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We have integrated digital video into Trestle, an object-oriented user interface
toolkit written in Modula-3. The display of video frames is managed within
the application process using, where possible, shared memory to transmit
images to the window system. We took advantage of Modula-3’s type system,
lightweight threads and garbage collection to develop a flexible architecture
that supports the reuse of image data within an application; the object-oriented
features of Modula-3 we found most useful were inheritance, partial
revelations, and encapsulation. We then integrated our video extension into
several higher-level tools which allow us to dynamically experiment with
video applications.

1. Introduction

This paper describes the experiences of adding digital video to Trestle [8], an object-
oriented user interface toolkit written in Modula-3 [9]. The video infrastructure,
based on hardware JPEG compression and decompression, uses the X shared
memory extension [6] to display images at full-motion frame rates. The previous
video library was implemented as a Motif widget and had three main problems. First,
the single-threaded environment meant that the video pipeline had to be built as a
state machine. In effect, the widget contained its own video scheduler and this was
reaching the limits of maintainable complexity. Second, the closed structure of the
widget inhibited the sharing of image data from the various stages of the video
pipeline. A second window could not pick out frames from a video stream without
either special code in the widget or a duplicate connection to the video source.
Finally, and perhaps most important for us, Motif was (and remains) incompatible
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with Trestle, the Modula-3 user interface toolkit. We could not take advantage of the
substantial body of tools and libraries available in the Modula-3 environment. In
particular, the desktop video was to be used within Argo [7], a project to investigate
the collaborative use of computers, for which most of the rest of the software is
implemented in Modula-3.

This project, then, was to implement digital video within Trestle, with some
consideration of the advantages and disadvantages of such Modula-3 features as an
object-oriented type system, integrated with threads and garbage collection. We
found that, with some care, use of these facilities greatly improved the structure of
the software, making it more open and flexible, that integration with other Modula-3
packages was very easy, and that the performance costs were not excessive.

The next section describes the software and hardware infrastructure on which
the project was built and the requirements we wished to support. We then describe
the two main components of the project, the video library and the alterations to
Trestle, and show how the video extensions fitted into other Modula-3 based tools.
After that we distinguish those object-oriented features which most benefited the
project and discuss related work. Finally, we draw some conclusions and outline
further work to improve the software.

2. Background

2.1. A Trestle primer

Trestle is an object-oriented, hierarchical windowing toolkit, designed to support and
exploit concurrent threads and garbage collection. The primitive window object is a
VBT, or virtual bitmap terminal, which represents a share of the screen, mouse and
keyboard. Each VBT is responsible for all the user events and painting that occur in
a region of the screen. Some VBTs handle their responsibilities by passing them on
to a parent or child. For example, an HVSplit tiles itself with children, either
horizontally or vertically; a TSplit gives its space to exactly one of its children at a
time; while a ZSplit divides its region into possibly overlapping subregions, and is
responsible for ensuring that painting gets properly clipped to those regions. A leaf
VBT, such as a text region or an image, has no children, and deals with input events
as appropriate. Another common kind of VBT is a filter, which has only one child,
and which usually wraps some small behaviour around the child; for example, a
filter can be used to turn any VBT into a button or to put a border around a child.

A VBT is defined as an object with its behaviour determined by its methods. A
new type of VBT may be created by subclassing an existing VBT type and overriding
some of its methods, so a reaction to button clicks, for example, may be implemented
by overriding a VBT’s mouse method. This is a standard approach for many user
interface toolkits, but Trestle carries it further than most. For example, there is a
paint method that defines how a VBT handles paint requests from its children; the
JoinVBT filter overrides this method to copy the output from its child to multiple
parents.
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Trestle also includes a sophisticated locking strategy to allow as much
parallelism as possible within the toolkit. There is a global lock for the toolkit as a
whole and a mutex to protect each VBT. Trestle defines an order on these mutexes so
that a thread can lock the resources it needs without risking deadlock.

22, A J-Video primer

A J-Video board [4] provides hardware JPEG compression and decompression; it has
input ports for audio and video, an output port for audio, and can read and write
shared memory segments on a TurboChannel host. In this paper we concentrate on
the video aspects of the board as, in our implementation, audio was managed by
another software system.

Each host with a J-Video board runs a jvdriver, which manages low-level
access to the board, and a jvsource, which supplies streams of compressed frames to
clients. If a machine contains multiple boards, an instance of each of these services is
run for each board. When a frame is required by a client, the jvsource asks the
jvdriver to ask the J-Video board to grab a frame from the attached video source,
digitize it, and compress it into a given shared memory segment. The jvsource server
may then send the compressed frame to one or more clients via a socket; this is
shown on the left-hand side of Fig. 1.

Fig. 1. The components of a J-Video connection. The shaded areas represent shared memory
segments. The jvdriver consists of a J-Video board and a server process to manage it.

The client application receives the compressed frame and stores it in a shared
memory segment, which it passes to its local jvdriver with the identifier of a second
shared memory segment and other decompression parameters. The board
decompresses the frame into the destination shared memory segment with the scaling
and colour mapping specified by the client. The application then uses the X shared
memory extension to pass the decompressed frame to the X server for painting; this
is shown on the right-hand side of Fig. 1. The use of shared memory means that
image data is copied only at operating system boundaries (to and from socket
connections and, possibly, to the frame buffer) and allows near real-time frame rates
(performance is discussed in Section 8).

23.  Performance requirements

Fig. 2 shows a more abstract view of the image processing in a client application;
frames are accepted from a server, decompressed and then displayed on the screen.
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Our system is intended to support video conversations, so the latency between an
application receiving a frame and displaying it is an important performance issue.
We want each stage in the pipeline to be kept equally busy, so that stages neither
have to wait for the previous stage to complete a frame nor process frames too
quickly for the next stage to accept—timeliness requires that a frame must be thrown
away once the next frame is ready, so unused frames represent wasted processing.

receive display

Fig. 2. The video pipeline in a client application. Each node represents part of the processing
of an image.

In addition, we want different parts of an application to be able to share buffers. A
user may want to watch video in a small-sized window, but also have another
window showing a portion of that video magnified; it is more efficient if the two
windows share the compressed image stream. A user may also want two windows
showing the same image; for example, a small picture-in-picture window might have
the same dimensions as a video-channel selector (although the frame rates differ). In
this case, we want to share the same decompressed frames.

3. The JVideo library

The integration of video into Trestle involved two main components: a JVideo
library to communicate with a jvsource and the local jvdriver and to manage frames
as they are received and decompressed, and extensions to Trestle to support the
painting of images and a shared memory extension (described in Section 4). A major
difference from the previous J-Video client library is Modula-3 environment, with
integrated types, user-level threads and garbage collection, which led to a cleaner
and more flexible internal structure within the library. We were able to break up the
monolithic Motif widget into a set of object types that represented features of the
system. The periodic nature of video, consisting of discrete frames, allows its data to
be held in a set of fixed-size buffers each of which may be managed by an object.
Thus, once the incoming video stream has been broken up into frames, everything in
the system is represented by an object.

The JVideo library has three main types of component: buffers, converters and
buffer pools; the last two are represented by the circles and lines, respectively, in Fig.
2. Converters may be thought of, loosely, as active objects that receive messages
(buffers) via a channel (buffer pool), process them, and then send the results out via
another channel. We now describe these components in more detail.
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3.1 Buffers and Pools

A JVBuffer object provides protected access to an image buffer and may also hold
application-level data, such as a timestamp or the image dimensions. JVBuffers also
have reference counting facilitics so that threads may declare their interest in the
contents of the buffer; this allows us to avoid a buffer being freed in one thread while
another is still using it.

JVBuffers belong to JVBufferPools, which can hold up to some maximum
number of buffers; the maximum can be set dynamically. Each pool has one current
buffer, which holds the most recent frame for that stage in the pipeline. The identity
of the current buffer may be changed by a writer thread as new frame data arrive
from the previous stage. There is normally only one writing thread per buffer pool,
but any number of readers may acquire a handle on the current buffer, incrementing
its reference count so that it cannot be overwritten whilst still in circulation. A buffer
that is replaced as the current buffer may still be in use by reader threads, so it is
considered pending. The storage cannot be reused until its reference count drops to
zero, at which point the buffer is now free and can be acquired by the writer thread
(Fig. 3).
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Fig. 3. A buffer pool. The left-hand diamond represents a wait-for-free-buffer condition, the
right-hand diamond a current-buffer-changed condition.

This approach supports some of the features we require. First, the enforced
maximum size of a pool means that a writer must wait for a free buffer if all the
buffers are still held pending by reader threads. This simple flow control avoids
having the writer continuously updating the current buffer when all the readers are
still processing previous frames. The pool itself is also reference counted for the
number of readers interested in receiving frames—there is no point in writing frames
to a pool that has no readers. Second, the use of the current buffer means that a
reader can always acquire the most recent frame; readers may also wait to be notified
when the contents of the current buffer changes. Finally, the use of reference
counting to protect buffers means that they can be shared by arbitrary numbers of
readers without explicit synchronisation. In principle, the Modula-3 garbage
collector could have been used to return buffers to the pool as the runtime provides
access to the finalisation stage, but the shared memory segments are a sufficiently
valuable resource to justify this more assertive technique. In particular, the collector
we use is not guaranteed to find all garbage as it runs; references whose addresses
match a bit pattern on the stack of some thread will not get cleaned. Our kernels
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support only a few dozen shared memory segments of the size needed for video
frames, so the collector would have to run almost continuously.

3.2. Converters

JVConverters, the nodes in the video pipeline, are objects that repeatedly receive a
frame, process it, and pass it on to the next stage. So far we have impiemented a
JVSink type to connect to a source and read images from a socket, and a JVDecomp
type to decompress images from a JVSink. The basic algorithm for the main loop in
a converter, typically executed in a single thread, is simply:

LOOP
outbuf := outpool.getFreeBuffer();
(* wait for space in output buffer pool *)
inbuf := inpool.waitForChange ();

(* get frame from previous stage in pipeline *)
Convert (outbuf, inbuf); (* do the conversion *)

outpool.setCurrentBuffer (outbuf) ;

(* set the current value of the output pool *)

inbuf.free();

(* return the input buffer to its pool *)
END;

Converters communicate with each other only via buffer pools (Fig. 4) so it is easy to
share the output from each stage. For example, we create a separate JVSink object in
an application for each connection to a given server which has different compression
parameters, but these connections are cached within the library; this avoids excessive
creation and destruction of converters when a user is switching between streams. The
procedure to acquire a connection to a server transparently either returns an existing
JVSink object or creates a new one; the only requirement for the client is that it can
process the type of JVBuffer object generated by the JVSink. Communication via
buffer pools also makes it easy to change components in the pipeline, as the only
dependancy between converters is the type of JVBuffer the receiving converter can
accept. We could, for example, substitute a software decompresser for our existing
JVDecomp or insert a thresholding filter between the decompression and the display

stages.
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Fig. 4. The video pipeline implemented with JVConverters and JTVBufferPools. At each stage
there may be multiple readers of a buffer pool.

4, Additions to Trestle

4.1. Trestle on X

To explain our extensions to Trestle, we must first describe how input and output are
managed in its X implementation. An input event generated by the X server is
received by the XInput thread, which unpacks it and appends it to an internal queue.
An XMessenger thread pulls the event off this queue, interprets it, and dispatches it
down the VBT tree; the relevant method of the destination VBT implements the
application’s response to the event, if any. This is shown in the upper half of Fig. 5.

Application

Fig. 5. Input and output paths in the X implementation of Trestle.

Painting operations on a VBT place a request on the VBT’s paint batch queue. Some
time later, when the XPaint thread wakes up or an explicit synchronisation is
requested, the batch is passed up through the VBT’s antecedents until it is processed
by an ancestor—by merging it with the ancestor’s paint batch, by changing it in a
filter or, eventually, by painting its contents to the screen. A ZSplit, for example,
manages overlapping child VBTs, so its paint method may break a child’s paint
request into several smaller requests that represent the exposed parts of the child’s
area (Fig. 6); Trestle does its own clipping, rather than using X’s. The JoinVBT, on
the other hand, attaches its child to two parents so that an application window can be
replicated, possibly on different displays; its paint method replicates its paint batch
and passes a copy up to each of its parents. The XClient VBT provides the bridge
between Trestle and an X server; its paint method translates Trestle paint requests
into calls to X painting procedures; this is the lower half of Fig. 5.
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Fig. 6. Splitting a VBT’s paint request. The paint request for VBT b is broken into three
components (b1, b2, b3) to paint an overlapped rectangle.

4.2, Pictures

The previous version of Trestle provided limited support for displaying arbitrary
images. Trestle Pixmaps, like X Pixmaps, are stored in the display server and
suitable for small and long-lived items such as icon symbols. We defined a type
Picture.T* that allows an image to be constructed in the application and then passed
to the window system for painting. A second requirement was that Picture operations
should use shared memory if it is available but should still work if it is not; this
allows application code to continue to work if the window is moved between displays
or has its output replicated to multiple displays. A subgoal of this requirement was
that it should be easy to build a version of Trestle without the X shared memory
extension.

A Picture object is a handle for a block of memory that contains the image
pixel values and information about the image (bearing a remarkable resemblance to
an XImage record); we must provide this level of indirection because the memory
may be allocated outside the Modula-3 type system. Applications may paint an image
to the display by calling the procedure Picture.Paint which places the picture
in the paint queue and returns when the paint request has been fulfilled; this avoids
the application thread releasing the image buffer before it has been processed by the
paint thread.

Picture objects are created with respect to a particular screen, so the procedure
Picture.New(screen), where screen refers to an X display, returns an instance
of XPicture.T, the X-specific subclass of Picture.T. An XPicture includes a put
method which the XPaint thread calls to implement the paint request (i.e. display the
image on the screen); for normal images, this is simply a call to xPut Image. When
the X server is on the same host as the client and supports the X shared memory
extension, Picture.New() returns an instance of XSharedMem.T, a shared
memory subtype of XPicture.T.

Shared memory images, however, are more complex to implement because,
first, shared memory requires that the application and X server are on the same host

*picture is the name of an interface, so Picture.T is a type T declared in the interface
Picture. Similarly, Picture.Paint, described below, is a procedure Paint declared
in the same interface.
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and, second, the application must wait until the X server has actually painted the
image (rather than just receiving it) before reusing the storage. To solve the first
problem, the XSharedMem.T object records the X display to which the shared
memory segment is attached. Its put method compares this display to the destination
display specified by the caller and reverts to the parent XPicture method if the two
differ. The second problem requires a more sophisticated solution.

4.3. Completion events.

X shared memory extension clients may request the server to return a completion
event to notify them when it has fulfilled a paint request so it is safe to overwrite the
image buffer. As described above, however, Trestle may generate several paint
requests on the same image as a VBT is clipped and transformed, so a simple
association between images and completion events is inadequate. To resolve this
each call to Picture.Paint stores a Completion object, which contains a
reference count and a condition variable, with the paint request. As the paint request
is propagated up the VBT tree, each additional reference to the image (such as the
subdivision of an overlaid area in a ZSplit) increments the count in the Completion
object.

When the Trestle paint request reaches the XClient level and is translated into
a call to XShmPut Image, the serial number of the X request and the related
Completion object are stored in a completion queue; there is an entry in the queue for
each XShmPut Image call which has not yet completed or returned an error. The
server responds to image requests with completion or error events which are received
by the XInput thread and matched with records in the completion queue. The record
is then removed from the queue and its Completion object decremented. The
condition variable of the Completion object is signaled when its count returns to zero
so that application-level code can be notified when the image storage is safe to reuse.
By default, the Picture.Paint procedure waits for the Completion object signal
before returning and, thus, hides the Completion mechanism from the application,
As Fig. 7 shows, the completion mechanism does not interfere with Trestle’s general
event handling,



502

Fig. 7. The path for completion events for shared memory paint requests. When all the paint
requests for an image have been fulfilled the Completion object (in the centre) will notify the
application that the shared memory segment is now free.

S. Integration with other tools

5.1.  VideoVBT

To tie the JVideo library and Trestle together, we implemented a VideoVBT.T that
provides a convenient interface for the application writer, who need only specify a
video source and some parameters when creating the VBT. When a VideoVBT is
attached to a display (“realized” in X terminology) it assembles a pipeline to connect
it to the video source and starts a thread to receive frames from the pipeline and
display them. The VideoVBT handles changes in state automatically: images are
scaled to fit the VBT’s shape and the display loop is suspended when the VBT is not
visible on the screen. The user may also specify a minimum time between frames so
that an application may reduce its processing demands where a full frame rate is
unnecessary; “active icons,” for example, may only refresh an image every few
seconds to give the user an idea of the activity in a video stream.

We also wrote an AudioVBT.T that provides an interface to the audio
subsystem. It is implemented as a Trestle filter, so it is invisible to the user but can
intercept window mapping, unmapping and destruction events. When made the
ancestor of a VideoVBT, an AudioVBT ensures that an audio connection is live only
when its associated video window is visible.

5.2. FormsVBT

We then integrated the andio and video VBTs into FormsVBT [3], an interface
builder that allows application writers to specify an interface, in a lisp-like language,
which is separated from the application. For example, the FormsVBT expression:
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(Frame ;7 draws a border around its child
(Vbox ;7 arranges its children vertically
(Button %buttonl (Text "one"))
;7 Creates an interactive button
(HBox ;; arranges its children horizontally
(Button %button2 (Text "two"))
(Button %button3 (Text "three")))))

produces the interface:

one

two | three

where the effects of selecting each button can be specified by attaching callbacks to
the named components buttonl, button2 and button3. We can build a simple channel
switcher with the expression:

(Frame
(Shape (Width 500) (Height 400)
;; fixes the shape of the child windows
(TSplit
(TButton %sourcel (For source2)
(Audio "sourcel" (Video "sourcel")))
(TButton %source2 (For source3)
(Audio "source2" (Video "source2")))
(TButton %source2 (For sourcel)
(Audio "source3" (Video "source3"))))))

A TSplit displays one of its children at a time and a TButfon forces the parent TSplit
to display the child named in the For parameter, so the expression creates an
application that cycles between the three video sources each time the user clicks in
the window. The audio is also switched with the video stream as only one Audio at a
time will be mapped to the display and, hence, active. We have built several
applications using only FormsVBT expressions without any additional Modula-3
code; these include a channel selector that presents the available channels as live
video windows in a pull-down menu, and a magnifier that allows the user to choose
the scale to which the video stream is decompressed and pan around the video image
through a smaller window.

5.3. Obliq

Finally, we integrated the new libraries with Oblig [5], a lightweight interpreted
object-oriented language that is implemented over Modula-3. The following
fragment, for example, defines a procedure that will be attached to a Type/nVBT
(which allows a user to edit a single line of text and generates an event when the
Enter key is hit) with the name “videoSource”. The procedure extracts the name of
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the video source from the TypeInVBT and constructs a FormsVBT expression that
will be evaluated and the result inserted into the parent VBT called “parentVbt”; the
new VBT generated is a VideoVBT that will display the video stream from the
source specified in vname.

let videoproc = proc(fv)
let vname = form getText (topForm, "videoSource", "");
form insert (topForm, "parentvbt",
" (Shape (Width 100) (Height 80)
(Video \"" & vname & "\"))", 0);
end;

The code to attach the procedure to the TypeInVBT is simply:

form attach(topForm, "videoSource", videoproc);

Thus, we can use six lines of code, plus a related FormsVBT expression, to
implement a part of an interface that allows users to create arbitrary video windows.
This integration with Obliq shows how careful design of our basic components
makes it easy for programmers to develop, and experiment with, applications which
manage complex data types such as andio and video.

6. Object-oriented techniques

It is difficult to say exactly how much each of the features of Modula-3 helped in the
implementation of the system—lightweight threads were essential and garbage
collection simplified much of the code—but we can highlight three of its object-
oriented techniques that proved most useful: inheritance, partial revelation, and
encapsulation.

6.1. Inheritance

Throughout the system, we put some effort into exploiting the class hierarchy to
encourage code reuse. The current JVideo library, for example, supports two types of
buffer, JvFromsource.T for compressed images and JVFromDecomp.T for
decompressed images, both of which are subclassed from an abstract JvBuffer.T
type; this allows JVBufferPools to be defined solely in terms of JVBuffers rather than
a particular subclass. Reference counting, for example, is independent of the contents
of the buffer so it is implemented in the JVBuffer supertype. Modula-3 is strongly
typed, so when a converter acquires a buffer from a buffer pool, the method it calls
returns a reference to a generic JVBuffer, rather than to a concrete subtype. Modula-
3 includes a NARROW function that provides type-safe casting between related types.
For example, the JVDecomp loop includes the lines:
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VAR inbuf : JVFromSource.T := NIL;
(* etc... *)

inbuf := NARROW (source.waitForChange(), JVFromSource.T);

where inbuf is a local variable for a reference to a JvFromSource.T buffer and
source is the buffer pool to which the previous converter in the pipeline writes; we
can trust this assignment as NARROW checks the validity of the conversion.

The only activity in a buffer pool that depends on the type of buffer it holds is
the allocation and deallocation of individual buffers. To support this, the interface
file for each buffer subclass includes a Factory object, subclassed from a common
supertype, which is used to “manufacture” and recycle buffers of the given type.
During its initialisation, a JVBufferPool is passed a Factory object which it then uses
to manage its storage. Furthermore, in this implementation, all Factory objects for a
given type of buffer maintain a common free list to hold unused buffers, which
allows unused shared memory segments to be shared between buffer pools (Fig. 8).
The free list is set up in the initialisation block of the file that implements the buffer
type; Modula-3 guarantees to run this block before running any code which uses the
buffer type.

Buffer
Implementation

Free List

Fig. 8. Two buffer pools are used to store the same type of buffer, so their Factory objects
refer to the same free list. Buffers are shown as shaded rectangles.

Similarly, common features of JVConverters, such as management of their threads,
are implemented in an abstract JVConverter class, while the specific conversion—
from socket to buffer or decompression—is implemented in the concrete JVSink or
JVDecomp subclass.

The flexibility of the new JVideo library depends on the careful selection of the
basic components and the strict enforcement of the boundaries between them;
converters, for example, communicate only through buffer pools. The process of
developing an inheritance tree helped us to determine the common features of these
components—the infrastructure of the library—which we implemented in the
abstract superclasses. We then implemented specific features in the leaf-classes,
using inheritance-based polymorphism to share the common code. Constructing a
new stage in the pipeline now requires (simply) the creation of a new subclass of
JVConverter and, possibly, a new subclass of JVBuffer.
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We found similar advantages in the Trestle library. Image handling is defined
at the application level in terms of generic Picture objects, while at the X
implementation level it is defined in terms of XPicture objects—shared memory or
not. We can rely on individual Picture objects to determine the “right thing” to do
under the circumstances. The code for determining which Picture subtype to create is
localised within one file and all the code that implements each case can be contained
within its own file.

Finally, inheritance allowed us incrementally to add video and audio to existing
tools. The VideoVBT is subclassed from a leaf VBT and the AudioVBT from a filter
VBT, so both can be inserted into any Trestle application. To include the video and
audio VBTs in the FormsVBT we had only to add the new types to the forms
interpreter—about 100 lines of stereotypical code—and link in the new library;
everything else is specified in terms of standard higher-level VBT types. The
integration with Obliq required even less effort—just relinking with the new
FormsVBT library. Obliq uses the FormsVBT interpreter to create new VBT,
passing forms expressions as text, and its callback procedures are defined in terms of
generic VBTs.

6.2. Partial revelations

Modula-3 allows arbitrary components of an object to be partially revealed in
multiple source files—unlike C++, which allows only private, protected and
public levels of access. Thus, we can declare® in the XClient interface that:

TYPE
T <: T_Ext; (* T is a subtype of the type T Ext *)
T_Ext <: T Public; (* T Ext is a subtype of T Public *)

T Public = OBJECT (* the definition of T Public *)
public fields...

For the X implementation, the XClientExtension interface file contains details of
all the X extensions which this build of the Trestle library uses. At present, we
support only the shared memory extension, so this interface reveals that the type
XClient.T Ext is a subtype of XSharedMem.XClient T; if we wish to support
other extensions, we can use this interface to insert additional types in the hierarchy.
Finally, we define XSharedMem.XClient T by declaring in its interface file that:

TYPE XClient T <: XClient.T Public;

and revealing in the implementation file that:

¥ The phrase A <: B means that A is a subtype of B, but that this is not the entire definition
of A; the rest of A will be revealed in other places, possibly in other files. This allows us to
place a type in a hierarchy while hiding its details from the public interfaces.
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REVEAL XClient T = XClient.T_Public OBJECT
fields spec1f1c to the shared memory extension.

When declaring an intermediate type in an hierarchy, we can also chose how much
detail to specify in each declaration, including its position; we can reveal elsewhere
exactly where the type belongs. An application sees the type declarations in the
public interfaces for the X extensions (XSharedMem, X;.X, in Fig. 9) as
independent of each other; to gain access to a particular extension, it imports the
relevant interface.

| XClient.T_Public |

XSharedMem .XClient_T X, XClient_ T | amm | X,.Client T

T~ /

LXClient.T_Ext

I
H

XClient.T

Fig. 9. The XClient type hierarchy as defined in the interfaces; supertypes are shown above
subtypes.

The definitive linear hierarchy is then revealed in the implementations (Fig. 10).

XClient.T_Public |

/
XSharedMem.XClient_T
\
1.XClient_T
_—
X,.Client_T
=

| XClient.T _Ext|

Fig. 10. The XClient type hierarchy as revealed in the implementations.

This approach may seem baroque, but it allows us to split the definition of a complex
type into a set of discrete components with control over the scope of the fields in an
object. The extension-specific fields revealed in the implementation of
XSharedMem.XClient T are visible only in that file, so we can change them
without affecting any other source code. This allows us to restrict all the shared
memory code for the library to the XSharedMem implementation file. Furthermore,
any code that uses an X extension must import XClientExtension to reveal the
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details of the type xClient.T Ext, otherwise the type is opaque, and the relevant
extension interface; this makes any dependancies on an X extension easy to identify.

6.3.  Encapsulation

We made wide use of implementation encapsulation, hiding the details of how an
object works behind an interface which describes what the object does; this helped to
focus the design of the components of the system and made maintenance easier. The
interface of the VideoVBT, for example, is defined solely in terms of the name of the
video source and various video parameters. The application programmer sees
nothing of the JVideo or Trestle Picture systems, so we could substitute a different
implementation without changing any application code.

Objects, however, also encapsulate state and so can be used by components to
communicate with each other. A completion object, for example, provides a single
point of access for the state of a paint request; the application thread is notified of a
change in a completion object’s state (when its reference count drops to zero) when
the XPaint thread has finished with the related buffer. Similarly, a JVBufferPool
encapsulates the state of a stage in the video pipeline: its current buffer holds the
most recent image in the stream, and its reference and free buffer counts describe its
flow control. Readers and writers communicate by accessing common information
held in a buffer pool—either directly, as when a writer changes the current buffer, or
indirectly, as when a reader releases a buffer, which in turn is released to a writer.

Communication via objects, rather than via separate channels or global
variables, helped us to enforce the boundaries between components. First, access to
the events which affect an object is included with the object itself, and so is limited to
that code which is interested in its contents; this avoids unforseen side-effects.
Second, remote parts of a system that hold a reference to the same object can use it
pass events to each other; this avoids the need for extra communication paths, and
hence dependancies, between components. Finally, sharing events via objects means
that de facto communication paths exist where they are needed, so it is easy to
change the senders and receivers when, for example, a new converter is added.
Incidentally, we found that the integrated garbage collection encouraged our use of
this technique, as we did not have to worry about coordinating deallocation between
distant parts of a library.

7. Related Work

The Pandora system [11] uses additional image hardware to mix the desktop and
video streams. The output from the host window system is piped through the
Pandora unit before being passed to the display. Within the Pandora unit, a mask
plane can be set to accept pixels from the window system or a video stream; this
plane is set by the window system to describe the shape and location of the current
video windows. This approach allows video streams to be drawn directly to the
display without affecting the processing on the local host but requires special
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hardware and a modified X server to coordinate with this hardware. The Trestle
extension, on the other hand, runs on a standard machine and window system, and
makes the image data accessible to the application; it requires, however, much
greater processing and memory resources from the host.

Apple Computer’s QuickTime [1][2] is another general framework for
displaying video in a window. It supports multiple compressors and decompressors,
fitting to a single interface. It does not attempt to provide any unifying abstraction
between the streams of compressed and decompressed video, nor does it provide
simple mechanisms for controlling latency. It does provide the parameters that would
be necessary for implementing pipelined decompression, but the standard procedures
used to display compressed video do not take advantage of this. The lack of thread
support causes QuickTime to handle concurrent actions through an event loop; this
makes it much harder to implement the control flow needed for greater asynchronous
action.

Schnorf’s extension to ET++ [10] is closest to our work. It integrates video into
an object-oriented toolkit which is based on an abstract window system layer and
Schnorf has added video to a number of standard applications. Its video objects,
however, are used to control autonomous video processes that draw the video images
directly to the display using either hardware or a separate software process. In our
approach, video data is handled within the application process, making it available
for sharing or further processing, and avoiding issues of co-ordination between video
and application processes.

Schnorf’s work and ours are based on fundamentally different underlying
toolkits. The primary mechanism in ET+4+ for painting is based on damage repair.
Painting is typically not clipped on the way to the screen, but instead the painter’s
algorithm is used (typically in an off-screen buffer) to cause the appearance of
clipping. Much of Schnorf’s work was concerned with the difficulties of adding
asynchronous painting to ET++. In Trestle, parents are always responsible for
performing any necessary clipping for their children. Asynchronous painting has
always been supported (although double-buffering and region invalidation are
provided for those VBTs that prefer it). This allows us to provide flicker-free
integration of video into our user interface. To minimize the complexity of the
interface between video hardware, applications, and the window system, J-Video
does not attempt to transfer video images directly to display memory. The current
design allows DMA transfers of decompressed frames to arbitrary memory locations.
This allows us to use built-in capabilities of the window system to perform masked
transfers with the same efficiency in bus transfers that direct painting would afford,
without modifying the window system or complicating the client. Had we been
working with hardware similar to Schnorf’s, in which masked transfers to the screen
were considerably more efficient than transfers via memory, we might well have
chosen a design more similar to his.
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8. Conclusions

We have used an object-oriented approach to add digital video to a user interface
toolkit and found a number of benefits. We broke the video pipeline down into a set
of communicating objects, each of which represents a stage in the processing of an
image. This produced an internal structure that is more flexible and easier to
understand and, hence, maintain than its predecessor. We also exploited such
Modula-3 features as its type system and its distinction between interface and
implementation to produce well-structured code with better encapsulation and few
implicit side-effects. It is now simple to share the image data at each stage in the
pipeline (compare Fig. 2 with Fig. 11) and to change the stages in the pipeline. The
new extensions have proved easy to integrate into higher-level toolkits, which we
have used to build some simple applications.

Trestle

decompress

receive,
socket

Fig. 11. The new video pipeline. The output from each stage is now shareable by multiple
readers.

We ran some basic tests and got the timings in Table 1 for a loop that repeatedly
displays the same image (that is, no effort is spent on generating the image data):

local socket shared memory
320 x 240 42 54
640 x 480 11 22

Table 1. Frame rates (to the nearest frame-per-second) for two image sizes and two types of
inter-process communication.

This shows that we can display video streams at respectable frame rates (although
not yet full video) for quite large images and that, as one might expect, the use of
shared memory is more important for large than for small frames. With a full video
pipeline (i.e. accepting images from a remote video source) we achieved between 18
and 19 frames a second for 500 x 400 pixel images. All the implementations were
run on a DECStation 5000/240, with 128M of memory, but the compiled code was
not optimised, so the timings are only indicative. One curious effect is that, when
compared to the Motif-based implementation, frame rates are worse but latency is
slightly (but consistently) better; we have not yet analyzed this difference.
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There are, of course, a number of unresolved issues we have to address. The
first of these is to develop some heuristics for determining how long to cache buffers,
pools and converters. At present, converters, once created, are kept in a pool until the
program terminates so that connections can be quickly re-established. This improves
responsiveness to the user but can lead to an application hogging the workstation, so
we need a mechanism, perhaps under user control, which allows unused resources to
be freed. We also intend to implement software decompression so that video
applications can be run without JPEG hardware, if more slowly. Thirdly, we need to
spend time tuning the video software so that we can achieve real-time video frame
rates and to reduce the processing load on the host machine.

Our enhancements to the Trestle toolkit show, first, that we can achieve
reasonable performance with complex media such as video while retaining such
facilities as an object-oriented strong type system with inheritance-based
polymorphism, lightweight threads and garbage collection. Second, they show that
these facilities provide real benefits for both the development and the internal
structure of such systems.
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