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Abstract. This paper shows that class inheritance, viewed as a mech-
anism for composing self-referential namespaces, is a broadly applica-
ble concept. We show that several kinds of software artifacts can be
modeled as self-referential namespaces, and software tools based on a
model of composition of namespaces can effectively manage these ar-
tifacts. We describe four such tools: an interpreter for compositionally
modular Scheme, a compositional linker for object files, a compositional
interface definition language, and a compositional document processing
tool. We show that these tools benefit significantly from incorporating
inheritance-based reuse. Furthermore, the implementation of these tools
share much in common since they are based on the same underlying
model. We describe a reusable OO framework for efficiently construct-
ing such tools. Three of the above tools were built by directly reusing
the application framework, and the fourth evolved in parallel with it.
We provide reuse statistics and experiences with the development of our
framework and its completions.

1 Introduction

Inheritance of classes in object-oriented programming has been touted for en-
abling significant levels of implementation reuse. Inheritance is widely acknowl-
edged to support reuse via incremental programming — one needs to only pro-
gram how new classes differ from already existing ones.

One characterization of class-based inheritance is that it is the combination
of self-referential namespaces [12]. By carefully designing operations to manip-
ulate such namespaces, a wide spectrum of effects of single and multiple inher-
itance can be obtained. Compositional modularity (3, 6] is such an inheritance
model, in which self-referential namespaces, known as modules, can be adapted
and composed in various ways to achieve implementation reuse. Compositional
modularity supports a stronger and more flexible reuse model than traditional
class-based inheritance.
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When class-based inheritance is distilled down to a notion of operations on
self-referential namespaces, it becomes possible to explore the breadth of applic-
ability of the concept of inheritance. There is indeed a wide range of software
artifacts that can be modeled as self-referential namespaces. For instance, it is
well known that interface types can be viewed as self-referential namespaces
[8]. A traditional compiled object file can also be viewed as a self-referential
namespace. Furthermore, structured document fragments can be modeled as
self-referential namespaces. Even other artifacts, such as GUI components and
file systern directories can be regarded as self-referential namespaces.

There currently exists a range of tools that manage the range of artifacts
mentioned above. However, many such tools are usually based on disparate,
and often impoverished, underlying models. In this paper, we argue that it is
advantageous to manage the above artifacts from the viewpoint of a well under-
stood model such as compositional modularity, and design tools based on this
viewpoint. The primary advantage of such an approach is that the underlying
model of such tools can be significantly enriched, and reuse mechanisms akin
to inheritance can be supported on the artifacts they manage. Moreover, the
uniformity of the underlying model of such tools can be exploited to support
better interactions between them.

The model of compositional modularity can be easily and effectively ap-
plied within tools that manipulate artifacts such as the ones given above. To
demonstrate, we describe four such tools in this paper: (i) an interpreter for
a compositional module system for the Scheme programming language, (ii) a
linker that manipulates compiled object files as compositional modules, (iii) a
compiler front-end for an interface definition language with compositional inter-
faces, and (iv) a document processing system that manipulates documents as
compositional modules. We also discuss other tools that could be based on com-
positional modularity. We show that tools such as the above derive important
benefits from incorporating compositional modularity.

Naturally, the implementations of these tools share much in common, since
they are all based on compositional modularity. It is therefore beneficial to ab-
stract their common aspects, and realize them as a reusable software architec-
ture. We have designed an OO application framework known as ETyMa that
encompasses the reusable architecture of tools based on compositional modu-
larity. The primary utility of the ETYMA framework is that it enables one to
easily and rapidly build module composition engines for tools that manipulate
a variety of compositional modules. ETYMA consists of more than 40 reusable
C++ classes. In this paper, we document the architecture of ETYMA using de-
sign patterns and describe the construction of three of the above four tools as
direct completions of the framework. We report that significant design and code
reuse (between 73 and 91%) was obtained in the construction of the above pro-
totypes as completions of the framework. We also outline our experience with
the iterative development of the framework.

The following section provides some background on the semantic foundations
of compositional modularity (also referred to as CM for short). Subsections of
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Section 3 describe each of the four compositional tools mentioned above. In
particular, Subsection 3.1 describes the CM model via examples in a Scheme
based language; this subsection is intended as an extended introduction to CM.
Section 4 then presents the architecture, class design, and reuse statistics for the
ETYMA framework and its completions.

2 Background and Related Work

Based on the notion of operations on records developed by Cardelli and others
[9], Cook and Palsberg [12] modeled a class as a self-referential record generating
function, also known as a generator. For example, the generator g = As. {a; =
v1,82 = V3,...,0n = Un} has method names a; ...a, bound to method bodies
v1...vn. The parameter s corresponds to the generator’s notion of “self.” Ref-
erences to names from within the method bodies are made via the s parameter,
e.g., 8.01, and hence are known as self-references. The fixpoint Y (g) of such a
generator, a record, corresponds to an instance of the class g. Taking the fixpoint
of the generator binds the generator’s self-references s.a;.

The notion of class inheritance is modeled as combination of generators,
via operators such as merge and override. For instance, the notion of method
overriding for generators, override, is defined in terms of record overriding («
denotes the record override operator):

override = Ag1. Aga. As. g1(8) « g2(s)

The crucial aspect of inheritance is that of self-reference manipulation —
while combining classes during inheritance, a superclass’ notion of self must be
properly modified to include that of the subclass. This is captured by the above
definition.

Based on Cook’s work, Bracha and Lindstrom [6] developed a uniform and
comprehensive suite of linguistic operations on a simple notion of classes known
as modules, also modeled as generators. These operations individually achieve
effects of rebinding, sharing, encapsulation, and static binding. In addition to
making previously existing operators explicit linguistic constructs, they define
three new operators: hide, freeze, and copy-as. For example, a method of a gener-
ator can be copied under another name in order to achieve access to overridden
methods, as follows (||, denotes the record merge operation):

copy-as a b = Ag. As. let super = g(s) in super |}, {b = super.,a}

In (3], we further augment the above model to include a notion of hierarchical
nesting as a composition operation, arguing that module nestability and separate
development must co-exist in a modularity framework without compromising
each other. This requires abstracting the environment of a generator, resulting
in what we call a closed generator, e.g., g. = Ae. As. {a; = v1,a2 = v3,...,8, =
v, }. Environmental references from within method bodies are made via a sepa-
rate e parameter. With this, separately developed modules can be retroactively
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nested into conforming modules via a composition operator named nest, defined
as follows:

nest = Age.. Ac,,.- Ae. As. {n. = Ad. g, (e — )} |l 9c...(€)(8)

Compositional Modularity. The above concept of closed generators, along with
eight primary operations on them, merge, override, rename, copy-as, restrict,
freeze, hide, and nest, within an imperative store-based framework with ap-
propriate static typing rules comprise the model of compositional modularity
[3]). The term composition is used here to mean implementation composition to
achieve reuse akin to inheritance. The goal of CM is to get maximal reuse out
of small, composable components. The composition constructs given above pro-
vide a powerful framework for building larger modules from smaller ones. These
constructs can be used in combination to emulate various composite inheritance
idioms in existing OO languages. As a result, CM supports a stronger (by virtue
of compositional nesting) as well as a more flexible (by virtue of “unbundled,”
composable operators) notion of reuse than traditional inheritance models.

3 Systems based on Compositional Modularity

To provide a better understanding of how one can apply CM within various
tools, we describe four systems based on CM in this section. As mentioned
earlier, CM can be layered on top of systems that have a notion of self-referential
namespaces and some benefit to be derived from composing them. For systems
that have these characteristics, a software tool that manipulates namespaces
using operations of CM can be constructed. However, it must be pointed out
that not all eight of the CM operations may be useful or even possible within
every system. Nevertheless, we will show in the following sections that enriching a
system by incorporating CM gives rise to specific benefits relating to the system’s
“expressive power, flexibility, and/or scope.

3.1 CMS

The first obvious choice for applying compositional modularity is within a mod-
ular programming language. In this section, we describe via examples a module
system based on CM for the programming language Scheme [10], which we call
Compositionally Modular Scheme, or CMS for short.

A module is generally understood to be an independent namespace. A Scheme
module may be modeled as a self-referential namespace, as follows. A Scheme
module may be regarded as a set of symbols (identifiers) bound either to loca-
tions (variables) or to any of the various Scheme values, including procedures.
Procedures may contain self-references to other names defined within the mod-
ule, or to unbound names within the module which correspond to “abstract
methods.” (In more traditional module systems, unbound names might corre-
spond to the notion of imported names, with the actual importation performed
via module combination, described below.)
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Several module systems for Scheme have been proposed previously [13, 26,
24], but these systems mainly provide a facility for structuring programs via
decomposition. However, the ability to recompose first-class modules can addi-
tionally support design and implementation reuse akin to inheritance in OO
programming. Furthermore, the notion of first-class modules and their oper-
ations in CM is consistent with the uniform use of first-class values and the
expression-oriented nature of Scheme. Consequently, we argue that the incorpo-
ration of CM into a module system for Scheme can be very beneficial. (There
is previous work on Scheme module systems based on reflective operations on
first-class environments [18]; however, the CMS module system is different in its
approach and scope, please see [3].)

Module definition and encapsulation. A module in CMS is a Scheme value that
is created with the mk-module primitive. It consists of a set of attributes (symbol-
binding pairs) with no order significance. Attributes that are bound to proce-
dures are referred to as methods, borrowing from OO programming. Modules
may be manipulated, but their attributes cannot be accessed or evaluated until
they are instantiated via the mk-instance primitive. The attributes of a module
instance can be accessed via the attr-ref primitive, and assigned to via the attr-
set! primitive. A method can access other attributes within its own instance via
analogous primitives: self-ref and self-set!.

Figure 1 (a) shows a simple module with three attributes bound to a Scheme
variable fueled-vehicle. Note that the fill method refers to an attribute capacity
that is not defined within the module, but is expected to be the fuel capacity of
the vehicle in gallons.

The primitive hide retroactively encapsulates its argument attribute. In Fig-
ure 1 (b), the hide expression returns a new module with an encapsulated fuel
attribute that has an internal, inaccessible name, shown by the describe primitive
as <priv-attr>.

Module combination. The module capacity-module given in Figure 1 (c) exports
two symbols, including one named capacity. Thus, the module encap-fueled-
vehicle can be combined with capacity-module to satisfy the former’s “import”
requirement, via the primitive merge. The new merged module vehicle in 1 (c)
contains four public attributes: empty?, fill, capacity, and greater-capacity?.

The primitive merge does not permit combining modules with conflicting
defined attributes, i.e., attributes that are defined to have the same name. In
the presence of conflicting attributes, one can use override, which creates a new
module by choosing the right operand’s binding over the left operand’s in the
resulting module. For example, the module new-capacity in Figure 1 (d) cannot be
merged with vehicle since the two modules have a conflicting attribute capacity.
However, new-capacity can override vehicle, as shown.

Module adaptation. Besides hide, there are four other primitives which can be
used to create new modules by adapting some aspect of the attributes of exist-
ing modules. The primitive restrict simply removes the definition of the given
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(define fueled-vehicle (mk-module
(a) ((fuet 0)
(empty? (lambda () (= (self-ref fuel) 0)))
(fill (lambda () (self-set! fuel (self-ref capacity)))))))

(define encap-fueled-vehicle (hide fueled-vehicle 'fuel))
(b) (describe encap-fueled-vehicle)
=
((empty? (lambda () (= (self-ref <priv-attr>) 0))) (fill ...))

(define capacity-module
(mk-module ((capacity 10)
(c) (greater-capacity? (lambda (in)
(> (self-ref capacity) {attr-ref in capacity)))))))
(define vehicle (merge encap-fueled-vehicle capacity-module))

(define new-capacity (mk-module ((capacity 25))))

« (define new-vehicle (override vehicle new-capacity))

N

Fig. 1. Basic module operations. (a) Definition via mk-module, (b) Encapsulation via
hide, (c) Combination via merge, and (d) Rebinding via override.

(defined) attribute from the module, i.e., makes it undefined (see Figure 2 (a)).
The primitive rename changes the name of the definition of, and self-references
to, the attribute in its second argument to the one in the third argument. An
undefined attribute, i.e., an attribute that is not defined but is self-referenced,
can also be renamed. An example is shown in Figure 2 (b).

The primitive copy-as copies the binding of the attribute in its second argu-
ment (which must be defined) with the name in its third argument. An example
is shown in Figure 2 (c). The primitive freeze statically binds self-references to
the given attribute, provided it is defined in the module. Freezing the attribute
capacity in the module vehicle causes self-references to capacity to be statically
bound, but the attribute capacity itself is available in the public interface for
further manipulation, e.g., rebinding by combination. As shown in Figure 2 (d),
frozen self-references to capacity are transformed to refer to a private version of
the attribute.

Module nesting. In CMS, modules may be nested within other modules by bind-
ing them to attributes, as in modules typel and type2 within vehicle-category in
Figure 3 (a). Nested modules may refer to name bindings in their surrounding
module via the env-ref primitive. Additionally, a seperately developed module
may be retroactively nested within another module via the operator nest. An
example is shown in Figure 3 (b). The nest expression in the example produces
a module that contains the attribute type3 bound to the nested module veh-type
Jjust as if it was directly lexically nested.
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(describe (restrict vehicle 'capacity))
(2)

=
((fill ...) (empty? ...) (greater-capacity? ...))

(describe (rename vehicle 'capacity 'fuel-capacity))
b = ,
((fuel-capacity 10)(fill ... (self-ref fuel-capacity))...)

(describe (copy-as vehicle 'capacity 'default-capacity))
(@ =
((capacity 10)(default-capacity 10)(fill ...(self-ref capacity))...)

(describe (freeze vehicle 'capacity))
@ =
((capacity 10)(fill ...(self-ref <priv-attr>)) ...)

Fig. 2. Adaptation. (a) Removing an attribute via restrict (b) Renaming an attribute
and self-references to it via rename (c) Copying an attribute via copy-as, and (d) Stat-
ically binding self-references to an attribute via freeze.

(define vehicle-category
(mk-module
((capacity 10)
(a) (typel (mk-module ((fill (lambda... (env-ref capacity)... )))))
(type2 (mk-module ((fill (lambda... (env-ref capacity)... ))))))))
(define mycategory (mk-instance vehicle-category))
(define vl (mk-instance (attr-ref mycategory typel)))

(define veh-type (mk-module ((fill (lambda ... (env-ref capacity) ... )})))
(define new-vehicle-category (nest 'type3 veh-type vehicle-category))

(b)

Fig. 3. Nested Modules. (a) Lexical nesting, and (b) Retroactive nesting via the nest
operator.

Composite Inheritance. With the above suite of primitives, several composite
inheritance idioms including super-based and prefix-based single inheritance, as
well as mixin-based and general forms of multiple inheritance with various types
of conflict resolution and sharing strategies can be emulated; please see [3] for a
detailed description. To give some insight, Figure 4 pictorially shows how super-
based and prefix-based single inheritance can be emulated using CM primitives.
Figure 4 (a) shows a “superclass” super with a method meth and self-references
to it. An increment delta has a redefinition of meth in terms of the previous
definition, referred to as old, as well as some self-references to meth. The classes
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meth | super C“{T?ﬁ super
L
inner
old
’ met delta
C metl delta 2
L .
inner

sub sub

@

Fig. 4. Pictorial representation of subclassing with single inheritance. Expressions for
obtaining sub are: (a) Super-based: (hide (override (copy-as super 'meth 'old) delta)
‘old), and (b) Prefix-based: (hide (override (copy-as delta 'meth 'new) (rename super
'inner 'new)) 'new).

super and delta can be combined to form the “subclass” sub by using the sequence
of operators copy-override-hide shown in the figure caption. Similarly, the BETA-
style [20] prefixes super and delta in Figure 4(b) can be combined into sub using
a similar sequence of operations. The difference is that (an adapted version of)
the superclass overrides the increment in the case of prefix-based inheritance, as
opposed to the reverse for super-based inheritance. Indeed, that is the difference
between the two forms of single inheritance.

Two idiomatic sequences of operations in CM have proven to be very useful:
copy-override-hide, and rename-merge-hide. These and other idioms of CM will
be shown as we proceed.

3.2 Compositional Linking

In this section, we describe the second of the four tools based on CM: a pro-
grammable linker.

The physical notion of a separately compiled object file may be modeled
logically as a self-referential namespace. An object file essentially consists of a set
of symbols, each associated with data or code. This set of symbols is represented
as a symbol table within the object module. Furthermore, there are internal
self-references to these symbols which are represented as relocation information
within the object module.

The traditional notion of linking object files essentially corresponds to the
merge operation in CM. However, the full power of CM made available via a pro-
grammable linker can significantly enhance the ability to manage and bind ob-
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(open-module {path-string-ezpr))

(merge (module-ezprl) (module-ezpr2) ...)

(override (module-ezpr1) (module-ezpr2) ...)

(copy-as {module-ezpr) (from-name-expr) (to-name-ezpr))
(rename {module-ezpr) {from-name-ezpr) (to-name-ezpr))
(hide (module-ezpr) {sym-name-ezpr))

(restrict {module-expr) {sym-name-ezpr))

(fix (section-locn-list) {module-ezpr})

Fig. 5. Syntax of some OMOS module primitives.

ject modules. In particular, facilities such as function interposition, management
of incremental additions of functionality to compiled libraries, and namespace
management can be made more principled and flexible, as shown below. Con-
sequently, there is much to gain from incorporating CM into a programmable
linking tool.

A programmable linker. OMOS [23, 5] is a programmable linker that supports
CM for C language object files. OMOS is programmed using a Scheme based
scripting language similar to CMS above, except that the modules manipulated
in this language are compiled object files (dot-o files) as opposed to Scheme
modules. A dot-o can be converted into a first-class compositional module via a
primitive open-module, manipulated using the CM primitives, and instantiated
into executable programs (bound to particular points in a process’ address space)
using the primitive fix. The syntax of some OMOS module primitives is shown
in Figure 5.

Implementationally, most module operations transform the symbol table of
the object file. For instance, the restrict operation essentially modifies a symbol
table entry to indicate that the symbol is only declared (extern) and not defined.
The hide operation removes a definition from the external interface of the object
file, i.e. makes the definition static. Similarly, the rename and copy-as operations
modify symbol table entries. The primitive nest is not supported by OMOS,
gsince the notion of nesting is not supported by the base language, C.

Wrapping. To illustrate the use of the above primitives, this section describes
how to achieve several variations of a facility generally referred to as “wrapping.”
Figure 6 shows a C language service providing module LIB with a function f(),
and its client module CLIENT that calls f(). (Although OMOS really operates
on compiled dot-o files, the C source for modules is shown in the figure for
illustration purposes.) Three varieties of wrapping can be illustrated with the
modules shown in the figure.

(1) A version of LIB that is wrapped with the module LWRAP so that all
accesses to f() are indirected through LWRAP’s f() can be produced with the

expression:
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LIB LWRAP
(Service Provider) (Wrapper)
) extern void f_old();
void f() { )
ot void £() {
f(); f_old();
P V)

) }

CLIENT CWRAP
(Client Program) (Wrapper)
extern void f(); extern void f();
void g(} { void stub() {

f); f();

T | VW
} }

Fig. 6. Module definitions for wrapping examples in OMOS.

(hide (override (copy-as LIB 'f 'f_old) LWRAP) 'f_old)

By using copy-as instead of rename, this expression ensures that self-references
to f() within LIB continue to refer to (the overridden) f() in the resultant, and
are not renamed to f_old.

(2) Alternatively, a wrapped version of LIB in which the definition of and
self-references to f() are renamed can be produced using the expression:

(hide (merge (rename LIB 'f 'f_old) LWRAP) 'f_old)

This might be useful, for example, if we want to wrap LIB with a wrapper
which counts only the number of external calls to LIB’s f(), but does not count
internal calls.

(3) If we want to wrap all calls to f() from CLIENT so that they are mediated
via the stub() function of module CWRAP, we can use the following expression:

(hide (merge (rename CLIENT 'f 'stub) CWRAP) 'stub)

Note that in this last case, only a particular client module is wrapped, without
wrapping the service provider. In the example, renaming the client module’s calls
to f() produces the desired effect, since the declaration of f() as well as all self-
references to it must be renamed.

The idioms given above are in fact the basis of inheritance in OO program-
ming. Scheme macros that perform various kinds of single and multiple inheri-
tance can be used within OMOS just as in CMS. In [5], we describe an archi-
tecture for OO application development via programmed linkage using OMOS.
Specifically, we show how to manage extensions to libraries, how to generate
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static constructors and destructors, and how to manage the problem of flat
namespaces with dot-o files generated from the C langauge.

3.3 Interface Composition

In this section, we describe the third of the four tools based on CM: a composi-
tional interface definition language.

An interface is essentially a naming scope, with labels bound to types. In the
case of recursive interfaces, type constituents of the interface may recursively
refer back to the interface itself [8]. Thus, an interface can be modeled as a
self-referential namespace.

Explicit specification and composition of interfaces is becoming widespread in
modern programming languages and distributed systems [22, 2, 19], particularly
in interface definition languages (IDLs). It is useful to specify an interface by
reusing, i.e., inheriting from, existing interfaces. Reuse facilitates the evolution
of interfaces [17] by ensuring that inheriting interfaces evolve in step with the
inherited interfaces. It also simplifies maintenance by reducing redundant code.
Most importantly, an IDL should be able to express the types of components
generated via implementation inheritance in module implementation languages.
In fact, it has been shown that inheritance of interfaces generates exactly those
types, known as inherited types, that correspond to the types of inherited ob-
jects [11]. These reasons point to the need for flexible interface inheritance (or
composition) mechanisms in IDLs.

A compositional IDL. We have developed a compositional IDL to demonstrate
the concepts of compositionality of interfaces. The base type domain of the lan-
guage consists of primitive types, function types, and record types. Interfaces
in this language follow a structural type discipline. Interfaces can be recursive,
in that a type constituent can use the keyword selftype to refer to its own in-
terface. Furthermore, we take the analogy between interface type constituents
and methods of objects so far as to allow interface type constituents to refer
to sibling type constituents by selecting on selftype [9]. For example, consider a
Point module that contains attributes corresponding to rectangular coordinates
x and y, a method move for changing the position of the point, and an equality
predicate equal. Its interface may be expressed as follows, where recursion is ex-
pressed using the selftype keyword. (As a convenience, selftype.x is abbreviated
to x.)

interface FloatPointType {
float x, y;
selftype move (x, y);
boolean equal (selftype);

}
Inheritance is an operation on self-referential structures, thus it can be ap-
plied to interfaces as well. For instance, the interface FloatPointType above can
be extended to have a color attribute using the merge operation, as follows:
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interface ColorType {
color_type color;
i}nterface ColorPointType = FloatPointType merge ColorType;

Although it inherits from FloatPointType, the ColorPointType interface is not
a subtype of FloatPointType, due to the contravariance of the equal method.
However, ColorPointType shares the same structure as FloatPointType, hence it
is known as an inherited type of FloatPointType [8, 7].

An important point to note here is that the merge operation on interfaces
generates types that correspond to the types of inherited module implementa-
tions generated via both the merge and override operations on module imple-
mentations. An override operation is defined on interfaces as well, by which type
constituents of interfaces may be arbitrarily rebound. The primary motivation
for including such an operator is to support a high degree of reuse of existing
interface specifications. In the following example, the x and y constituents of
FloatPointType are rebound to complex_type; note that this will automatically
result in the proper type for the move constituent, due to self-reference.

interface ComplexPointType =
FloatPointType override
interface {
complex_type x, y;
¥

Type constituents may be rename’d, which results in self-references to get
renamed as well. This is useful for resolving name conflicts while performing
operations equivalent to multiple inheritance. Furthermore, particular interface
constituents may be project’ed. This operation is analogous to the one in rela-
tional algebra, and is the dual of the restrict operator presented earlier.

The operator copy-as does not seem very useful in the context of interfaces.
Also, the operators freeze and hide do not apply, since interfaces by definition
represent the public types of modules. An operation corresponding to nest may
be supported, but we are doubtful as to whether that level of expressiveness is
useful in IDLs.

3.4 Compositional Document Processing

In this section, we describe the fourth of the four tools based on CM: a compo-
sitional document processing system.

A structured document may be viewed as a compositional module. Sections
within the document correspond to module attributes, with each section com-
prising a label, associated section heading, and some textual body. Cross refer-
ences within text to other section labels correspond to self-references. Thus, the
document can be regarded as a self-referential namespace.

A large and complex document is often broken down into and composed
from smaller pieces. In such scenarios, there are many cases where documents
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developed for one purpose can be reused for other purposes. For example, a re-
port, such as a user manual, can be composed from several document fragments,
such as design documents. A specific scenario of modular document process-
ing that motivated the document processing application of CM was document
generation and consumption in the activity of building construction such as
that described in [25]. Building architects routinely extract and maintain large
bases of document fragments that they reuse, edit, and compose into architec-
tural specifications for delivery to particular clients. As another example, in a
document centered industrial process, document fragments are generated at all
phases of the process with the objective of producing a number of reports such
as inventory statement, parts catalog, assembly reports, process monitoring and
quality control documents, etc. Thus, effective document composition tools can
be useful in enterprises where several documents are generated, edited, com-
posed, maintained, and delivered in various ways. In such environments, the
model of compositional modularity can be used to enhance the composability
and reusability of documents.

A tool for composing document modules. We have developed a programmable
document processing system based on CM named MTEX which can help a docu-
ment preparer to adapt and compose documents effectively. It is built on top of
a restricted version of the INXTRX document preparation system [21]. An MTEX
program is a script based on Scheme (as in CMS) that describes how BTgX
document modules should be constructed and composed.

An MTgX module is modeled as a generator of an ordered set of sections, each
of which is a label bound either to a section body, or to a nested module. The
section label is a symbolic name that can be referenced from other sections (de-
fined using WTEX’s \1abel command). The section body is a tuple (H, B) where
H is text corresponding to the section heading, and B corresponds to the actual
text body, which consists of textual segments interspersed with self-references
to labels. Given this model of document modules, consider the meaning of the
operations of compositional modularity.

The binary operator merge produces a new document module with the sec-
tions of its right module operand concatenated to its left module operand, if there
are no conflicting labels between the two module operands. Since the order of
sections is significant, merge is associative, but not commutative. The binary
operator override concatenates two modules in the presence of conflicting section
labels. Conflicting sections in the right operand replace corresponding ones in
the left operand. Non-conflicting sections in the right operand are appended to
the left operand in the same order that they occur in the right operand.

The restrict operator has the usual meaning of removing sections. However,
its dual operator project (analogous to relational algebra) is potentially more
useful in the context of document composition. The operators rename and copy-
as have the usual meaning. We have chosen not to support encapsulation, i.e.,
the hide operator, and static binding, i.e., freeze, although it could conceivably
have some natural meanings for some applications of document processing.

Hierarchical nesting is a very important and useful notion in document struc-
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NI N T ]
M1 Mn
(merge (cl-project M1 '(L11 L12 ...))
(s) (merge (cl-project M2 ’(...))

(cl-project Mn '(...))...))

(let (m (mk-module ()))
(nest 'm1"M1-heading" (cl-project M1 '(L11 L12...)) m)

(b)

(nest 'mn " Mn-heading” (cl-project Mn '(Lnl Ln2 ...)) m))

Fig. 7. Example of report generation.

turing. The nest operator supports retroactive nesting of document modules.
However, in keeping with the generator semantics of CM, an environmental ref-
erence within a nested module is resolved to a definition of the name in the
innermost enclosing module. While this semantics does not permit references
from a section to non-enclosing modules, it has the potential to produce highly
structured documents. Finally, the notion of instantiating document modules
interestingly corresponds to running the IXTgX document processing system on
them.

Report Generation. To illustrate some of the above notions, consider the exam-
ple in Figure 7. At the top of the figure is shown a set of document fragments
labeled M1 through Mn. Each of these fragments has several sections, where
section Lij is the jth section in fragment Mi. Sections contain cross references to
other defined or undefined sections within the document fragment.

Considering each document fragment as an MTEX compositional module, two
ways in which they can be usefully put together are described in the figure using
the MTEX scripting language. The examples use a function named cl-project
which projects sections corresponding to the closure of self-references within a
module. This function can be written using the module primitive project and
an introspective primitive self-refs-in, which returns the self-referenced names
within a section. The expression in Figure 7(a) merges (closures of) particular
sections projected from each of the modules, producing a document containing
several sections at the same level. The expression in Figure 7(b) creates a new
document module and nests within it one subsection per original module that
contains (closures of) particular sections projected from each of the original
modules.
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4 The ETYMA Framework and its Completions

Earlier, it was mentioned that tools for systems based on CM can be constructed
from a common architecture that encompasses the concepts of CM. In this
section, we describe a simple software architecture, an OO framework named
ETyMA3, that can be effectively reused to build tools for a wide variety of sys-
tems based on CM such as the ones described in the previous section. Tools
constructed from this framework benefit not only from the power and flexibil-
ity that the underlying model offers, but also from significant design and code
reuse. Thus, ETYMA could significantly reduce the resources spent in developing
tools, as well as increase their reliability. Furthermore, ETYMA represents a good
model for studying the domain of systems based on CM.

A tool for a system based on CM can be said to consist of a front-end that
reads in command and data input, a processing engine that performs CM oper-
ations on an internal representation (IR), and an optional back-end that trans-
forms the IR into some external representation. The ETYMA framework is in-
tended for constructing the processing engine along with the IR, rather than for
building the front- and back-ends to such systems.

ETYMA is implemented in the C++ language[14]. It is continually evolving,
but currently consists of about 45 reusable classes, and approximately 7,000 lines
of C++ code. The C++ realization of the ETYMA framework has undergone
several iterations over almost two years. In Section 4.3, we outline the major
evolutionary stages of the framework.

4.1 Structure of Abstractions

Compositional modularity deals with modules, their instances, the attributes
they are composed of, and the types of all the above. Thus, the primary concepts
that must be captured by a reusable architecture for CM such as ETYMA are
those of modules, instances, names, values, methods, variables, and their corre-
sponding types. However, ETYMA is also a linguistic framework, i.e., a framework
from which language processing tools will be designed. Thus, while modeling the
above concepts, we must not inadvertently limit their generality. For example, a
method is a specialization of the general concept of a function. Similarly, the con-
cept of a record is closely related to that of a module and an instance. We must
also be careful in determining the precise relationships between concepts. For
example, a module is a record generator whereas an instance is itself a record;
thus, the concept of an instance is a subtype of the concept of a record, but
neither of these concepts is subtype-related to the concept of a module.

The abstractions of ETYMA form two layers. An abstract layer consists of ab-
stract class realizations (partial implementations) of the concepts given above.
These classes may be used as a “white box” framework (via inheritance) by com-
pletions. A concrete layer provides full implementations of the abstract classes

* et.y.mon (pl. et.y.ma also etymons) [L, fr. Gk] ... 2: a word or morpheme from which
words are formed by composition or derivation. — Webster Dictionary
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Fig. 8. An overview of the abstract classes of ETYMA.

that can be directly used as a “black box” framework (via instantiation) by
completions. This layer, as customary, is meant to increase the reusability of the
framework. Only, the important classes in both layers, i.e., those corresponding
to modules, instances, and methods, are described in more detail below. (For
brevity, we omit classes corresponding to the type system.) We utilize the no-
tion of design patterns [16] to elucidate the structure of the ETYMa framework.

Abstract classes. Figure 8 shows an overview of the abstract classes of ETYMA
diagrammed using the OO notation in [16] extended to show protected meth-
ods. Class Etymon is the abstract base class of all classes in ETYMA, and classes
TypedValue and Type represent the domains of values and their types respec-
tively.

The abstract class Module captures the notion of a compositional module in
its broadest conception. Its public methods correspond to the module operators
introduced earlier. Within this class, no concrete representation for module at-
tributes is assumed. Instead, the public module operations are implemented as
template method patterns in terms of a set of protected abstract methods such
as insert, remove, etc. which manage module attributes. Concrete subclasses of
Module are expected to provide implementations for these abstract protected
methods. Two of these are abstract factory method patterns: create_instance,
which is expected to return an instance of a concrete subclass of class Instance
(below), and create_iter, which is expected to return an instance of a concrete
subclass of class Attrlter, an iterator pattern for module attributes. Thus, the
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generality of class Module results from its use of a combination of the following
patterns: template method, abstract factory method, and iterator.

Class Instance is a subclass of Record; hence it supports record operations,
implemented in a manner similar to those of class Module. In addition, it mod-
els the traditional OO notion of sending a message (dispatch) to an object as
select’ing a method-valued attribute followed by invoking apply on it. This func-
tionality is encapsulated by a template method pattern msg-send(Label Args).
Furthermore, class Instance has access to its generating module via its module
data member.

The concept of a method is modeled as a specialization of the concept of a
function. Class Function supports an apply method that evaluates the function
body. Although class Function is a concrete class, the function body is represented
by an abstract class ExprNode, a composite pattern. Since a method “belongs
to” a class, class Method requires that the first argument to its apply method is
an instance of class Instance, corresponding to its notion of self.

Concrete classes. Some abstract classes in Figure 8 are subclassed into concrete
classes to facilitate immediate reuse. Class StdModule is a concrete subclass
of Module that represents its attributes as a map. An attribute map (object of
class AttrMap) is a collection of individual attributes, each of which maps a name
(object of class Label) to a binding (object of class AttrValue). A binding encap-
sulates an object of any subclass of TypedValue. This structure corresponds to a
variation of the bridge pattern, which makes it possible for completions to reuse
much of the implementation of class Module by simply implementing classes
corresponding to attribute bindings as subclasses of TypedValue.

Each of StdModule’s attribute management functions is implemented as the
corresponding operations on the map. Furthermore, the factory method pattern
create_iter of StdModule returns an object of a concrete subclass of class Attrlter,
class StdAttrlter. Similarly, the factory method pattern create_instance returns
an object of the concrete subclass of class Instance, class Stdlnstance. Class
Stdinstance itself is also implemented using attribute maps.

4.2 Completion Construction

As mentioned earlier, ETYMA can be used to construct the processing engines of
tools for compositionally modular systems. In practice, one must first identify the
various kinds of name bindings comprising namespaces in the system. One can
then identify generalizations of these concepts specified as classes in the ETYMma
framework. For each such general ETYMA class, one must then subclass it to
implement the more specific concept in the system. Once this is done, concrete
classes in the framework corresponding to modules, instances, and interfaces can
usually be almost completely reused, due to the bridge pattern mentioned above.

Architecturally, tools constructed as completions of ETYMA have the ba-
sic structure given in Figure 9. The command input component reads in mod-
ule manipulation programs that direct the composition engine. The data input
component creates the internal representation (IR) of compositional modules
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Fig. 9. Architecture of completions.

by parsing module source data and instantiating appropriate framework and
completion classes. The optional data output component transforms IR into a
suitable output format. The composition engine itself is derived from the ETYMA
framework, and comprises classes (data and composition behavior) correspond-
ing to module related entities. In the following subsections, three tools derived
from the ETYMA framework in this manner are described.

An Interpreter for CMS The CMS interpreter consists of two parts: a basic
Scheme interpreter written in the C language, and the module system, imple-
mented as a completion of ETYMA. The basic Scheme interpreter itself was
extracted from a publicly available scriptable windowing toolkit called STk [15].
The interpreter implementation exports many of the functions implementing
Scheme semantics, thus making it easy to access its internals. Furthermore, the
interpreter was originally designed to be extensible, i.e., new Scheme primitives
can be implemented in C/C++ and easily incorporated into the interpreter.
Thus, in order to implement CMS, Scheme primitives implementing concepts of
compositional modularity such as mk-module, mk-instance, self-ref, merge, etc.
were implemented in C++ and incorporated into the interpreter.

The class design for the CMS module system completion is as follows. At-
tribute bindings within CMS modules can be Scheme values, variables, or meth-
ods. These can be modeled as subclasses of framework classes PrimValue (not
shown in Figure 8), Location, and Method respectively. The method subclass
need not store the method body as a subclass of ExprNode; instead, it can sim-
ply store the internal representation of the Scheme expression as exported by
the interpreter implementation. Additionally, the method subclass must define
methods corresponding to the CMS primitives self-ref, self-set!, etc. which call
similar methods on the stored self object.

With the classes mentioned above, the implementation of class StdModule can
be almost completely reused for implementing CMS modules. However, methods
to handle CMS primitives mk-module, mk-instance, etc. must be added. The only
modification required is to redefine the method create_instance of class StdModule
to return an object of an appropriate subclass of class Stdinstance. This subclass
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Reuse parameter New|Reused|% reuse
Module Classes 7 25 78
system Methods 67 | 275 80.4

only Lines of Code|[1550] 5000 | 76.3
Entire interpreter|Lines of Code{1800| 20000 | 91.7

Table 1. Reuse of framework design and code for CMS interpreter.

needs to implement code for CMS primitives such as attr-ref and attr-set!.

Table 1 shows several measures of reuse for the CMS module system imple-
mented as a completion of ETYMA. The percentages for class and method reuse
give an indication of design reuse, since classes and their methods represent the
functional decomposition and interface design of the framework. On the other
hand, the percentages for lines of code give a measure of code reuse.

A Compiler Front-end for Compositional IDL Although we have not de-
scribed the classes in ETYMA that relate to types, there is a comprehensive set of
reusable classes that correspond to the notions of interfaces, record types, func-
tion types, etc. All type classes are subclasses of the abstract superclass Type
in Figure 8 which defines abstract methods for type equality, subtyping, and for
finding bounds of type pairs in a type lattice. Interfaces correspond to the types
of modules, and support predicate methods that implement the typechecking
rules for each of the module operators. Furthermore, abstract class Interface
and its concrete subclass Stdlnterface are implemented in a manner similar to
classes Module and StdModule.

Briefly, the class design for the compositional IDL front-end completion are
as follows. Attribute bindings within interfaces can be base types, function types,
or record types, designed as subclasses of the corresponding generic classes in
the framework. Define class IDLinterface as a subclass of class StdInterface, and
define methods merge (IDLInterface), rename (Label,Label), etc. to return new
interface objects after performing the appropriate operations. Furthermore, the
notion of the recursive type selftype is implemented as the special framework class
SelfType (a singleton pattern). Recursive type equality and subtyping methods of
StdlInterface, which implement the algorithms given in [1] can be reused directly
in the IDLInterface class. Design and code reuse numbers for this completion
prototype are given in Table 2.

An Interpreter for MTEX The STk-derived Scheme interpreter was used for
MTEX in a manner similar to CMS. The subclasses of ETYMA created to con-
struct the MTEX module engine are: TexLabel of Label, Section of Method, Tex-
Module of StdModule, SecMap of AttrMap, and TexInterface of Stdinterface. Also,
a new class Segment that represents a segment of text between self-references
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Reuse parameter|New|Reused|% reuse
Classes 5 22 81.5
Methods 20 | 155 88.6
Lines of Code |1300{ 3600 | 73.5

Table 2. Reuse of framework design and code for IDL front-end.

Reuse parameter New|Reused|% reuse
Module |[Classes 6 20 7
system Methods 36 | 231 86.5

only Lines of Code[1600{ 4400 | 73.3
Entire system|Lines of Code[1800{ 19400 | 91.5

Table 3. Reuse of framework design and code for building MTEX.

was created. Approximate design and code reuse numbers for the MTEX imple-
mentation are shown in Table 3.

4.3 Framework Evolution

The very first version of ETYMA was almost fully concrete, and was designed
to experiment with a module extension to the C language. It consisted only of
the notions of modules, instances, primitive values, and locations, along with a
few support classes. No front and back ends were constructed. The next incar-
nation of ETYMA was used to build a typechecking mechanism for C language
object modules, described in [4]. This experiment solidified many of the type
classes of ETYMa. However, at this point, ETYMA was still primarily a set of
concrete classes. The third incarnation was used to direct the reengineering of
the programmable linker/loader OMOS described earlier. In this iteration, the
framework was not directly used in the construction of OMOS (due to practical,
not technical constraints), but it evolved in parallel with the actual class hierar-
chy of OMOS. The design of OMOS classes follow that of ETYyMa closely. Also,
much of the framework, including the abstract and concrete layers, developed
during this iteration.

The fourth iteration over ETYMA was the construction of CMS completion.
There were few changes to the framework classes in this iteration; these were
mostly to fix implementation bugs. However, some new methods for retroactive
nesting were added. Nonetheless, the CMS interpreter was constructed within
a very short period of time, and resulted in a high degree of reuse. The next
iteration was to design and implement an IDL compiler front-end. There were
almost no modifications to the framework; additions included selftype related
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code. The sixth, and most recent, iteration over ETYMA has been to build the
MTEX document composition system. There were no changes to the framework.

The first three iterations essentially evolved the framework from a set of con-
crete classes to a reusable set of abstract and concrete classes, thus crystallizing
the reusable functionality of the framework. From the fourth iteration onwards,
the framework was mostly reused, with some additions, but very few modifi-
cations. As the observed reusability of the framework increased, measurements
were taken to record the reuse achieved, as shown in the tables earlier.

5 Conclusions and Future Work

We have shown in this paper that OO class inheritance viewed as operations
on self-referential namespaces is a broadly applicable concept. Specifically, we
have shown how to apply compositional modularity (CM), a model that de-
fines a comprehensive suite of operations on modules viewed as self-referential
namespaces, to a variety of software artifacts such as Scheme language modules,
compiled object files, interfaces, and document fragments.

We have described four tools that can help effectively manage these software
artifacts. These are: (i) an interpreter for the programming language Scheme
extended with the notion of compositional modules, (ii) a linker that manipulates
compiled object files as compositional modules, (iii) a compiler front-end for a
language with compositional interfaces, and (iv) a document processing system
that manipulates documents as compositional modules. Furthermore, we show
that these systems benefit significantly by incorporating concepts of module
composition (i.e., class inheritance).

The implementation of tools for systems based on CM share a lot in cornmon.
Hence, we argue that a reusable software architecture for such tools is beneficial.
We describe a reusable OO framework named ETYMA from which tools such as
the above can be efficiently constructed. ETYMA currently comprises about 45
reusable C-+- classes in 7000 lines that evolved over six iterations. Three of the
above tools were built by directly reusing ETYMA, resulting in significant levels
(between 73 and 91%) of design and code reuse.

Many other tools can be based on CM and can be built by completing
ETyMA. Naturally, CM can be applied within other programming language
processors: compiler and interpreters for modular and non-modular languages.
There is also an abundance of software artifacts that can be viewed as self-
referential namespaces, and that have a useful notion of composition. For ex-
ample, tools that manage GUI components viewed as compositional entities are
conceivable. File systems that view directories as self-referential namespaces (i.e.,
filenames bound to file contents that refer back to other filenames) could also
be useful. We also speculate that the commonality of the underlying models of
such tools can be exploited for supporting interoperability among them.
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