intend to examine the performance implications of our
design. One advantage of our design is that its performance model is localized:
unlike systems with one fixed way of dispatching, we can allow for one form
of dispatching to be optimized without affecting the rest of the system.

6 Summary and Conclusion

In this paper, we reported on a series of experiments in a distributed object
system that show how a flexible notion of dispatching can be used to integrate
objects belonging to different models, systems, and paradigms. Experiments
reported in this paper covered a wide range of concepts including:

* composition facilities such as classes with inheritance, and generic functions
* distributed systems concepts such as client-server computing and distributed objects
* object-oriented databases and rule-based systems.

In all cases, flexible dispatching provided us with a powerful framework for
integrating diverse systems. Using this framework, we have integrated code
written in a wide variety of systems and models successfully, including:
Modula-3, C, C++, Macintosh Common Lisp, CLIPS rule-based system, Sybase
relational database, and Ontos object-oriented database system. Since DOM
enforces few restrictions on object implementations, we can easily extend a
programming language or system to support DOM.

472

Dispatching is only one of the ways which object systems differ. We intend
to experiment with other differences — for example, the treatment of object
identity, state, and life-cycle — under the charter described in [25].

Acknowledgments. Farshad Nayeri and Joe Morrison implemented the core
of DOM-3 based on discussions with other members of Distributed Object
Computing group at GTE Labs, especially, Frank Manola, Sandy Heiler, and
Mark Hornick. Ben Hurwitz joined the project later, and implemented a
number of the experiments described in this paper. Emon Mortazavi artisti-
cally created some of the illustrations.

Geoff Wyant, Gail Mitchell, Sandy Heiler, Joe Morrison, Cristobal Pedregal
Martin, Luca Cardelli, Dimitrios Georgakopoulos, Mark Hornick, Michael
Brodie, and Lauren Schmitt reviewed earlier versions of this paper and
provided us with many insightful comments. We hereby thank all who helped
in making this idea become reality.

References

1. A. Goldberg and D. Robson, Smalitalk-80: The Language and Its Implementation,
Addison-Wesley, 1983.
2. B. Stroustrup, The C++ Programming Language, Addison-Wesley, 1986.
3. D. Ungar and R. B. Smith, “Self: The Power of Simplicity”, in [26].
4. G. Steele, Jr., Common Lisp: The Language, Second Edition, Digital Press, Bedford,
1990.
5. Greg Nelson, ed., Systems Programming with Modula-3. Prentice Hall, Englewood
Cliffs, NJ, 1991.
6. W. Clinger and J. Rees, ed., “Revised? Report on the Algorithmic Language
Scheme”, ACM Lisp Pointers IV, July-Sept. 1991.
7. A. Black, N. Hutchinson, E. Jul, and H. Levy, “Object Structure in the Emerald
System”, in [27].
8. C. Chambers, “Object-Oriented Multi-Methods in Cecil”, Proc. of the 6th European
Conference on Object-Oriented Programming, Springer-Verlag, 1992.
9. D. H. H. Ingalls, “A Simple Technique for Handling Multiple Polymorphism”, in
[27].
10. G. Kiczales, J. des Rivieres, and D. G. Bobrow, The Art of the Metaobject Protocol,
MIT Press, Cambridge, MA, 1991.
11. Dylan, an Object-Oriented Dynamic Language. Apple Computer, April, 1992,
12. A. Tanenbaum, “Distributed operating systems anno 1992. What have we learned
so far?”, in Distributed Systems Engineering, Vol. 1, 1993.
13. A. Birrell, G. Nelson, S. Owicki, E. Wobber “Network Objects”, Proc. of Symposium
on Operating Systems Principles, 1993.
14. D. Maier, J. Stein, A Otis, and A. Purdy, “Development of an Object-Oriented
DBMS.” in [27].
15. Object Management Group, The Common Object Request Broker: Architecture and
Specification, OMG Document Number 91.12.1, Rev. 1.1, 1991.
16. M. L. Scott, “Messages vs. Remote Procedures is a False Dichotomy”, ACM
SIGPLAN Notices 18(S), 57-62, May 1983.
17. F Manola and S. Heiler, “A ‘RISC’ Object Model for Object System Interoperation:
Concepts and Applications”, Technical Report 0231-08-93-165, GTE Laboratories
Incorporated, September 1993.

18.

19.

20.
21.
22.
23.

24,

235.

26.

27.

473

S. Chiba and T. Masuda (1993) “Designing an Extensible Distributed Language
with a Meta-Level Architecture”, Proc. of the 7th European Conference on Object-
Oriented Programming, Springer-Verlag, 1993.

F. Campagnoni, “The Distributed System Object Model: IBM’s Object Request
Broker Implementation”, position paper to CORBA Implementors Workshop, June
1993.

N. Coskun and R. Sessions, “Class Objects in SOM”, IBM Personal Systems Developer
(Summer 1992): 67-77.

R. Sessions and N. Coskun, “Object-Oriented Programming in OS/2 2.0”, IBM
Personal Systems Developer (Winter 1992): 107-120.

L. Cardelli “Obliq - a Lightweight Language for Network Objects”, unpublished
DEC SRC Technical Report, November 1993.

C. Chambers, “The Cecil Language: Specification and Rationale”, Technical
Report 93-03-05, University of Washington, March 1993.

D. Georgakopoulos, M. Hornick, P. Krychniak, and F. Manola, “Specification and
Management of Extended Transactions”, Proc. of 10th International Conference on
Data Engineering, 1994.

F. Manola and S. Heiler, “An Approach to Interoperable Object Models”, in M. T.
Ozsu, U. Dayal, and P. Valduriez (eds.), Distributed Object Management, Morgan
Kaufmann, 1994.

N. Meyrowitz, ed., OOPSLA '87 Conference Proceedings, ACM, Oct., 1987, published
as SIGPLAN Notices, 22(12), Dec., 1987.

N. Meyrowitz, ed., OOPSLA '86 Conference Proceedings, ACM, Sept., 1986,
published as SIGPLAN Notices, 21(11), Nov., 1986.

