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Abstract. Applications in scientific computing operate with data of
complex structure and graphical tools for data editing, browsing and
visualization are necessary.

Most approaches to generating user interfaces provide some interactive
layout facility together with a specialized language for describing user in-
teraction. Realistic automated generation approaches are largely lacking,
especially for applications in the area of scientific computing.

This paper presents two approaches to automatically generating user
interfaces (that include forms, pull-down menus and pop-up windows)
from specifications.

The first is a semi-automatic approach, that uses information from object-
oriented mathematical models, together with a set of predefined elemen-
tary types and manually supplied layout and grouping information. This
system is currently in industrial use. A disadvantage is that some manual
changes need to be made after each update of the model.

Within the second approach we have designed a tool, PDGen (Persis-
tence and Display Generator) that automatically creates a graphical user
interface and persistence routines from the declarations of data struc-
tures used in the application (e.g., C++ class declarations). This largely
eliminates the manual update problem. The attributes of the generated
graphical user interface can be altered.

Now structuring and grouping information is automatically extracted
from the object-oriented mathematical model and transferred to PDGen.
This is one of very few existing practical systems for automatically gen-
erating user interfaces from type declarations and related object-oriented
structure information.
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1 Introduction

Almost all applications include some kind of user interface. Graphical user in-
terfaces (GUI) provide the opportunity to control an application’s execution, to
modify the input data and to inspect the results of computations.

Application programs have different data structures. Each application do-
main puts special requirements on visual presentation of data. Therefore, graph-
ical interfaces are traditionally designed individually for each application.

The following properties are expected from applications with graphical user
interfaces:

—~ The data must be presented to the user in a well-structured way. The graph-
ical user interface should be consistent with the computational part of the
application (for example, elements of the graphical user interface for data
input should correspond to components of the application data).

— The user interface should satisfy style guidelines, conventions and standards.
The compromise between large amounts of information and limited screen
space can be achieved if the graphical user interface allows the user to choose
only interesting information and ignore all else.

— The user interface software should be portable and not be dependent on a
specific operating system or compiler.

— Entered data should be persistent: it should be possible to store entered data
outside the program memory and reload it again later.

For realistic applications the design and implementation of a graphical user
interface often become rather laborious, expensive and error-prone. Currently
available toolkits are very powerful. Unfortunately, they are also very compli-
cated and not user-friendly enough. In order to obtain some result the program-
mer often has to take too many implementation details into account. The
high cost of implementing user interfaces can be partly reduced by the use of
user interface generation tools. Such tools usually include a WYSIWYG lay-
out definition tool that helps the programmer to design the layout of windows,
menus, buttons and other user interface items. The graphical user interface code
is generated automatically.

However, every time the application code is updated or the layout is changed,
the interface code between them has to be updated manually.

1.1 User interface generation based on data declarations

In this paper we propose a different approach, based on the automated generation
of user interfaces from data structure information. As a preliminary we present
some terminology.

Data structures in traditional languages (such as Pascal or C) are described
by variable and type declarations. In object-oriented languages (e.g. C++) data
structures are defined using classes, objects and relations (inheritance, part-of)
between objects.
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The structure of a graphical user interface can be described in terms of graph-
ical elements such as windows, menus, dialog boxes, frames, text editing boxes,
help texts etc., and layouts that define how these elements are placed on the
screen.

In which contezt the interface is used 7 The main purpose of a graphical
user interface is to let the user inspect and modify some data. The input data
can be edited by a stand-alone graphical tool, saved in file and then loaded by
the computing application. The output data can be saved by the application
and inspected by a separate tool. The application may suspend computations,
initiate graphical interface in order to allow data editing, and then resume the
computations again. We consider graphical interfaces that cen be used in all
these cases.

The data have some structure and it is used to control the application func-
tionality. Therefore the structure of the graphical user interface should be similar
to the structure of the application data.

Typically there is an implicit or explicit correspondence between the struc-
ture of a program and the structure of data. On the other hand, there is a
correspondence between the structure of the interface and data structures of the
program. This means that the way the programmer perceives the structure of the
implementation is close enough to the way the end-user perceives the structure
of the application area.

The basic idea of our approach is to generate the graphical user interface
automatically from the application data structures.

The similarity between the data structures and the structure of the graphical
user interface is characteristic for a wide spectrum of applications, including
simulation tools and information systems.

Data persistence is a generic property that includes saving data structures
on permanent storage such as a file system and being able to restore these data
next time the application is executed. To implement persistence, we need routines
that can save or load all the application data (or some part of the data). Such
persistence routines can be generated automatically from the application data
structures.

Automatic support for data persistence as well as generation of graphical user
interfaces will allow designers to concentrate on the main goals of the applications
rather than on mundane tasks such as implementing a graphical user interface
and input/output.

We applied the method of generating user interfaces from data structure
declarations to two object-oriented languages: ObjectMath (an object-oriented
extension of Mathematica [Wolfram91] ) and C++.

In Section 1.1 we have discussed some reasons and motivation for the design
of a user interface generator according to these principles.

The rest of the paper is organized as follows:

First we describe relevant features of ObjectMath, an environment for sci-
entific computing (Sect. 2.1) and consider a semi-automatic approach to the
creation of user interfaces from application data structures, which also has been
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tested in industrial applications. A new automatic graphical user interface
generation is based on our PDGen tool (Sect. 3) that automatically generates
persistence and graphical user interface code from given data-type declarations.
This tool is applied to ObjectMath models.

In Sect. 4 we describe how the PDGen tool can be applied to ObjectMath
models.

Sect. 5 discusses related work on persistence and display generation and we
conclude with proposals for future work. More details can be found in [PDGen96,
E96].

2 The Semi-automatic GUI Generating System
2.1 The ObjectMath Environment

Applications in scientific computing are often characterized by heavy numerical
computations, as well as large amounts of numerical data for input and output.

The data often have a complicated structure including objects with fields of
various types, vectors and multidimensional arrays. This structure often changes
during the course of program design.

An important application area in scientific computing is the simulation of
various mechanical, chemical and electrical systems. These applications can be
described by mathematical models of the physical systems to be simulated. Ad-
ditionally, routines for numerical solution systems of equations are needed, as
well as routines for input/output and routines and tools for user interfaces.

The process of manually translating mathematical models to numerical simu-
lation programs in C or Fortran is both time-consuming and error prone. There-
fore, a high level programming environment for scientific computing, Object-
Math [Fritzson95, Viklund95, Fritzson93] , has been developed that supports
the semi-automatic generation of application code from object-oriented mathe-
matical models.

The ObjectMath programming environment has been applied to realistic
problems in mechanical analysis. ObjectMath class libraries describing coordi-
nate transformations and contact forces have been developed. They are used
for mathematical modeling of rolling bearings by our industrial partner, SKF
Engineering and Research Center.

In ObjectMath formulae and equations can be written in notation that is very
similar to conventional mathematics. The ObjectMath language is an object-
oriented extension of the Mathematica computer algebra language, in a similar
way as C++ is an extension to C.

The ObjectMath language includes object-oriented structuring facilities such
as classes, instances, single and multiple inheritance (for reuse), and the part-of
relation (to compose new classes from existing ones).

2.2 The simulation environment for ObjectMath models

First, an ObjectMath model is specified with the help of a class relationship
editor and class text editor. The ObjectMath code generator generates parallel or



118

sequential programs for systems of equations expressed in ObjectMath. Typically
a system of ordinary differential equations is considered.

The generated code is linked with model-independent run-time libraries. The
ezecutable code requires a large number of input values (such as start values,
limitations, model geometry and conditions, solver parameters) in order to start
a simulation.

The input data editor is designed for input data inspection and update. It
has a window-based graphical interface for ObjectMath variable editing and
can load and save a file with variable values. In this paper we present two
graphical user interface generation systems that can create an input data editor
from model specifications. The first system is described here, the second in Sect.
4.

The simulation program reads the data prepared by the input data editor
and computes a large amount of output data for every simulated time step.

This data can be explored with the help of an output data browser . This
browser can create graphs that illustrate how the variables change during the
simulation.

The animation tool reads the output data step by step and shows the model
geometry in motion.

2.3 An ObjectMath example: a Bike model

In this section we present an ObjectMath model example, a mechanical model
of bicycle (Fig. 1) in order to explain the relations between classes and instances

in ObjectMath3.
f Cylinder -
J ‘

~ multiple
class o inheritance

_..part-of relation

“~--«~m B instance

Fig. 1. An ObjectMath class diagram for a bike model. Arrows denote single or multiple
inheritance. The bike instance contains the parts tube (array of tubes), front and
rear, which inherit from the classes Cylinder and Wheel, respectively. Such diagrams
are editable with graphical class relationship editor.

® We discuss the constructs relevant for graphical user interface generation only.
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Every model specification consists of classes and instances. The textual part
of classes and instances contain variable declarations, formulae and equations.
This is the way the formulae and equations related to the same phenomenon are
grouped. Classes and instances inherit variables, formulae and equations from
one or several (multiple inheritance) classes. The classes serve as templates for
instances.

The class Bicycle on Fig. 1 inherits all variables, equations and formu-
lae from the class Body. The instance bike inherits everything from the class
Bicycle. An instance or a class can also contain its own variable declarations
and formulae. Every instance is created statically and its variables (both its own
and inherited ones) can be referenced in formulae and equations of other classes
and instances.

A Bicycle consists of three parts in this model: the front wheel, the rear
wheel and the frame consisting of several tubes. The number of tubes is equal
to the value of some variable, in our example it is framesize (this is not shown
in the picture).

2.4 Variables and built-in data types

Let us assume that there are several ObjectMath variables* declared in the class
definitions:

In Body: Declare [angle, "doubleVec3", "rad", ulIl]
In Cylinder: Declare [radius, "double", "m", ulI]
In Wheel: Declare [pressure, "double", "H/m~2",ull]
In Bicycle: Declare [framesize," int", "-", uII]

In the general form variable name, type, physical unit and persistence status
are specified:
Declare[name, type-name, "unit",(uII|ud0uL)].

Types. In ObjectMath there is a fixed set of twenty primitive data types that
can be used for variables in the model. Some of the types have complex structure
and may contain up to 100 double precision real numbers, integers and strings.

A variable of type double has a double precision floating value. The type
doubleVec3 is a 3-element vector of double.

Units. A string such as "H/m~2" contains the name of the physical unit of the
value this variable represents. This unit name is used as part of the prompting
information for the relevant input field in the input data editor that is generated
from the declarations above.

4 This declaration syntax is for ObjectMath version 3.0. The latest version 4.0, fall
1995, has a different declaration syntax.
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Persistence status. The variable declarations provide the persistence informa-
tion: whether a variable should be initialized by the input data editor, should
be output and stored as a computed result, or is simply a local variable for
intermediate results.

Here uIl means “to input from the input file”, u00 means “to output to the
output file”, and uL means “local variable, neither input, nor output”.

From this information a window with text input boxes (Fig. 2) is generated.
The variable instance identifier, text input area for value editing and “units” are
shown for each variable component.

2.5 Generation of input data editor

The basic idea of this approach is that part of the code necessary for graphi-
cal user interface creation is automatically generated from ObjectMath variable
declarations. Then the layout information is manually inserted into this code.

In order to create the input data editor we have to create the hierarchy of
windows and variables; this hierarchy is created half-automatically and combines
display routines provided that create widgets for every ObjectMath variable
type.

When model specification code is analyzed, the names of variables such as
angle, radius and pressure, are converted to unique names (within the model)
by adding prefixes (part and object names). This is the list of all the variables
available in this model, where notation nameln] denotes an array with n ele-
ments:

bike‘front‘radius bike ‘front ‘angle bike‘front‘pressure
bike ‘rear‘radius bike‘rear ‘angle bike ‘rear ‘pressure
bike ‘tube‘radius[bike ‘framesize]

bike ‘tube‘angle[bike‘framesize] bike‘framesize

A specially designed filter reads the model specification and generates a comma-
separated list of function calls:
var_double_array("bike‘tube‘radius","mn"),
var_doubleVec3_array("bike‘tube‘angle","rad"),
var _double("bike‘front ‘radius",'m"),

The calls of var_... () functions above register the variables as members
of the list of relevant variables and return a frame handle which is used for
constructing corresponding windows. The rest of the code needed in order to
display these variables in a separate window (see Fig. 2) is inserted manually
(manual part is shown in italic font):
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make_dialog(
layout_vertical(
layout_horizontal(

layout_vertical(
var_double("bike‘front ‘radius","m"),
var_doubleVec3("bike‘front‘angle","rad"),
var_double("bike‘front ‘pressure","H/m"2")),
layout_vertical(
var_double("bike‘rear ‘radius","m"),
var_doubleVec3("bike‘rear‘angle","rad"),

var_double("bike‘rear‘pressure","H/m"2"))

)
layout_frame(
layout_vertical(
var.int ("framesize","-"),
array(”framesize”,

layout_vertical(
var_doubleVec3_array("bike‘tube‘angle","rad"),

var_double_array("bike‘tube‘radius","m")

)i

: _c_léso’E -mtﬁj'

[ bike

Fig. 2. Ezample of variable display in the input data editor.

2.6 Presentation of arrays.

Two variables (bike‘tube‘angle and bike‘tube‘radius) represented in the
example (see Fig. 2) are arrays of doubleVec3 and double. They have the same
length; therefore they may be grouped together. These arrays share common
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control buttons (Vert, Hor, Copy to all etc.) in the upper part of their frame.
(It is also possible to build displays where every array has a separate control
panel.)

As shown in Fig. 2 only one element (currently the 2nd element) of each
array is visible, as indicated by the label “2” in the upper left corner. This is
the compact presentation of the array. The buttons with the triangles (“Up” and
“Down”) switch the current element to the previous or the next, respectively.
Then the label may change to “3” (“Up”) or “1” (“Down”). The button “Copy
to all” copies all the values from the visible element of the arrays to all other
elements.

The buttons “Vert” and “Hor” change the presentation of the array: they
spread its elements vertically or horizontally, respectively. Then the button
“Collapse” appears that changes the presentation back to compact form.

2.7 Frame hierarchy definition functions

Every application window contains a hierarchy of frames. Each frame is a rect-
angular area that contains graphical user interface elements (widgets) such as
labels, text input boxes, buttons, as well as compositions of other frames in the
vertical or horizontal direction. A number of functions are needed in order to
specify this hierarchy of frames:

The function make_dialog(frame) specifies the top frame of the window.

— The function frame=layout_vertical (frame;, framea, ..., frame,) spec-
ifies that the frames frame,, frame,, ..., frame, are allocated in the vertical
direction.

The function layout_horizontal allocates them in the horizontal direction.
The function frame=array (" bound-variable", frame;) specifies that length
of all arrays within frame; is equal to the current value of the variable
bound-variable and they are controlled all together by the buttons in the
upper part of the frame. The control buttons for array variables can change
the index of the currently displayed element (see Figure 2).

There are several functions for additional help texts and decorations.

— The function frame=layout _frame(frame;) draws a rectangle around
framey;

— The function frame=layout label("tezt") specifies a label containing the
text string.

The description this hierarchy is stored as a tree. When necessary, the tree
is traversed, relevant Motif API functions are invoked, and the windows are
displayed on the screen.
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2.8 Description of variables

For every displayed variable a function for a corresponding data type should be
called. These calls are automatically generated from the list of model variables.
There is a separate function for each data type used in the ObjectMath lan-
guage: var_double, var_int, var_doubleVec3 and all others (totally, twenty)
ObjectMath basic data types.

For example, frame=var_double("bike‘front ‘radius","m") specifies that
a text input box is constructed for the variable bike‘front‘radius of type
double and that the physical unit is "m".

Every such call registers a variable and arranges for the value of this vari-
able to be displayed at an appropriate place in the layout. For every type a
certain specific layout has been designed and hard-coded. For example, for the
type doubleVec3 (a structure with three double values) the layout is three ver-
tically aligned text input boxes. Arbitrary double values can be entered here.
For integer, double and string variables the layout is a single input box with
the variable name to the left and the unit to the right (see Fig. 2). Arbitrary
integer, double and string expressions can be entered into the input boxes
respectively. .

Persistence. When the button Save is pressed, the persistence function is called
and all the registered variables are written to the input data file. When the
button Load is pressed all the variables in the list receive their values from the
input data file. Both the input data editor and the application program should
register the variables with the same name and type.

2.9 Evaluation of the first generation system

If the ObjectMath model changes, the graphical user interface programmer has
two ways to solve the update problem. If many changes are introduced, the
graphical user interface code should be generated again and the programmer
has to insert the layout functions manually. If the changes are small and lo-
cal (such as renaming some variables), the variable registration function calls
(var_...(...)) should be manually updated.

The first generation system described so far in this paper has several disad-
vantages:

The update problem. If the model is changed, the new code that is automatically
generated from the variable list must be manually merged with the layout de-
scription. Every small change in the list of variables from the ObjectMath model
may lead to inconsistency between the generated application and the input data
editor. Therefore the inherent flexibility of the ObjectMath environment cannot
be used to full advantage.
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Insufficiency of the basic type set. Only a limited number of basic data types are
supported. These data types are either primitive ones or are specially designed
for a particular application domain. There is no way to specify other types than
these and there are no new type declaration constructs. The persistence routines
and the layout routines are designed for the fixed set of types only.

Variable grouping. There is no automatic graphical user interface generation for
distributing variables between different windows. Moreover, there is no auto-
matic generation of the menu structure. However the structure of the model (i.e.
the names of classes, objects and parts) can be used for this purpose.

Practical application of the system has also shown its positive features.

The first generation system has proved quite effective in producing practical
user interfaces for specialized application domains such as bearing simulation.
Recently SKF ERC researchers used the system to produce user interfaces for
6 new variants of similar bearing models using only 3-4 days of work. The dif-
ference between the variable sets in these models were rather limited and all
the adjustments of the graphical interface for the input data editor were done
manually.

3 The Persistence and Display Generating tool (PDGen)

The basic idea of PDGen is that display layout for every data item exactly
corresponds (by default) to the type structure of this item.

Through the display for a given variable the user can inspect and update all
the data items that can be reached from the variable by recursively traversing
its structure. In the same way, the persistence routines save and load all the
data items that can be reached from a given variable by recursively traversing
its structure.

Traversing all of a complex data structure is a non-trivial task if we want
to provide this automatically. Special complications arise in languages with
pointers and dynamic data structures. Code necessary for this purpose can be
automatically generated from data type declarations of the variables we are going
to traverse.

We primarily orient PDGen to handling C++ data types. This tool can
analyze almost any C++ data type and class declarations and add graphical user
interface and persistence routines to an arbitrary C++ program. The manual
efforts necessary for this are minimal.

The creation of the PDGen tool has been inspired by the PGen (see Section
5.1) approach from which we cite Walter Tichy et al.:

The class and type declarations can be used to generate browsers and ed-
itors. For instance, o class variable can be presented as a dialog boz that
contains sub-windows for all members to be inspected or edited. Point-
ers could be drawn as arrows to other variables. [...] The browsers and
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editors could be used to inspect or modify persistent data on files. More
importantly, they could become the default graphical interfaces for all ap-
plications. The difference with other interface construction tools is that
they require absolutely no programming. Debuggers are another applica-
tion area. [Tichy94]

In Sect. 3.1 a graphical user interface generation example is given and in
Sect. 3.2 display generation for every C++ data type is presented . In Sect. 3.4
we discuss window display issues; the generation process is analyzed step by
step in Sect. 3.5 and the use of the generated code is discussed in Sects. 3.6 and
3.7.

The tool is based on the C++ language (Section 5.3) and the Tcl/Tk toolkit
[Ou94].

3.1 Example of graphical user interface generation

Let us consider some type declarations that can appear in a header file (see Fig.
3(a)) of some application.

The PDGen tool analyzes these data type declarations, recognizes the C++
class hierarchy, and generates necessary code for creation of a graphical interface.
If the application calls the function show(bike) (see Fig. 3(b)) then the dialog
window shown in Fig. 3(c) appears on the screen. The specification of physical
units (rad, H/m"2, m) is performed with the help of an attribute specification
script (see Section 3.10).

All the data items that belong to bike are shown and they are available
for editing. This example illustrates the display for classes and arrays. and
elementary data items of types int and double.

The array tube is shown at the bottom part of the window. The user can
press the buttons "+" and "-" in order to change the index of the currently
displayed element of the array bike.tube. In the window shown in the picture
the index is equal to 2, i.e. bike.tube[2] is displayed.

3.2 Graphical presentation of variables

Every window may contain one or several variables. The graphical presentation
of every variable depends on its type and it is combined from graphical presen-
tations of its components.

Types char, char* and char[n]. The types char* and char[n] are typically
used for 0-terminated strings. A text input box is constructed for such variables
and the string can be edited. Scrolling of the text is always provided so that
character strings longer than the text box can be inspected and edited.

The display for variables of type char is similar to char[1].

Types integer, float and double. Variables of these types are displayed as
text editing boxes (see Fig. 3(c)). Only numbers or expressions (consisting of
numbers and arithmetical operations) can be entered. The range of permitted
values can be specified (see Section 3.10).
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class DoubleVec3
[ double X,Y,2; }

class Body
[ doublevec3 angle; }

class Cylinder: public Body

 radius 0.034
pressure 220.0 v H/m*2:

{ double radius; }

class Wheel: public Cylinder
{ double pressure; }

class Bicycle
{ Wheel front, rear;
int framesize;
Cylinder tube({8]; 1}

(a)

int main()(
Bicycle bike;
. load(bike, "in.dat");
. show(bike);
. save(bike, "out.dat");:}

® (©

Fig. 3. (o) Data type declarations. (b) Punction call. (c) The window for editing the
variable bike.

Structures and classes. They are represented as horizontal or vertical® combina-
tions of the components. The names of the data members of a structure or class
are used as labels that appear to the left of corresponding components (see Fig.

3(c)).

Pointers. In our initial approach a pointer variable is represented by the refer-
enced variable if the address is not NULL. There is a button Delete that deallo-
cates the memory and sets the pointer to NULL. If the address is NULL, then there
is a New button that creates a new variable in the dynamic memory, initializes
it if it is an object and sets the correct value for the pointer variable.

Let us specify the class Tree:

class Tree
{ Tree * right;

% In order to choose between horizontal and vertical combinations we use some heuris-
tics. For example, we choose one that makes the resulting frame more similar to a
square i.e. the ratio between the height and the width of the frame is closer to 1.
With the help of customization options this default layout can be altered.
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int elem;
Tree * left;
};

Fig. 4. The window for editing the pointer structure of type Tree* and memory diagram
of this structure.

A variable of class Tree is displayed as a structure with three components
(right, elem and left). We can also display a variable that contains a pointer
to Tree. A variable of type Tree* is visualized as shown in Fig. 4.

This is a simple and quite straightforward approach if we are not concerned
about the cases when two or more pointers refer to the same address.

In the alternative representation every dynamically allocated object (that
has two or more references) is shown as a separate sub-window and arrows are
drawn from the pointers to these objects in order to indicate the references.

Enumeration. The enumerations are represented as a group of radio buttons (or,
as an alternative, as a pop-up menu). Enumerator names are written beside the
buttons and only one of them may be selected at a time.

An object of class Foo is shown in Fig. 5(a).

enum weekday
{ Mon, Tue, Wed, Thu, Fri, Sat, Sun 1} ;
enum colors
{ Red, Orange, Yellow, Green, Blue, DarkBlue, Violet };
class Foo
{ weekday Days;
colors Colors;};
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(a) (b)

Fig. 5. The windows for editing variable with (a) enumerators and (b) arrays.

One-dimensional array. Fig. 5(b) shows how an object of class Foo is visualized.

class Foo

{ double start [7];
double end[7];

};

The elements of Foo: :start are shown in the complete presentation, i.e. all
of them are available for browsing. In the compact presentation of the array
Foo::end only one element (currently it is the element end[3]) is shown at
a time. By using the buttons + and - we can increase or decrease the index
of the currently visible element. The button Max switches the display to the
complete presentation; the Min button changes the display back to the compact
presentation.

An array of dimension larger than one is represented as a combination of one-
dimensional arrays. This is not very convenient for browsing. A special browser
[FWHSS96] is designed for two-dimensional arrays. We are working on an uni-
versal array browser for an unlimited number of dimensions.

A special interface is provided for dynamically allocated arrays. These can
grow and shrink dynamically. For this purpose the buttons Insert (insert new
element after the current one) and Remove (remove the current element) are
added above the presentation of the array values. This option has some limi-
tations and requires some additions in the description of data structures: the
dynamic array (A) must belong to some class and an additional integer variable
(A-length) should store its length:

class Test
{ Element * array_foo;
int array_foo_length; }
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3.3 PDGen restrictions

There are some restrictions in the PDGen system that are partly caused by the
restrictions of the PGen tool.

— References, constants, bit fields, unions, pointers to functions, pointers to
members, void* pointers are skipped and ignored, because they cannot be
persistent or are compiler-dependent, or there is no sense in keeping them
persistent.

— Virtual base classes are supported for persistence only.

— Pointers to memory inside an object are supported for persistence only.

3.4 Hiding and detaching windows

The number of data items that can be displayed on the screen simultaneously
is limited. Normally we cannot show a hierarchical layout of more than approxi-
mately one hundred text editing fields. We propose a window handling scheme
where every displayed data item can be in three states (see Fig. 6):

— hidden: only a button with the data item identifier is shown in its default
place;

— normal: the data item is displayed as usual in its default place;

— detached: the button with data item identifier is shown in its default place;
the item is shown in a separate (top-level) window.

Fig. 8. The variables front, rear and tube are hidden in the window for editing the
variable bike.

Switching between normal, hidden and detached state is performed by the
mouse buttons. In each case the user has to click on the name of the item.

The default status is “hidden” for all non-elementary data elements and “nor-
mal” for elementary ones. The user can specify the default status with the help
of attributes discussed in Section 3.10.

The buttons have the same function as pull-down menu items. The end-
user has complete control over the information layout on the screen and there
is no problem with the windows occupying all the display space. This way the
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user can hide unnecessary information and select interesting data for display in
separate windows. Since the buttons have almost the same behaviour as pull-
down menu, this approach is rather close to graphical user interface standards
and conventions.

3.5 Data type analysis and code generation.

This section discusses the generation process in detail, phase by phase.

The stages of graphical user interface generation are shown in Fig 7.

The PDGen tool reuses some ideas and essential code fragments from the
PGen tool [Tichy94, PGen94, Paulisch90].

Type | - Type T
defiftions | & . Ny i ype
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Fig. 7. Phases of graphical user interface generation from C++ code and generation
results.

The basic source of the graphical user interface generation is a file with data
type declarations. In C4+ applications it involves one (or several) header files.

Parsing. The file is preprocessed by standard C preprocessor cpp and analyzed
by the C++ scanner and parser.

Together with the PGen analyzer (see Section 5.1) we reuse the C++ gram-
mar parser with semantic actions for syntax tree construction.

The syntax tree contains nodes of different kinds and references between
them. The collection phase traverses all the nodes describing typedef, enum,
struct and class declarations and produces the data-type table.

The syntax tree contains all the syntactical elements that appear in the input
file. For our purposes we use typedef, enum, struct and class declarations only.
In the class declarations we are interested in data members and constructors
only.
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Data type table. This table contains the names of all types, the names and types
of class data members, inheritance information, the element type and the length
of arrays, as well as information on elementary data types.

The analyzer assigns a unique type number (used for references); the num-
bers are assigned in increasing order: the first several numbers are reserved for
fundamental types such as int and double.

The ezception list. This list is optional and helps to prevent inclusion of unnec-
essary classes and data members to the type table.

Generation. The generation phase creates type information and overloaded
access routines. All the generated code belongs to the class PD (Persistence
and Display) defined the header file pd.h , with member functions defined in
the file pd.cc

Generation of data type information. The PDGen code generator writes to pd.cc
a code fragment that initializes the data type table.
For the example given above (Fig. 3(a)) a fragment of relevant code is:

initSimpleType(3,"int",sizeof (int));
initClassType(33,"Wheel",sizeof (Wheel),0);
initBaseClass(33,32,0, "Cylinder");

initMember (33,12, offsetof (Wheel,pressure), ‘'pressure");

initClassType(34,"Bicycle",sizeof (Bicycle),0);

initMember (34,33,offsetof (Bicycle,front), "front");
initMember (34,33,o0ffsetof (Bicycle,rear), “rear");
initMember (34, 3,offsetof(Bicycle,framesize),"framesize");
initMember (34,35, of fsetof (Bicycle,tube), "tube");

initArrayType(35,"Cylinder [8]",sizeof(Cylinder[8]),0,8);

The standard C macro offsetof (Bicycle,rear) calculates the offset (po-
sition) of data member rear within objects of class Bicycleb.

This code fragment is later compiled and linked with the application. When
the application starts, the data type table is initialized. This table is available to
the persistence and display routines at the run time. When the data are saved,
loaded, or shown, appropriate routines use this table in order to recursively
traverse the data structures.

Generation of overloaded access routines. For every data type or class T' that is
defined in the header file the appropriate instances of the overloaded functions
PD: :show(T&p), PD: :1load (T'&p), PD: :store(T&p) are constructed.

These functions can take the variable of type T' as an argument.

® This approach is more portable and safe than to sum up the sizes of every data
member.
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3.6 Input and output procedures

When the functions load and store are called , a variable of the corresponding
data type is passed as a parameter.

The function load reads the variable value from the file and restores it in
the memory. The function store saves the value on disk.

These functions traverse the application data that can be reached from
the passed argument variable by recursively following data members, includ-
ing pointer references. Every step of this process is controlled by the data type
table. When data items of an elementary type are reached, the functions
load/store the data in some format (textual or binary); see Section 3.8 where
formats are discussed.

When the data is loaded, memory is dynamically allocated if a pointer vari-
able is visited and its value is not NULL. When memory is allocated for class
instances, the class constructor is called without parameters. It is assumed that
every class has a constructor without parameters.

3.7 Data display procedure

The function show activated from the application program displays the required
variable.

For data display we have designed a universal data browser which can show
and edit the data when the data-type table is given. We use the Tc1/Tk graphical
library [Ou94]. First, the C++ variables are associated with Tecl variables.
It produces the following effect: if a Tcl variable changes, the C++ data change
automatically. If a Tcl variable value is requested, then it is taken from the C++
variable.

We recursively traverse all data members, including pointer references. The
algorithm that builds the window as a hierarchy of frames recursively traverses
Tcl variables with the help of the data type table (Tcl script pd.tcl) which is
generated automatically.

When some value is updated by the user, the corresponding Tcl and C++
variables are automatically updated; when it is updated by the application, its
text presentation is changed, too.

If necessary (i.e. when the New button is pressed in the display of a pointer
variable), memory is allocated and a class instance is initialized by the construc-
tor.

3.8 Data storage formats

Complex data items are traversed recursively when loaded or stored. The origi-
nal PLib library includes 1oad and store routines for two machine-independent
formats, ASCII and XDR [SUN90]. XDR is a data representation format used in
remote procedure call. These formats are not self-describing formats, i.e., there
is no possibility of discovering mismatches between the loaded data and the
program data structures.



133

In the PDGen tool we extend this format by simply adding the type table
information. When the store procedure writes some data, it also writes the type
table. When the load procedure reads data from file, it also reads the type table
and verifies that it is identical to the original one (for all data types that actually
appear in the loaded file).

Difficulties can arise if old data are loaded by a program with new data
structure. In our approach some basic data scheme correction is provided. If the
old data contain classes with permuted order of data members, the correction
works automatically. Extra members in the old data are ignored, the missing
ones are not initialized. Finally, the user can explicitly specify the old and the
new name for renamed class data members and renamed class names in the
exception list.

3.9 Universal browser design

Since the data table is stored together with data (i.e. in a self-describing data
format), a stand-alone universal browser can easily be designed. This is one of
directions of our future work.

This browser automatically adapts the interface to the structure of loaded
data. It works independently on underlying C++ data type declaration files and
can browse and edit a file with arbitrary data structures if it is prepared by the
PDGen persistence routines or by the universal browser.

It should be noted that there will be limitations for dynamic memory al-
location during editing, because the C++ code (where necessary constructors
without parameters are defined) is not available to the universal browser.

A semi-universal browser may contain some application-specific C++ classes
and adapt itself to data structures constructed from these classes and elementary
types.

3.10 Attributes

Attributes are used for additional control over class instances, type components
and single data items in such cases when we want to alter the default behaviour
of the PDGen tool when traversing the data elements.

The attribute information is orthogonal to the type structure declaration.
Therefore it should normally be described outside the code containing the data
types.

The graphical user interface designer (or generator) writes the attributes in
a separate script file (the attribute definition file) which can be unspecified until
the application program starts. It allows altering many preference settings and
options without recompilation and even during the runtime.

Each attribute specification has syntax:

set_attr { componentl, component?, ... } { attributel, attribute?, ... }

Component is specified as path or Class-name: : path where the path has the
same syntax as C++ qualified names. This means that the data members are
selected with dot (. ), and array elements are specified in square brackets [indez].
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The use of patterns and regular expressions (within pair of "-s) is allowed
instead of standard C++ path syntax. In this case the attribute specification
applies to all paths that match the pattern.

The attributes are specified as attribute=value.

Ezample: The attribute specification script

set_attr { Bicycle::front.pressure Bicycle::rear.pressure )
{ postfix = "H/m"2" }

states that for these variables the postfix (area normally used for physical
units) should have the value H/m~2. The script is checked for correctness of the
syntax; e.g. the system verifies that pressure is defined as a member of the class
Wheel.

The same effect can be achieved by specifying a pattern:

set_attrp { "*pressure" } { postfix="H/m~2" }

The complete attribute specification necessary for the window in the Fig.
3(c) is:

set_attrp { "*angle" } { postfix = “rad" }
set_attrp { "*radius*" } { postfix = "m"
set_attrp { "*pressurex" } { postfix = "H/m"2" }

We just mention several other available attributes:

— validate specifies a Tcl function that will be called each time when the
input text area is altered.

— hidden specifies how and whether the item value is shown at the beginning.
It can be shown, hidden or detached (Sect. 3.4).

— load and save specify whether the value is loaded from disk file and saved.
By default it is both loaded and saved. required specifies that the user must
enter some value; read-only specifies that the user cannot update it.

— layout specifies whether the array or structure should be displayed in ver-
tical or horizontal layout. By default a heuristic is applied.

— Finally, hook gives the designer “free hands”; it specifies a Tk/Tcl function
that is responsible for complete graphical representation of the value. A Tcl
variable name with the value and Tk window name is given. The function is
written by the designer and it has to create a window with the given name.

4 Automatic Generation of GUI from ObjectMath
Models

The basic idea behind the second generation system is to generate all components
of the graphical user interface from the application model, and to avoid manual
editing when the model is updated and the user interface code is re-generated.
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Fig. 8. Second generation graphical user interface generating system.

The phases of the generation process are depicted in Fig. 8. First the Ob-
jectMath model is analyzed by the class converter. All the data necessary for
the class converter are contained in the class hierarchy diagram and the Object-
Math variable declarations. The class converter translates the ObjectMath class
hierarchy to the relevant C++ class hierarchy.

The ObjectMath variables can be of twenty different predefined types which
are implemented as C++ classes. For example, the ObjectMath type DoubleVec3
(contains three double precision real numbers and can serve as operand in various
ObjectMath arithmetic expressions) corresponds (in the simulation code) to the
C++ class DoubleVec3. The data members of these C++ classes can represent
the corresponding ObjectMath variables in the graphical interface. For example,
the class DoubleVec3 is defined as

class DoubleVec3
{ double X,Y,Z; // data members
// member functions, friend functions etc.

}

and the DoubleVec3 type in ObjectMath can be presented in graphical user
interface as three text input boxes marked with X, Y and Z.

The C++ class hierarchy (generated from the model) and C++ classes (that
correspond to ObjectMath variable data types) are merged together and passed
as the input for the PDGen tool. This tool generates code for graphical user
interface for the corresponding ObjectMath model.

Attribute specifications are necessary for the application with graphical in-
terface at run-time. They contain some information absent in the C+4+ class
declarations, such as physical units and persistence status. These attribute spec-
ifications are generated separately for the members of every class by the class
converter.
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4.1 Translation of an ObjectMath model to a C++ class hierarchy

Every single ObjectMath class gives rise to a C++ class. The ObjectMath inher-
itance means that all variables are inherited by the subclass. The same happens
in the C++ class inheritance.

ObjectMath instances correspond to C++ classes, too. Such ObjectMath in-
stances inherit all variables and formulae from the superclasses, and, in addition,
they may declare their own variables. ObjectMath parts serve for aggregation
of class instantiations. They cannot specify their own variables. The parts can
be modeled by C++ class data members.

ObjectMath variables become C++ data members.

The ObjectMath model (as a whole) corresponds to a single C++ class that
includes one data member for every instance in the model.

4.2 Translation example

For the purpose of illustration we take our basic example (Fig. 1), a bicycle
model. When the conversion described above is applied, the C++ type declara-
tions shown in Fig. 3(a) are generated.

The attribute information is generated from the parameters in Declare state-
ments. The attribute information is created according to the syntax rules de-
scribed in the Section 3.10:

set_attr {Body::angle } {postfix="rad"}
set_attr {Cylinder::radius } {postfix="m"}
set_attr {Wheel::pressure } {postfix="H/m~2"}
set_attr {Bicycle::framesize} {postfix="int"}

The graphical interface generated for this example is identical to the Fig.
3(c).

4.3 Advantages of the second generation approach.

The new approach successfully solves the problems arising in the first generation
approach (Section 2.9). There are no update problems because the application
and its graphical user interface are generated simultaneously. The set of sup-
ported types can include arbitrarily complex types because we analyze all type
declarations and derive the graphical user interface from them. The wvariable
grouping and menu structure are automatically derived from the class structure
of the ObjectMath model.

An additional advantage of the new approach is the automatic generation of
persistence routines for arbitrarily complex data types.
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5 Related work

5.1 Persistence generation systems

There exist various ways to make objects persistent in object-oriented database
management systems. In [BB88] such objects must be instances of special classes.
In [Deux91] and [LLOW91] objects are assigned to “persistent variables” or
“placed into persistent sets”. In the OBST system [OBST94, CRSTZ92, AC-
SST94] application developers can program in an object-oriented extension of
C. There are no pointers; unique object identifiers are used for references instead.
The language includes an option to create objects as persistent data. Primitive
data components are not lightweight, therefore high performance necessary for
scientific computations and fitting memory constraints is hard to achieve.

Typically OODBMS provide automatically persistence for specific language
with the help of OODB language compiler.

The PGen system [Tichy94, PGen94, Paulisch90] analyses C++ header files
and generates C++ code for reading and writing variables of arbitrary types
and classes defined there. This way persistence of data can be easily achieved.
Traditionally, to make C++ objects persistent the user has to write the Store()
and Load () functions for every class in the application. The PGen tool generates
appropriate functions automatically. In most cases almost no modifications are
needed in the C++ header files.

One of the difficult problems with persistent data is how the data should be
converted if the type declarations change. It is difficult to do automatically with
C++ header files. A special type declaration editor can be designed to trace
down all the changes in the type definitions. Then a conversion program can be
generated.

Our system reuses the ideas and the code of PGen and extends it for variable
display generation.

5.2 Display generation systems

In the OBST system a graphic shell visualizes the OBST objects and is used for
debugging the data.

The systems DOST and SUITE | Dewan87, Dewan91, Dewan90, Suite91]
generate variable displays from C header files. The translator analyzes specially
annotated header files and generates C code that controls message-based commu-
nication between the application and a universal display manager. The generated
code is linked with the original application. A variable of arbitrarily complex
type can be displayed. The display manager can show various C data structures
(including pointers and dynamic arrays coded as pointers). The layout can be
customized by a large number of attributes (such as colors, help texts, con-
straints and validation functions) that can be adjusted interactively (with the
help of special preference setting dialog) or in the code. In these systems a single
description of data types can specify the internal data, the data used for com-
munication between the processes and the data for structure displays. Despite
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the large number of attributes associated with every type, variable or variable
element, there is no possibility for the programmer to construct new graphical
elements when necessary. Persistence can be implemented outside the system.

The SmallTalk visualization system [Dewan90A] uses the fact that all the
objects in the program have an ultimate ancestor, Object that has access to
meta-information about the objects, e.g. description of its structure. The dis-
play of any object is based on this meta-information. The user can change the
attributes of object display by adding some extra SmallTalk code. Persistence
can be supported by other SmallTalk methods and it is not part of the visual-
ization system.

Some modern debuggers [Debug92] show displays with selected C, C++ or
Pascal data structures for data inspection. They are based on symbol tables and
dynamically change during program execution. The displays appear automati-
cally in a manner similar to our approach, but they cannot be customized by the
designer. The user can modify the values, but the validation procedures cannot
be specified.

5.3 The C++ language and access to meta-information

C++ is a high level object-oriented language. Nowadays it is widely used in
industry for scientific software design, including scientific computing.

C++ supports many ways to simplify the work of the application programmer
and to avoid writing unnecessary code. Macro definitions, templates, operator
overloading, class inheritance and standard class libraries cover almost all typical
needs of application designers. They allow code to be written at a very high level
and its size is close to the minimal possible if accurate design is applied. Therefore
C++ code analysis and generation is not applied very often. One case where this
is necessary is automatic code generation for persistence and displaying data for
arbitrary C++ data types.

C++ is a hybrid language in the sense that it operates both with objects
and non-objects. This creates difficulties when applying a uniform approach to
all values. C++ is a strongly typed language. Therefore when we create code for
universal operations that could be applied to many types, code for every type
should be written.

It is possible to design persistence and display routines for C++ manually.
The problem is that for every date type separate routines should be written. Un-
like a SmallTalk object, a C++ object cannot automatically provide (or inherit)
meta-information about its structure (declarations of types, component names,
sizes and types) during run-time. Therefore it does not know how to read, write
or display itself.

Unlike SmallTalk, in C++ we cannot tell simply that the variable foo should
be stored, loaded or shown. For this purpose a relevant function must be declared
and defined. The argument type for this function must be the same as foo has,
and this function must access the internal structure of foo. Obviously, the code
and control information for such a function should be created in advance. Such
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information can be extracted from C++ data type declarations. This is what
the PDGen tool does.

6 Conclusions and Future Work

There is a substantial need of automatic generation of graphical user interfaces
for many applications. The first generation system for generating user interfaces
described in this paper has been in industrial use during more than two years.
Experience shows that the model changes tend to require a number of manual
changes to the user interface. We have provided a more flexible system that can
automatically cope with model changes. Therefore, the more universal second
generation system has been designed. The user interface constructed in a partly
manual way using the first generation tool can now be generated completely
automatically.

The PDGen tool is applied to ObjectMath, C and C++ programs, but it can
also be adapted to other languages. Type definitions can be extracted in several
ways:

— the source code is parsed and analyzed (in our tool we reuse the analyzer
from PGen (see Section 5.1 ) and apply it to the C+-+ code),

— analysis of the symbol tables generated by some standard compiler (this is
the approach implemented in Suite, see Section 5.2),

— extracting type definitions from the model description, if the application is
generated from this model (we apply this to the ObjectMath models),

— creation of the type table with the help of a special data-type definition
editor.

The last approach can be combined with the customization tool. In this way
both data-type definitions and information about interface details (attribute
values) will be integrated under the strict control of one tool. This reduces the
possibility of data type mismatches and update problems.

In some languages the type information can be available at run-time with
the help of built-in functions; in this case there is no need in code analysis and
generation at all.

We are currently working on several extensions to the basic idea implemented
in the automatic graphical user interface generator. Some interesting questions
that could be considered include:

— the application of the PDGen tool to programs in other languages;

— integration of the tool with (extensible) symbolic debuggers;

~ automatic generation of graphical user interface for member functions (not
only for data members). For example, if a member function has no arguments
it is displayed as a button. When the button is pressed, the function is
invoked.

~ a more general array browser implementation;
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— integration of ObjectMath with tools for data visualization, as it is imple-
mented in the output data browser;

~ implementation of the universal browser (Section 3.9) that adapts the graph-
ical user interface according to the type tables given together with the input
data;

— the design of a meta-editor that can edit data type definitions.

Remote data editing with the help of widely distributed WWW browsers is
another application area. The data resides on the server and can be updated by
the clients with the help of HTML interactive forms. One of our future research
topics is automatic generation of HTML-based editing tools from data structure
specifications.

Finally we would like to mention that a WWW site devoted to the PDGen
tool has been organized [PDGen96]. More details about the systems discussed
in this paper are available in [E96].
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