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Abstract. We have designed and implemented an optimizing source-to-
source C++ compiler that reduces the frequency of virtnal function calls. Our
prototype implementation demonstrates the value of OO-specific
optimization for C++. Despite some limitations of our system, and despite
the low frequency of virtual function calls in some of the programs,
optimization improves the performance of a suite of large C++ applications
totalling over 90,000 lines of code by a median of 18% over the original
programs and reduces the number of virtual function calls by a median factor
of five. For more call-intensive versions of the same programs, performance
improved by a median of 26% and the number of virtual calls dropped by a
factor of 17.5. Our measurements indicate that inlining barely increases code
size, and that for most programs, the instruction cache miss ratio does not
increase significantly.

1 Introduction

Object-oriented programming languages confer many benefits, including abstraction,
which lets the programmer hide the details of an object’s implementation from the
object’s clients. Unfortunately, object-oriented programs are harder to optimize than
programs written in languages like C or Fortran. There are two main reasons for this.
First, object-oriented programming encourages code factoring and differential
programming [Deu83]; as a result, procedures are smaller and procedure calls more
frequent. Second, it is hard to optimize calls in object-oriented programs because they
use dynamic dispatch: the procedure invoked by the call is not known until run-time
since it depends on the dynamic type of the receiver. Therefore, a compiler usually
cannot apply standard optimizations such as inline substitution or interprocedural
analysis to these calls.

Consider the following example (written in pidgin C++):

class Point {
virtual float get_x(); // get x coordinate
virtual float get_y(); /1 ditto for y

virtual float distance(Point p); // compute distance between receiver and p

}

When the compiler encounters the expression p->get_x(), where p’s declared type is
Point, it cannot optimize the call because it does not know p’s exact run-time type. For
example, there could be two subclasses of Point, one for Cartesian points and one for
polar points:
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class CartesianPoint : Paint {
float x, y;
virtual float get_x() { return x; }
(other methods omitted)

}

class PolarPoint : Point {
float rho, theta;
virtual float get_x() { return rho * cos(theta); }
(other methods omitted)

}

Since p could refer to either a CartesianPoint or a PolarPoint instance at run-time, the
compiler’s type information is not precise enough to optimize the call: the compiler
knows p’s declared type (i.e., the set of operations that can be invoked, and their
signatures) but not its actual type (i.e., the object’s exact size, format, and the
implementation of operations).

Since dynamic dispatch is frequent, object-oriented languages need optimizations
targeted at reducing the cost of dynamic dispatch in order to improve performance. So
far, much of the research on such optimizations has concentrated on pure object-
oriented languages because the frequency of dynamic dispatch is especially high in such
languages. Several studies (e.g., [CUL89, HU94a, G+95]) have demonstrated that
optimization can greatly reduce the frequency of dynamic dispatch in pure object-
oriented languages and significantly improve performance. However, so far no study
has shown that these optimizations also apply to a hybrid language like C++ where the
programmer can choose between dispatched and non-dispatched functions, and where
programs typically exhibit much lower call frequencies.

We have developed a proof-of-concept optimizing compiler for C++ that demonstrates
that optimization can reduce the frequency of virtual function calls in C++, and that
programs execute significantly faster as a result. On a suite of large, realistic C++
applications totalling over 90,000 lines of code, optimization improves performance by
up to 40% and reduces the number of virtual function calls by up to 50 times.

2 Background

Since our main goal was to demonstrate the value of OO-specific optimizations for
C++, we chose to implement and evaluate two relatively simple optimizations that have
demonstrated high payoffs in implementations of pure object-oriented languages like
SELF or Cecil. In this section, we briefly review these optimizations before describing
our C++-specific implementation in the next section.

2.1 Profile-Based Optimization: Type Feedback

Type feedback [HU94a] is an optimization technique originally developed for the SELF
language. Its main idea is to use profile information gathered at run-time to eliminate
dynamic dispatches. Thus, type feedback monitors the execution characteristics of
individual call sites of a program and records the set of receiver classes encountered at
each call site, together with their execution frequencies. Using this information, the
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compiler can optimize any dynamically-dispatched call by predicting likely receiver
types and inlining the call for these types. Typically, the compiler will perform this
optimization only if the execution frequency of a call site is high enough and if one
receiver class dominates the distribution of the call site. For example, assume that p
points to a CartesianPoint most of the time in the expression x = p—>get_x(). Then, the
expression could be compiled as

if (p->class == CartesianPoint) {
// inline CartesianPoint case (most likely case)
X = p->X;
}else {
// don’t inline PolarPoint case because method is too big
// this branch also covers all other receiver types
x = p->get_x{(); // dynamically-dispatched call
}

For CartesianPoint receivers, the above code sequence will execute significantly faster
since the original virtual function call is reduced to a comparison and an assignment.
Inlining not only eliminates the calling overhead but also enables the compiler to
optimize the inlined code using dataflow information particular to this call site.

" In the SELF-93 system, the system collects receiver type information on-line, i.e., during
the actual program run, and uses dynamic compilation to optimize code accordingly. In
contrast, a system using static compilation (like the present C++ compiler) gathers
profile information off-line during a separate program run.

2.2 Static Optimization: Class Hierarchy Analysis

We also implemented a static optimization technique, class hierarchy analysis (CHA)
[App88, DGCY5, Fer95], which can statically bind some virtual function calls given the
application’s complete class hierarchy. The optimization is based on a simple
observation: if a is an instance of class A (or any subclass), the call a->f() can be
statically bound if none of A’s subclasses overrides f. CHA is simple to implement and
has been shown to be effective for other systems [DGC9S5, Fer95], and thus we included
it in our prototype compiler.

Another benefit of combining a static optimization like CHA with a profile-based
optimization like type feedback is that they are complementary optimizations [AH95]:
each of them may improve performance over the other. CHA may provide better
performance because it can inline or statically bind sends with zero overhead. Since
CHA can prove that a call can invoke only a single target method in all possible
executions, any dispatch overhead is completely eliminated. In contrast, a profile-based
technique like type feedback can inline the same send only by using a type test; even if
the profile shows that the send always invoked the same target method, a test must
remain since other target methods may be reached in different executions of the
program. Thus, while the send can still be inlined, some dispatch overhead remains. On
the other hand, type feedback can optimize any function call, not just monomorphic
sends. Furthermore, being profile-based, it can also better determine whether the send
is actually worth optimizing (i.e., executed often enough).
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3 Related Work

Profile information has been used for optimization in many systems; as usual, Knuth
[Knu70] was the first to suggest profile-based optimization, and today it is part of many
research systems (e.g., [CM+92, Hol94, G+95]) as well as production compilers.
Studies of inlining for procedural languages like C or Fortran have found that it often
does not significantly increase execution speed but tends to significantly increase code
size (e.g., [DH88, HwC89, CHT91, CM+92, Hall91]). Our results indicate that these
previous results do not apply to C++ programs.

In implementations of dynamic or object-oriented languages, profiling information has
often been used to identify (and optimize for) common cases. For example, Lisp
systems usually inline the integer case of generic arithmetic and handle all other type
combinations with a call to a routine in the run-time system. The Deutsch-Schiffman
Smalltalk compiler was the first object-oriented system to predict integer receivers for
common message names such as “+” [DS84]. All these systems do not use application-
specific profiles.

The SELF system pioneered the use of profile information for optimizing object-
oriented languages. An experimental proof-of-concept system [HCU91] was the first
one to use type feedback (then called “PIC-based inlining”) for optimization purposes.
The SELF-93 system [HU94a] used on-line profile information to select frequently
executed methods for optimization and to determine receiver types via type feedback.
Similarly, the Cecil compiler [G+95] uses off-line profiling for optimization and
inlining. Grove et al. [G+95] also examined the cross-input stability of receiver class
profiled in C++ and Cecil and found it good enough to be used for optimization.

Until now, few profile-based techniques have been applied to hybrid, statically-typed
languages like Modula-3 or C++. Based on measurements of C++ programs, Calder and
Grunwald [CGY94] argued that type feedback would be beneficial for C++ and proposed
(but did not implement) a weaker form of class hierarchy analysis to improve efficiency.
Their estimate of the performance benefits of this optimization (2-24% improvements,
excluding benefits from inlining) exceeds the improvements measured in our system,
partially because they assume a more aggressively pipelined CPU (DEC Alpha) which
benefits more from reduced pipeline stalls than the SuperSPARC system we used.
Fernandez [Fer95] applied link-time optimization to Modula-3 programs and found that
class hierarchy analysis eliminated between 2% and 79% of the virtual calls in the
Modula-3 applications measured, reducing the number of instructions executed by 3-
11%. Profile-driven customization (procedure cloning) resulted in an additional
improvement of 1-5%.

Several systems use whole-program or link-time analysis to optimize object-oriented
programs, starting with the Apple Object Pascal linker [App88] which turned
dynamically-dispatched calls into statically-bound calls if a type had exactly one
implementation (e.g., the system contained only a CartesianPoint class and no
PolarPoint class). To our knowledge, this system was the first to statically bind
dynamically-dispatched calls, although it did not perform any inlining. As mentioned
above, Fernandez [Fer95] used class hierarchy analysis for Modula-3, and Dean et al.
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[DGCY5] describe its use for Cecil. In both studies, the analysis’ impact on virtual call
frequency was significantly higher than in our system, as discussed in section 6.1.
Srivastava and Wall [SW92] perform more extensive link-time optimization but do not
optimize calls.

Bernstein et al. [B+96] describe a C++ compiler (apparently developed concurrently
with ours) that also inlines virtual function calls using class hierarchy analysis and type
feedback. Unlike the compiler described here, this system cannot perform cross-file
inlining, always predicts the most frequent receiver class, inlines no more than one case
per call, and always optimizes all call sites (even if they were executed only once).
Furthermore, the compiler does not specialize inlined virtual functions (so that nested
calls to this cannot be inlined), and cannot optimize calls involving virtual base classes.
Although the experimental data presented in [B+96] is sketchy and mostly based on
microbenchmarks, it appears that the system’s limitations significantly impact
performance. For lcom (the only large benchmark measured) Bernstein et al. report a
speedup of 4% whereas our system improves performance by 24% over the original
program and by 9% over the baseline (see section 6).

More ambitious analyses such as concrete type inference systems (e.g., [Age95, PR94,
PC94}) can determine the concrete receiver types of message sends. Compared to type
feedback, a type inferencer may provide more precise information since it may be able
to prove that only a single receiver type is possible at a given call site. However, its
information may also be less precise since it may include types that could occur in
theory but never happen in practice. (In other words, the information lacks frequency
data.) For SELF, concrete type inference removed more dispatches than type feedback
for most programs [AH95]. Like link-time optimizations, the main problem with type
inference is that it requires knowledge of the entire program, thus precluding dynamic
linking.

4 Implementation

This section describes the implementation of our optimizing source-to-source C++
compiler as well as the motivations for its design decisions.

4.1 Overview

The implementation consists of several parts (Figure 1). First, a pre-pass combines the
original sources into a single baseline program to simplify the work of later phases
(section 4.2). Then, the program is compiled with a modified version of GNU C++ to
produce an instrumented executable which serves to collect receiver class profile
information (section 4.4). The centerpiece of the system, the optimizing compiler, then
uses this profile to transform the baseline source program into an optimized source
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Figure 1. Overview of optimization process

program (section 4.5) which is subsequently compiled and optimized by the native host
C++ compiler. The rest of this section describes these steps in more detail.

4.2 Program Preparation

Before any optimization begins, a pre-pass merges the source files of the original C++
program into a single C++ source file that contains all the declarations, global variables,
and functions of the original program. The various program parts are arranged in a
suitable order so that all declarations precede any use (see Table 1). Within the “inline”
and “function” parts, function definitions are sorted topologically to improve

Source

Section Description

declarations | all declarations normally found in C/C++ header files, like prototypes,
typedefs, class declarations, and external declarations; contains no
function definitions

global all global variables
inline all inline functions
function all non-inline functions

Table 1. The sections of a baseline C++ program
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subsequent inlining by the host compiler (some C++ compilers do not inline functions
unless the definition of an inlinable function precedes its use).

In later sections, we will refer to programs compiled from the original source as
“original” programs and those compiled from the all-in-one equivalent as “baseline”
programs. Combining the entire program’s code into a single baseline file simplifies the
subsequent optimization process. In particular, the compiler does not need to handle
cross-module (cross-file) inlining, i.e., obtaining the body of a function to be inlined is
much simpler than if the program were divided into separate compilation units.

To implement this pre-pass, and for the actual optimizing compiler, we used a
commercial tool, the CCAuditor C++ parser from Declarative Systems [Dec95].
CCAuditor contains an empty attribute grammar for C++ which can be extended to
implement arbitrary analyses or transformations. We used CCAuditor to build a
simplified parse tree of the program which is then traversed and transformed by a C++
program. CCAuditor proved to be an invaluable tool since it handles the semantic
analysis of the C++ code (i.e., resolution of overloaded functions, copy constructors,
etc.), thus relieving us from dealing with C++’s difficultics.

4.3 Source-To-Source Transformation

We chose to implement our compiler using source-to-source transformation for several
reasons:

« Itis simpler to implement and test; in particular, the generated (source) code is much
easier to debug than assembly code. In essence, the back-end C++ compiler serves
as an output verification tool.

« Source-to-source compilation allows experimenting with several back-end
compilers to determine how much the quality of back-end code generation atfects
performance. Also, using well-tested back-end compilers provides more reliable
results (and usually better performance) by ensuring that performance isn’t affected
or obscured by unknown back-end deficiencies.

» Similarly, it simplifies porting the compiler to new architectures to compare
optimization effects on different hardware platforms and to estimate the impact of
architectural features on performance.

The main alternative, changing an existing compiler, implied using the GNU C++
compiler, as it is the only C++ compiler for which source code is readily available.
Unfortunately, the GNU compiler does not build complete parse trees for functions;
instead, it builds parse trees only as far as necessary to perform its task. Without parse
trees, the high-level transformations performed by the optimizing compiler are hard to
implement. (For example, it is hard to duplicate or modify the body of a function later.)
This deficiency, coupled with the problems of understanding a compiler of gec’s size
and the advantages of source-to-source transformation, tilted the scales towards the
current solution.

On the other hand, source-to-source transformation is not without problems. In
particular, it restricts the extent to which high-level information can be transmitted to
the back end. For example, the optimizer may have a very good idea of which execution
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paths are more likely, but this information cannot easily be encoded in C++, and thus
the back end does not benefit from this information. In general, the source-to-source
compiler has less control over the final generated code; for example, it cannot force the
back end compiler to inline a function since the inline modifier is only a hint, not an
order (although gcc appears to always follow such hints). Finally, some constructs
cannot be portably expressed in source form. In particular, type tests are back-end-
dependent since different back end compilers may use different vtable allocation
strategies. In spite of these potential problems, we felt that the advantages of source-to-
source optimization outweighed the disadvantages in a research setting.

4.4 Collecting Receiver Class Profiles

Before actual optimization starts, the baseline file is compiled with VPROF, a modified
version of the GNU C++ compiler. VPROF inserts a non-virtual call to a run-time routine
before each virtual call, passing in all information needed to identify the call site (e.g.,
file name, line number, and call number within the line). Additionally, the run-time
routine receives a pointer to the receiver’s dispatch table (vtable [ES90]) and the index
of the vtable entry being used to dispatch the call. In order to obtain the class name of
receiver and the method name, the compiler enhances the vtable with one extra element
per entry containing the necessary information.

The resulting executable is then used to collect the receiver class profiling information
for each call site. At the end of the program run, a small run-time library collects and
outputs the data collected; this output is later used by the optimizing compiler. In
Grove’s terminology [G+95], VPROF collects 1-CCP information, i.e., individual
receiver class distributions for each call site.

4.5 The Optimizing Compiler

The main optimization step in our system consists of a source-to-source optimizing
compiler that eliminates virtual function calls using either the profile information,
knowledge of the complete class hierarchy, or both. This section describes the main
implementation difficulties we faced as well as their solutions (summarized in Table 2).
The next section then describes the optimization policies used.

4.5.1 Type Tests

One of the central transformations of the optimizing compiler is to replace virtual
function calls with more efficient equivalents, Many of these transformations involve a
type test that tests for a predicted class. So far, we sketched this test as a simple
comparison, e.g., p->_class == CartesianPoint. Unfortunately, this isn’t legal C++ code:
neither do objects contain a _class field, nor can a class be used as a run-time constant.
So, how can such type tests be implemented? We considered three alternatives.

First, the compiler could add a new virtual function __class to each class, and have each
of them return a unique type identifier (class number). Then, the type test could be
written portably as p—>__class() == CartesianPointID. Unfortunately, this approach
isn’t very attractive since in trying to eliminate a virtual function call the compiler
introduces another virtual function call.
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Problem Solution
complexity of changing an existing C++ source-to-source optimization
compiler
body of methods to be inlined must be known |transform the whole program into one file
during the optimization phase

implementation of a fast type check use the address of a vtable to determine the
class type
virtual function to be inlined may not be add dispatch_function to target class

accessible (declared protected or private)

get back-end C++ compiler to inline a virtual |duplicate the original virtual function , change
function while leaving the original function for |name, remove virtual attribute, add inline

other callers attribute

cast receiver pointer down from virtual base  |create a helper application computing the
class offsets for all possible class combinations
static functions or variables with the same move to global scope and rename

name

Table 2. Problems and Solutions for the source-to-source approach

Alternatively, the compiler could add an additional instance variable to each object
containing virtual functions and change the class’ constructors to initialize this field to
the class’ ID. This approach provides fast type tests (a load and a comparison) but leads
to two major problems. First, the size of each object grows by one word; if multiple
inheritance is used, the object even contains multiple extra fields, one for each base
class that uses virtual functions. The additional type field not only uses more space but
will also impose a run-time penalty since the additional field has to be initialized; also,
the extra words may increase the data cache miss ratio. Second, subclasses cannot easily
access the type field if they inherit base classes privately (so that the type field is
hidden). To solve this problem, the code could directly access the type field using casts,
as in *((int*)(BaseClass*)this). However, this solution is non-portable since different
C++ compilers may use different object layouts.

The third approach, which is the one we are currently using, is an extension of the
method described above. Instead of adding a new variable and initializing it to a unique
value, it uses a variable already added by the compiler, the vtable pointer. Although
there are some difficulties with this approach, they can all be solved:

» A class may have multiple vtables. C++ does not guarantee anything about vtables,
and thus a compiler may generate multiple vtables for a single class (e.g., one per .c
file where the class definition was included). Although this was a problem in early
C++ implementations, today’s compilers try hard to avoid multiple vtables in order
to produce smaller executables, and thus multiple vtables have not been a problem
in practice. Furthermore, their presence would only reduce the efficiency of the
optimized programs, not their correctness.

» A class may share the vtable of one of its superclasses since the superclass vtable is
a prefix of (or identical to) the subclass vtable. This sharing isn’t problematic since
the compiler uses the type information only for dispatching methods. If two classes
share the same vtable, then they will behave identically with respect to all functions
called through this vtable, and thus can share inlined code as well. In fact, such
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sharing is beneficial for type feedback as it allows instances of several classes to
share the same piece of inlined code.

» The vtable isn'’t a C++ entity, so that a source program cannot name it. This problem
is caused by source-to-source optimization, and we circumvent it by using a dummy
“vtable address” constant in the comparison and post-editing the assembly file
generated by the back-end compiler.

» The position of the viable field is unknown. This is the most serious problem, again
caused by using source-to-source optimization. One solution is to introduce an
additional superclass for every class in the program which has a superclass with
virtual functions. The sole purpose of this superclass is to contain a virtual function
definition, forcing the compiler to place the vtable at the beginning of the object.
This solution works well for single-inheritance hierarchies but breaks down for
multiple inheritance since it doesn’t force the placement of multiple vtable pointers
in an object.

Therefore, our system uses a helper application (automatically generated during the
initial pre-pass over the original program) to compute the offsets of all subobjects
within an object and assumes that each subobject’s vtable is at offset 0. (If this
assumption were false, the helper program could create a zeroed-out instance of each
class in the original program and find then the positions of embedded vtable
pointers.) The offset information is needed to perform casts to virtual base classes.

To summarize, source-to-source optimization poses some difficulties that are caused by
the need to access implementation-dependent information at the source level. However,
none of these difficulties are insurmountable. In practice, they mainly impact the
portability of the generated optimized source code since different back-end compilers
may require different vtable manipulation code.

4.5.2 Optimization Example

Figure 2 shows a program fragment optimized with type feedback. The left column
shows unoptimized code, and the right column the code created after optimizing the call
a->foo() in function bar. In order to optimize this call, the compiler creates the dispatch
function A::dispatch_B_foo which has the same signature as A::foo but is declared inline
and non-virtual. Using this dispatch method minimizes the syntactic transformation
needed at the call site, even with nested function calls. In case the dynamic receiver
class is B, the dispatch method calls B::inline_B_foo(); in all other cases, a normal virtual
method call is performed. The inline_B_foo() method serves two purposes. First, it
ensures that the called method is declared inline; some C++ compilers only inline
functions explicitly declared inline. Second, the inline function may be specialized since
its receiver type is precisely known to be a B (and only a B). Thus, implicit self calls
within the method can be statically bound [CUL89].

4.6 Inlining Strategies

Some calls should not be inlined; for example, if a call has 20 different receiver types,
each of which occurs 5% of the time, inlining is unlikely to improve performance:
inlining just one case improves only 5% of the call site’s executions but slows down the
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original program

optimized program

class A {
virtual int foo();

h

class B : public A {
private:
virtual int foo();

class A {

inline int dispatch_B_foo();
|3

class B : public A {

h inline int inline_B_foo();
%
int bar(A *a) {
// acontains an instance inline int B::inline_B_foo() {
// of class B for 90% of // modified copy of the source
// all invocations /1 of B::foo()
a->foo(); }
} inline int A::dispatch_B_foo() {
if (this->_class == class_B)
return ((B*)this)->
B::inline_B_foo(});
else
return foo();
)

int bar(A *a) {
a->A::dispatch_B_foo(});
}

Figure 2. Source-to-source optimization example

other 95%. Thus, for each call site, the compiler must decide whether to optimize it or
not. Currently, the compiler considers two factors in its inlining decisions. First, it
exploits peaked receiver class distributions by inlining only classes whose relative
frequency exceeds a certain threshold. The compiler can inline multiple cases per send,
although for all measurements in this paper the compiler was limited to inlining at most
one case per send. The compiler’s default inlining threshold is 40%, and thus a call site
won’t be optimized unless the most frequent class represents more than 40% of all
receivers at that call site. (Section 4.6 will show the performance impact of varying the
threshold value.) With lower thresholds, more calls will be inlined, but chances are
lower that the inlined code is actually executed, and thus actual performance may
degrade because of the overhead of testing for the inlined case.

Second, the compiler restricts optimization to the “hot spots” of an application by
considering the call site’s contribution to the total number of calls in the application. For
example, with the default threshold of 0.1%, the compiler will not optimize call sites
responsible for less than 0.1% of the (virtual) calls executed during the profile run. By
inlining only the important calls, the compiler reduces the potential code growth; often,
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relatively few call sites account for most of the calls, and thus good performance can be
achieved with only moderate amounts of inlining.

Finally, our optimizer relies on the inlining strategies of the back-end compiler to some
extent since the inline keyword is only a suggestion to that compiler; if the function is
too large, the back end may decide not to inline it. Consequently, our compiler currently
does not take function size into account when deciding whether to optimize a call or not.
If the back end does not actually inline a call, the only benefit of optimization is the
elimination of the dispatch (in the case of class hierarchy analysis) or the replacement
of a virtual function call with a somewhat faster comparison-and-direct-call sequence
(for type feedback). However, our current back-end compiler (gcc) always inlines inline
functions.

5 Experimental Setup

To evaluate the performance of our optimizer, we used a suite of eight C-++ applications
totalling over 90,000 lines of code. In general, we tried to obtain large, realistic
applications rather than small, artificial benchmarks. Unfortunately, the choice of
publicly available C++ programs which compile with current C++ compilers on current
operating system versions (Solaris 2.5 and AIX 4.1) is still limited. Two of the
benchmarks (deltablue and richards) are much smaller than the others; they are included
for comparison with earlier studies (e.g., [HU94a, G+95]). Richards is the only artificial
benchmark in our suite (i.e., the program was never used to solve any real problem).
Table 3 lists the benchmarks and their sizes.

program lines of code
name description original [ baseline
deltablue {incremental dataflow constraint solver 1,000 1,400
eqn type-setting program for mathematical equations 8,300 10,800
idl SunSoft’s IDL compiler (version 1.3) using the demonstration | 13,900 25,900
back end which exercises the front end but produces no
translated output.
ixx IDL parser generating C++ stubs, distributed as part of the 11,600| 11,900

Fresco library (which is part of X11R6). Although it performs
a function similar to IDL, the program was developed
independently and is structured differently.

Icom optimizing compiler for a hardware description language 14,100| 16,200
developed at the University of Guelph.
porky back-end optimizer that is part of the Stanford SUIF compiler | 22,900 41,100

system
richards |simple operating system simulator 500 1,100
troff GNU groff version 1.09, a batch-style text formatting 19,200{ 21,500
program

Table 3. Benchmark programs

Recall that “original” refers to programs compiled from the original sources, and
“baseline’ refers to the same programs compiled from the all-in-one source file without
any inlining of virtual function calls. The latter versions are longer since they also
contain system include files (/usr/include/...) and since the combiner pre-pass splits
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some constructs into multiple lines. For both versions, the line counts exclude empty
lines, preprocessor commands, and comments.

In addition to measuring the unchanged programs, we also ran “all-virtual” versions of
the benchmark programs where every function (with the exception of some operators
and destructors, which currently cannot be optimized by our compiler) is declared as
virtual. We chose to include these program versions in order to simulate programming
styles that extensively use abstract base classes defining virtual functions only (C++’s
way of defining interfaces). For example, the Taligent CommonPoint frameworks
provide all functionality through virtual functions, and thus programs using
CommonPoint (or similar frameworks) will exhibit much higher virtual function call
frequencies [Ser95]. Lacking real, large, freely available examples of this programming
style, we created the “all virtual” programs to provide some indication of how
optimization would impact such programs.

unmodified programs “all-virtuals” programs
program | classes functions virtual call sites functions virtual call sites
virtuals |[nonvirt.| all used |virtuals | nonvirt.2| all used

deltablue 10 7 74 3 3 73 8 213 145
eqn 56 169 102 174 100 252 19 248 138
idl 82 374 450| 1,248 578 675 149 2,095 786
ixXx 90 445 582 596 147 994 33| 3,026 824
Icom 72 314 508 460 309 594 228! 1,214 825
porky 118 274 995 836 163 724 545| 4,248 930
richards 12 5 61 1 1 66 0 105 100
troff 122 484 403 405 98 834 53| 1172 351

Table 4. Basic characteristics of benchmark programs

 The compiler currently cannot optimize all operators and destructors, and thus they are
kept nonvirtual. Furthermore, constructors are always nonvirtual.

For each program, Table 4 shows some basic program characteristics such as the
number of classes, C++ functions (excluding constructors and non-member functions),
and virtual function call sites. For the latter, “all” refers to the total number of virtual
function call sites in the program, and “used” to those executed at least once during the
test runs. The numbers given for the virtual call sites exclude the call sites that the GNU
C++ 2.6.3 compiler can optimize away. All benchmarks were compiled with GNU C++
2.6.3 with optimization flags “-O4 -msupersparc” and linked statically. The “all-virtual”
versions of ixx, porky, and troff were compiled with the optimization flags “-O2 -
msupersparc” since “-04” compilation ran out of virtual memory. To measure
execution performance, we ran each benchmark in single-user mode on an idle
SPARCstation-10 workstation with a 40 MHz SuperSPARC processor and used the best
of five runs. In addition to measuring actual execution time, we also simulated the
programs with an instruction-level simulator to obtain precise instruction counts and
cache miss data (simulating the SPARCstation-10 cache conﬁgurationz).

2 16Kbyte 4-way primary instruction cache, 20Kbyte 5-way data cache, and 1Mbyte unified
direct-mapped secondary cache.
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6 Results

This section presents the results of the empirical evaluation of our optimizing compiler.
Unless mentioned otherwise, all numbers are dynamic, i.e., based on run-time
frequencies.

6.1 Virtual Function Calls

Figure 3 shows that the optimizing compiler successfully removes many virtual
function calls. Not surprisingly, the baseline programs execute the same number of
virtual calls as the original programs: even though the back-end compiler has the entire
program available at compile time, it cannot optimize virtual function calls. In contrast,
type feedback is quite successful: on the large programs, it reduces the number of virtual
calls by a factor of five (for idl, by a factor of 25). On some programs, however, type

B original

B baseline

¥ type feedback
f class hierarchy
[0 combined

relative virtual function calls
o
o
2
Il

B 3 “EH
Icom  porky richards troff
Figure 3. Virtual function calls

0% _- :::.. ._ < px S
deltablue eqn  idl XX

feedback performs relatively poorly. For richards, the reason is simple: this program
contains only a single virtual function call whose receivers are fairly evenly spread over
four classes. On eqgn, type feedback removes less than half of the virtual function calls
because some of the most frequently executed call sites are megamorphic, i.e., have
many receiver classes (up to 17). Since no receiver class dominates these call sites, type
feedback cannot eliminate the calls.

Class hierarchy analysis is much less successful: for many of the large programs, it fails
to reduce the number of virtual calls appreciably, removing only a median of 4% of the
calls (mean: 23%).> This poor performance surprised us since others have reported very
good results for CHA [DGC95, Fer95]; at first, we suspected an implementation bug.
However, many of our programs simply do not have enough monomorphic calls that
could be optimized. For example, only 3% of the virtual function calls in eqn are from
(dynamically) monomorphic call sites, and class hierarchy analysis can optimize only
a single call site (a call to font:handle_unknown_font_command which is never
executed). Before concluding that class hierarchy analysis is ineffective, the reader

3 Jcom cannot be optimized with class hierarchy analysis because it is not type-safe. The
program contains assignments where the actual class is a superclass of the static type of the
variable being assigned (i.e., a Base object is cast to Sub™). As aresult, CHA incorrectly binds
some virtual function calls whose receiver is incorrectly typed.
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should keep in mind that its effectiveness depends on programming style. In particular,
CHA performs better with programs using “interfaces” expressed as abstract classes
containing only virtual functions (such as idl) because these programs contain many
virtual functions with only a single implementation.

The combined system generally performs as well as type feedback. Currently, the
combined system chooses class hierarchy analysis over type feedback when optimizin g
a call site: if the call can be statically bound, the compiler will not type-predict it.
Though it may seem that this system should always perform at least as well as type
feedback, this is not necessarily true. The reason is somewhat subtle: even though class
hierarchy analysis can statically bind (and inline) a call, the inlined version cannot be
specialized to a particular receiver class if several classes are possible (all of which
inherit the same target method). In contrast, type feedback produces a specialized
version of the method, possibly removing additional calls (with this as the receiver)
within that method. However, this effect appears to be negligible—the combined
system usually removes more calls than any other system.

Figure 4 shows the number of virtual function calls performed by the “all virtual”
versions of the benchmark programs. As expected, all programs perform significantly
more virtual function calls (a median of 5 times more). However, optimization still
removes most of them, bringing the number of virtual calls to less than that of the
original programs for all benchmarks except richards. Relative to the baseline, type
feedback reduces virtual calls by a median factor of 8.5, and class hierarchy analysis
reduces them by a factor of 12.6. We will discuss this result further in section 7.

B B 8
837% 1265% 1742%
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£ 600%- B
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Figure 4. Virtual function calls of “allvirtual” programs

As a final remark, our implementations of both type feedback and class hierarchy
analysis currently do not handle all virtual operators and virtual destructors, so that
some calls are not optimized. Thus, our results are conservative estimates (lower
bounds) on the achievable performance.

6.2 Performance

Ultimately, the main goal of optimization is to increase performance. Figure 5 shows
the execution time of the various program versions relative to the execution time of the
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Figure 5. Execution time of optimized programs

original program. Overall, performance improves considerably relative to the original
programs, with a median speedup of 18%. For all programs, type feedback or combined
optimization produces the fastest executables whereas class hierarchy analysis does not
significantly improve performance, which is not surprising given its ineffectiveness in
removing virtual function calls. More surprisingly, about 40% of the speedup comes
from combining all source files into a single file: the baseline programs run a median
6% faster than the original programs. Why?

The main reason for this speedup is the proper inlining of non-virtual inline functions in
the baseline versions. Many C++ compilers (including GNU C++) do not inline
function calls unless the inline function’s definition is encountered before the call. In the
original programs, function definitions often are not encountered in the correct order,
and thus many calls to inline functions are not inlined. In contrast, our compiler
topologically sorts all functions in the baseline versions so that all definitions precede
their uses if possible (i.e., if there is no recursion).

We believe that our results are only a lower bound on the performance that could be
achieved by a full-fledged optimizing compiler. Four factors contribute to our belief: the
back-end compiler, hardware architecture, the set of optimizations our compiler
performs, and our choice of benchmarks.

First, the current back-end compiler (GNU C++) does not take advantage of
optimization opportunities exposed by inlining. In particular, it does not perform alias
analysis, and thus it cannot remove redundant loads of instance variables and thus
misses other opportunities for common subexpression elimination (including
opportunities to CSE dispatch tests). We are planning to port our optimizer to other
back-end compilers (Sun and IBM C++) to investigate the magnitude of this effect.

Second, our results may underestimate the performance impact on CPU architectures
more advanced than the 3-year-old SuperSPARC chip used for our measurements. In
particular, more aggressively pipelined superscalar CPUs are likely to benefit more
from virtual call elimination since the cost of indirect calls tends to increase on such
architectures [DHV95]. In fact, this trend is already visible on the SuperSPARC:
whereas type feedback reduces the number of instructions executed by a median of only
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5%, it reduces execution time by 16%. Clearly, optimization improves the effectiveness
of superscalar issue and pipelining. Although further research is needed to resolve this
question, we expect the speedups achieved by our system to increase on more recent
processors like the UltraSPARC or the Intel P6 (Pentium Pro),

Third, type feedback could be complemented with additional optimizations to improve
performance further. In particular, profile-based customization and some form of
splitting [CU90] are attractive candidates, although the latter might not be needed if the
back-end C++ compiler did a better job of alias analysis.

Finally, some of our benchmarks just don’t execute that many virtual function calls to
start with. Figure 6 shows that, as expected, speedups correlate well with call
frequency: the more frequently a program uses virtual function calls, the better it is
optimized. Several of our benchmark programs have a low virtual call frequency; for
example, on average eqn executes 972 instructions between virtual function calls. We
believe that such infrequent use of virtual calls is atypical of current and future C++
programs. In particular, the use of abstract classes as interfaces in application
frameworks is becoming increasingly common and will drive up virtual function call
frequencies. Unfortunately, we have been unable to find many publicly available
programs exhibiting this programming style; the idl benchmark probably comes closest.

1.7
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Figure 6. Correlation between call frequency and speedup

Figure 7 shows the performance of the “all-virtual” versions. In one group of programs
(deltablue, idl, richards, troff), virtual function calls become much more frequent, and as
a result the optimized programs achieve higher speedups. In the other group, the call
frequency does not change significantly, and thus program behavior remains
unchanged. Overall, the speedup of type feedback increases to 26%.

To summarize, despite the relatively low frequency of virtual calls in the benchmarks,
our optimizing compiler demonstrates the value of OO-specific optimization for C++
programs, speeding up a set of realistic applications by a median of 18%. Moreover,
with a better back-end compiler or on more recent processors, this speedup is likely to
increase even further.
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6.3 Program Size

Inlining duplicates some code for better performance; Figure 8 shows the size of the
programs before and after optimization. Program size was measured as the size of the
text segment (i.e., instructions only, no data) of the dynamically-linked executables,
excluding library code. Overall, code size barely increases with optimization; programs
optimized with type feedback are a median 8% larger than the original programs and
3% larger than the baseline programs.

140%
J B original
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% 80% 3 class hierarchy
2 60%- 3 O combined
3 40% ] i
T 40%-
20%|
0% LB R ¥ i3
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Figure 8. Code size

One program, idl, clearly sticks out: in its unoptimized form (baseline), it is three times
smaller than the original program. The reason is simple: in the original program, the
compiler generates multiple copies of inline functions, one per .C file that uses them.
As a result, many inline functions are replicated 20 or more times. This problem still is
a common problem with C++ compilers. Typically, compilers use a heuristic to decide
when to generate a copy; since idl was written using a different compiler, it does not
match GNU’s heuristics. In the baseline version, of course, no duplication can occur
since a single file contains the entire program.
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In the “all virtual” programs, code size increases more strongly (Figure 9), especially
with type feedback in the small programs (richards and deltablue). However, the median
increase for type feedback is only 11%.

Why doesn’t inlining lead to larger code size increases? Recall that the compiler only
optimizes call sites contributing more than 0.1% of the total calls in the program
(section 4.6). This heuristic is responsible for keeping the code size small; without it,
executables would have increased by a median of 23% (for the standard benchmarks)
and 144% (all-virtual versions), respectively.

6.4 Instruction Cache Misses

The main time cost of larger executables lies in the increased instruction cache misses
that larger programs can cause. Figure 10 shows the instruction cache misses incurred
by the optimized programs on a SPARCstation-10. Overall, differences are small; for
some programs, cache misses actually decrease slightly compared to the original
programs (richards’ miss ratio is virtually zero because it fits entirely into the cache).
The major exception is troff, where misses increase by 35% over the original program
when using type feedback. However, cache misses increase much less (10%) relative to
the baseline program, indicating that the additional misses may be caused by different
relative code placement (i.e., conflict misses) rather than by a systematic effect (i.e.,
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Figure 10. Instruction cache misses
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capacity misses). deltablue experiences a significant drop in its miss ratios from 0.68%
in the baseline to 0.31% with type feedback even though its size doesn’t change much
(see Figure 8). A separate simulation (modelling a 32-way associative cache of the
same size as the standard 4-way associative cache) showed little variation between the
various systems, confirming that indeed the differences in cache performance are
caused by different code placement, i.e., are unrelated to the actual optimizations. Thus,
our data show little significant difference in cache behavior between the optimized and
original programs.4

6.5 Influence of Inlining Strategies

Figure 11 shows the average of the four performance characteristics (time, virtual calls,
size, and cache misses) as a function of the inlining threshold. Recall from section 4.6
that the compiler inlines a virtual call only if the most frequent case exceeds a certain
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Figure 11. Performance characteristics as a function of inlining threshold
(averages over all programs)

threshold. For example, the data points at x = 40% in Figure 11 represent the average
performance of programs compiled with a threshold of 40%. In general, the lower the
threshold, the more inlining the compiler performs, and the larger the optimized
executables become. For the programs in our benchmark suite, the “sweet spot” appears
to be near a threshold value of 40%; below that, there is little improvement in
performance. For that reason, we chose 40% as the default threshold in our compiler
even though a lower value could have improved performance slightly.

7 Discussion

One of the unintended effects of language implementations is that they can shape
programming style. If a certain language construct is implemented inefficiently,
programmers will tend to avoid it. Optimization of virtual function calls effectively
lowers their average cost, and thus might change the way typical C++ programs are
written, Figure 12 compares the original programs against the best optimized version

4 We omit the cache data for the “all virtual” programs since they show similar effects.
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Figure 12. Virtual function calls

(usually compiled by the “combined” system) and shows that optimization indeed
enables the programmer to use virtual function calls more liberally: for each of the
benchmarks, optimization significantly lowers the number of virtual function calls
actually executed at run time. Even the “all virtual” programs, which in their
unoptimized form execute five times more virtual function calls than the original
programs, perform a median of four times fewer calls when optimized. Similarly,
almost all optimized programs, even the “all virtual” versions, execute faster than the
original programs compiled with conventional optimization (Figure 13).
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In other words, even if the authors of these programs used virtual functions much more
liberally (e.g., in order to make their programs more flexible and extensible), they
would not have been penalized by inferior performance.

8 Future Work

Several areas for future work remain. First, we would like to investigate the impact of
back-end optimizer quality by porting our compiler to another back-end C++ compiler
that performs more optimizations. As mentioned above, we believe that a stronger back
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end would increase the performance gap between the original and optimized programs,
but further measurements are needed to substantiate this hypothesis.

The compiler’s inlining strategies could also be improved. Inlining should probably
take into account the size of the inlinee [H6194], and the compiler should estimate how
much the inlinee’s code can be simplified (i.e., because of constant arguments [DC94]).
Furthermore, type feedback could be extended with profile-driven customization to
further improve performance [DCG9S5]. Profiling could be extended to use k-CCP
profiles (i.e., take call chains into account), although the improvement from the
additional precision may be small [G+95].

Also, a more detailed investigation of the interaction of optimization with superscalar
architectures is needed. Modern processors are increasingly deeply pipelined, contain
multiple execution units, and can execute instructions out-of-order or speculatively. All
of these features can significantly impact performance, and further study is needed to
determine their impact on the performance of object-oriented programs.

Finally, we will continue to look for other C++ applications that can be used for
benchmarking. Although we are already using large programs totalling over 90,000
lines of code, we feel that currently available benchmarks (including those used in other
studies [CGZ94]) do not represent the entire spectrum of program characteristics. In
particular, programs using large class libraries and frameworks are underrepresented.
Fortunately, these programs are very likely to benefit even more from optimization (as
discussed in section 6.2), and thus this underrepresentation does not invalidate the
results of our study.

9 Conclusions

We have designed and implemented an optimizing source-to-source C++ compiler. To
the best of our knowledge, this compiler is the first C++ compiler that can reduce the
frequency of virtual function calls. Our prototype implementation demonstrates the
value of profile-driven optimization for statically-typed, hybrid object-oriented
languages like C++. Using a suite of large C++ applications totalling over 90,000 lines
of code, we have evaluated the compiler’s effectiveness. Despite some limitations of
our system, and despite the low frequency of virtual function calls in some of the
programs, optimization improves the performance of these C++ applications by up to
40% over the original programs (median: 18%) and reduces the number of virtual
function calls by a median factor of five. For “all-virtuals” versions of the same
programs, performance improved by a median of 26% and the number of virtual calls
dropped by a factor of more than 17.

Our measurements produced some surprising results:

+ On the original programs (but not on the “all-virtuals” programs, we found that class
hierarchy analysis was ineffective in removing virtual function calls (removing a
median of 4% and an average of 23% of the calls), contrary to the results previously
published for Modula-2 programs [Fer95] or the pure object-oriented language Cecil
[DGCIS5].
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* Inlining does not significantly increase code size. On average, optimized programs
only expand by 9%. Moreover, this code expansion does not impact performance
much; for most programs, the instruction cache miss ratio does not increase
significantly, and for some programs it even decreases.

We believe that our results underestimate the performance gains that could be obtained
with a production-quality compiler. In other words, we believe that typical C++
programs can be sped up by more than the 18% improvement seen here. Several reasons
lead us to this conviction:

¢ Our compiler uses source-to-source optimization for simplicity, which to some
extent negatively impacts the quality of the generated code since the front-end
cannot communicate all its information to the back end. Furthermore, our current
back end (GNU C++) does not remove some of the redundancies exposed by
inlining. In particular, better alias analysis could help remove redundant loads and
type tests.

¢ The hardware platform used in our measurements (a SuperSPARC processor)
probably benefits less from optimization than more recent aggressively pipelined
processors. (This question remains an area for future study, however.)

» Several of our benchmark programs have a low virtual function call frequency and
thus benefit less from optimization. Programs using abstract base classes may be
significantly more amenable to optimization since they will use virtual function calls
more frequently.

If these optimizations are integrated into production compilers, programmers therefore
can hope to see even better speedups on typical programs.

Finally (and perhaps most importantly), our results show that programmers may use
virtual functions much more liberally in order to make their programs more flexible and
extensible without being penalized by inferior performance.
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