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Abstract. Multiple inheritance and multiple dispatching are two sources of ambigui-
ties in object-oriented languages. Solving ambiguities can be performed automatically,
using techniques such as totally ordering the supertypes of each type or taking the
order of the methods’ arguments into account. Such implicit disambiguation has the
drawback of being difficult to understand by the programmer and hiding program-
ming errors. Conversely, solving ambiguities can be left up to the explicit intervention
of the programmer. The most common explicit disambiguation technique in existing
systems consists in defining new methods for ambiguous invocations. However, find-
ing ambiguities and adding as few methods as possible is a difficuit task, especially
in multi-method systems. In this paper, we propose a tool to help the programmer
solve multi-methods ambiguities. We show that there always exists a unique minimal
set of method redefinitions that explicitly disambiguate a set of multi-methods. The
tool offers two modes: batch, directly yielding the disambiguation set, or interactive,
one signature of the disambiguation set at a time, allowing the programmer to either
accept the method redefinition or to solve the ambiguity in any other way, which
restarts the disambiguation algorithm. In both modes, for each method that is to be
added, the programmer is given the set of methods that caused the ambiguity as an
explanation.
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1 Introduction

Ambiguities are a well-known problem of any classification system supporting multiple in-
heritance. They plague semantic networks in artificial intelligence as well as class hierarchies
in many object-oriented languages. Multiple inheritance ambiguities occur when it is im-
possible to decide from which superclass to inherit a property, i.e. an instance variable or
a method. Consider a class hierarchy where class Teaching4ssistant (TA) is a subtype® of
two superclasses Student and Employee and has one subclass ForeignTA. Assume that both

% In this paper, we indifferently use subtyping and inheritance, class and type, although we are

primarily interested in the typing aspects.
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Student and Employee define a method vacation® which computes the number of days of
vacation. Then, any invocation of vacation on a TA or ForeignTA is ambiguous, as it is
impossible to know which method must be called, Student’s or Employee’s vacation.

Multi-methods add another kind of ambiguity. Indeed, run-time method selection looks
for the method whose arguments most closely match those of the invocation. Ambiguities
may arise if two methods most closely match different subsets of an invocation’s argu-
ments. Consider the above class hierarchy with two multi-methods m; (T A, Student) and
ma(Student, T A) and invocation m(aT A, aT A). With respect to the first argument, m; is
a closer match than m,, while the reverse holds for the second argument. Thus, the invoca-
tion m(aT A,aT A) is ambiguous, as are all invocations whose arguments are of class TA or
ForeignTA.

There are two ways to eliminate ambiguities: implicit and ezplicit disambiguation. Im-
plicit disambiguation consists in eutomatically solving ambiguities in the place of the pro-
grammer. For example, CLOS defines a total order on all the superclasses of each class to
eliminate multiple inheritance ambiguities [BDG*88]. In the above example, if Student pre-
cedes Employee in TA’s definition, then invoking vacation on a TA results in the invocation
of the vacation method of Student. Implicit disambiguation of multi-methods ambiguities is
based on taking the order of the arguments into account: in this way, m;(T A, Student) is a

closer match than mo(Student, T A), because its first argument is more specific than m.’s.

Explicit disambiguation, used in languages like C++ [ES92], Eiffel [Mey92] and Cecil
[Cha93], consists in requiring the programmer to solve ambiguities. One way of achieving
this consists in redefining the method for ambiguous invocations. For example, if the pro-
grammer redefines vacation for TA, invoking vacation on a TA is no longer ambiguous. Note
that this redefinition also solves ambiguities for ForeignTA. In the same way, defining a
method mgs(T A, T A) solves the multiple dispatching ambiguity between m; and m; for all
invocations with arguments of class TA or ForeignTA.

Implicit disambiguation is increasingly being criticized for mainly two reasons: first,
the way it solves ambiguities can be difficult to understand and counter-intuitive in some
cases. This is particularly obvious for multiple dispatching ambiguities where the order of
the arguments is taken into account. Second, ambiguities can actually reveal programming

errors, which implicit disambiguation hides.

On the other hand, explicit disambiguation imposes some burden on the programmer who
faces two problems: first, (s)he must find which methods are ambiguous and with respect
to which class(es) of argument(s). Second, (s)he must determine which methods must be
added. Indeed, if carefully chosen, very few method redefinitions can solve all ambiguities

at the same time. However, adding a method to solve an ambiguity may sometimes result

* For the rest of the paper we consider ambiguous methods as they capture the case of instance
variables through encapsulation.
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in the creation of a new ambiguity. Unfortunately, to our knowledge, no system assists
the programmer in the task of explicit disambiguation. Such help is especially needed for
multi-method systems, notably because multi-methods are more complex to master than
mono-methods and suffer from two kinds of ambiguities, increasing the potential number of
ambiguities.

In this paper, we address this need by proposing a tool to help the programmer solve
multi-methods ambiguities. We show that there always exists a unique minimal set of method
redefinitions that explicitly disambiguate a set of multi-methods. The tool offers two modes:
batch, directly yielding the disambiguation set, or interactive, one signature of the disam-
biguation set at a time, allowing the programmer to either accept the method redefinition
or to solve the ambiguity in any other way, which restarts the disambiguation algorithm. In
both modes, for each method that is to be added, the programmer is given the set of methods
that caused the ambiguity as an explanation. In our example, the tool outputs vacation(TA )
as the method that must be added and {vacation(Student), vacation(Employee)} as the ex-
planation.

The paper is organized as follows. Section 2 surveys previous work on ambiguities. Section
3 defines the problem we address and gives an overview of our solution. Section 4 presents our
disambiguation algorithm. Section 5 deals with implementation issues, notably optimization
and complexity. We conclude with future work in section 6.

2 Background on Disambiguation

2.1 Basic Definitions

In traditional object-oriented systems, methods have a single specially designated argument
— called the receiver or target — whose run-time type is used to select the method to exe-
cute at run-time. Such methods are called mono-methods. Multi-methods, first introduced in
CommonLoops [BKK*86] and CLOS [BDG™88], generalize mono-methods by considering
that all arguments are targets. Multi-methods are now a key feature of several systems such
as Kea [MHH91], Cecil [Cha92}, Polyglot [DCL*93], and Dylan [App95]. Following [ADL91],
we denote subtyping by <. Given two types T} and T, if T} < T, we say that T} is a subtype
of Ty and T is a supertype of T3.

A generic function is defined by its name and its arity (in Smalltalk parlance, a generic
function is called a selector). To each generic function m of arity n corresponds a set of
methods mg(T},...,TF) — Ry, where T,ﬁ is the type of the i*h formal argument, and where
Ry is the type of the result. We call the list of argument types (7%,...,T7) of method
my the signature of mi®. An invocation of a generic function m is denoted m(T?,...,T"),

® For the rest of the paper, we use the functional notation as we consider multi-method systems.
6 For our purposes, we do not include the return type in the signature.
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where (T?,...,T") is the signature of the invocation, and the 7%'s represent the types of the
expressions passed as arguments. Finally, we call MSA method for Most Specific Applicable
method, the method selected at run-time for some invocation.

2.2 Method Ordering and Ambiguity

The basis of method specificity is a precedence relationship called argument subtype prece-
dence in [ADL91]: a method m; is more specific than a method m;, noted m; < my, if all the
arguments of m; are subtypes of the arguments of m;. However, in the presence of multiple
inheritance or multiple dispatching, argument subtype precedence may be unable to totally
order applicable methods for some invocations, yielding several conflicting MSA methods.
Such invocations are then ambiguous.

Student Employee

vacation, (Student) \ / my(Student,T A)
vacations ( Employee) mo(T A,Student)
TA
Multiple Inheritance Ambiguity Multiple Dispatching Ambiguity

Fig.1.: Ambiguities

Ezample 1. Consider the type hierarchy and methods of Figure 1. Argument subtype prece-
dence can order neither vacation, w.r.t. vacation; (multiple inheritance ambiguity), nor
mg w.r.t. m; (multiple dispatching ambiguity). Thus, invocations vacation(aT A, aT 4) and
m(aT A,aT A) are ambiguous.

2.3 Disambiguation Techniques

As noted in [Cha92], “the key distinguishing characteristic of method lookup (...) is how
exactly ambiguities are resolved”. Techniques to solve ambiguities can be classified in two
categories: implicit and ezplicit disambiguation.

Implicit Disambiguation Implicit disambiguation consists in augmenting the power of
argument subtype precedence to automatically resolve ambiguities. To solve multiple in-
heritance ambiguities, the subtype relationship, <, is complemented by a precedence re-
lationship, o, that strictly orders all the supertypes of a type. The supertypes ordering is
generally local to each type (local supertypes precedence) as in Loops [SB86], CommonLoops
[BKK*86], Flavors [Moo86], Orion [BKKK87] and CLOS [BDG*88]. To solve multiple dis-
patching ambiguities, the formal arguments of the rival methods are examined in some given
order, e.g. left-to-right, and the comparison stops as soon as an argument of one method
strictly precedes the corresponding argument of the other method. [ADL91] extensively cov-

ers the different ways to augment argument subtype precedence to avoid ambiguities.
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Ezample 2. Assume local supertype precedence establishes that Student a Employee and
left-to-right argument examination is chosen. Then, the ambiguities of Figure 1 are resolved
and vacation; has precedence over vacations and mo has precedence over m;.

Note that dispatch based on a local supertypes precedence ordering of methods may
select a method in an counter-intuitive way. Indeed, CLOS, Loops and Dylan do not support
monotonicity [DHHM92]. Monotonicity captures the intuitive property that, if a method is
applicable to, but is not the most specific applicable method for some signature, it cannot be
the MSA of a more specific signature. To address the anomalies created by local supertypes
precedence, [DHHM94] proposes a monotonous supertypes linearization algorithm. However,
in some inheritance hierarchies there are classes for which no monotonous linearization exist.

C++ [ES92] implicitly solves some multiple inheritance ambiguities by using the static
type of the receiver object: the inheritance path between the corresponding class, and the
class of the receiver at run-time, takes precedence.

Ezample 3. Consider the example in Figure 2 and a C++ invocation b->m(), where b is
a variable of type Bx. If b points to an instance of class E at run-time, then m, takes
precedence. However, invocation e->m(), where e is of type Ex, is still ambiguous.

4 my (A)
B my(C)
e ma(F)
“pF
N

Fig.2.: Example Type Hierarchy and Methods

This disambiguation scheme also appears in [CG90] with the points of view, in Fibonacci
[ABGO93] with its roles, in Oy [0292] and in Self 2.0 with its sender path tiebraker rule
[CUCH91]. However, these techniques cannot resolve all ambiguities (e.g. the invocation
e->m() above), and they go against the need to “ensure that the same function is called for

an object independently of the expression used to access the object”, as stated in [ES92)].

As argued in [LR89], [Sny86b], [DH8&9] and [Cha92], implicitly solving ambiguities raises
several serious problems. First, ambiguities may be the result of programming errors. Im-
plicit disambiguation prevents the detection of such errors. Second, it makes programs hard
to understand, maintain and evolve. This is particularly obvious for multiple dispatching
ambiguities where the order of the arguments is taken into account. Third, they cannot
resolve all ambiguities, except the algorithms of Loops and CLOS, which trade this for
counter-intuitive selections. Finally, there are ambiguities that implicit disambiguation can-
not resolve according to the programmer’s wish, because it is not fine enough.



172

Ezample 4. Consider the type hierarchy and methods of Figure 3. Assume the programmer
would like vacation;(Student) to be the MSA method for ambiguous invocation vacation
(aT'A) and tazes: (Employee) to be the MSA method for ambiguous invocation tazes(aT A).
Such disambiguation cannot be automatically performed by ordering supertypes Student
and Employee.

Student  Employee

vacation, (Student) \ / tazes; (Student)
TA

vacation, (Empoyee) tazesy(Employee)

ForeignT A

Fig. 3.: Example Type Hierarchy and Methods

Explicit Disambiguation The second way of solving ambiguities is ezplicit disambigua-
tion. In this approach, the programmer him/herself solves ambiguities at the level of either
invocations or methods.

Ezplicit Disambiguation at the Invocation Level

In C++, multiple inheritance ambiguities can be resolved on a per invocation basis and in
two different ways. First, the programmer can explicitly force a particular method to be
the MSA method for some invocation by prefixing the invocation by the name of a class
followed by the scoping operator “::”. The MSA method for the invocation is then statically
determined to be the MSA method for that class, bypassing late binding.

Ezample 5. Consider the type hierarchy of Figure 2. The C++ invocation e->m(), where e is
of type Ex, is ambiguous. The programmer can resolve the ambiguity by writing e->B :: m().
This statically binds the invocation to the method applicable to class B, namely the method
defined in class A.

Type casting, i.e. type coercion, is the second way of explicitly resolving ambiguities at
the invocation level in C++. Contrary to the scoping operator, type casting preserves late
binding.

Ezample 6. Consider again the type hierarchy of Figure 2. The programmer can resolve
the ambiguous invocation e->m() by writing ((Bx)e)->m(), making use of the implicit
disambiguation rule described above. This forces e to be considered as referring to the B
part of an E object. Late binding is preserved: the method that actually gets executed is
the one defined in class C.

Explicit disambiguation at the invocation level provides the finest control over ambigui-

ties. However, it imposes a heavy burden on the programmer who must disambiguate every
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ambiguous invocation. Moreover, the scoping operator suspends late binding. This can be
dangerous when the type hierarchy or the methods evolve:

Ezample 7. Consider again the type hierarchy of Figure 2. If the programmer disambiguates
invocation e->m() by writing e->C :: m() and then, a new method is defined in class D,
then the disambiguation must be rewritten e~>D :: m().

Ezplicit Disambiguation at the Method Level

A programmer can perform explicit disambiguation of methods by either selecting or adding
methods. Method selection consists in explicitly declaring which of the conflicting methods
takes precedence for all invocations. It is supported in Traits [CBLL82], Trellis [SCB*86]
and CommonObject [Sny86a]. Eiffel [Mey92] performs method selection by either renaming
all conflicting methods but one and using a “select” statement or undefining all conflicting
methods but one. Oz [0292] automatically performs renaming of conflicting methods by
prefixing them with the name of the class.

The second way of performing explicit disambiguation at the method level consists in
adding new methods so that argument subtype precedence is sufficient to totally order appli-
cable methods for any invocation. The augmented set of methods then satisfies a condition,
described in [LR89], and called regularity in [MGS89] and Zelig [DS92], and conststency in
Cecil [Cha93]. This disambiguation policy is used in Extended Smalltalk [BI82], Zelig [DS92],
Self 3.0 [ABC*93], Laure [CP93] and Cecil [Cha93).

Ezample 8. Consider again the type hierarchy and methods of Figure 1. To eliminate ambi-
guities, it is enough to define two new methods: vacations(T A) and m3(T A, T A).

The new methods may perform specific code written by the programer or deduced from
the code of the conflicting methods as in Laure [CP93]. These new methods may also just
serve the purpose of resolving an ambiguity, by explicitly calling another method of the
same generic function using a scoping operator like Cecil’s “@@” or C++'s “::”, or a special
construct like “call-method’ in CommonObject.

Ezample 9. Cecil [Cha92] has the resend construct to explicitly call another method of the
same generic function. Given the type hierarchy and methods of Figure 1, vacations (T A)
can resolve the ambiguity in favor of vacation; (Student) as follows:

method vacation(cl@@TA) { resend(cl@@Student) }
As shown in Example 7, it is dangerous to suspend late binding like that. It would not

be suspended if the semantics of the declaration above was to invoke the MSA method of
the invocation vacation(Student).

Methods selection declarations must be taken into account in the late binding mecha-
nism, making it more complex. Explicit disambiguation by addition of methods encompasses
the functionality of explicit disambiguation by selection without making it necessary to in-
corporate the selection declarations in the late binding mechanism.
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2.4 Conclusion

From some recent language updates, it appears that language designers increasingly favor
explicit disambiguation, because of the problems associated with implicit disambiguation.
For example, Self 3.0 [Se393] has abandoned prioritized inheritance, a kind of local super-
types precedence, together with the sender path tiebraker implicit disambiguation rule. The
priority mechanism is described as being “of limited use, and had the potential for ob-
scure errors”. Cecil does not include implicit disambiguation either. In Dylan, the linear
ordering of supertypes is similar to CLOS’s, but Dylan does not assume any order on the
multi-method’s arguments, leaving room for multiple dispatching ambiguities and requiring

explicit disambiguation.

Besides, even in languages with implicit disambiguation, solving ambiguities explicitly is

useful in cases where implicit disambiguation leads to violate monotonicity.

3 Problem Statement and Overview of the Solution

The problem with explicit disambiguation is the burden it imposes on the programmer
who faces two problems: first, (s)he must find which methods are ambiguous for which
signature(s). Second, (s)he must determine which methods must be added to solve the am-
biguities. An obvious solution is to define a method for each and every ambiguous signature.
However, this results in the creation of a potentially huge number of disambiguating meth-
ods, whereas carefully choosing for which signatures to redefine methods can solve several
or even all ambiguities at the same time. Consider the type hierarchy and methods of Figure
4. Signatures (D, G), (D, I),(K,G), (K,I) are ambiguous because of methods m; (A, G) and
ms(B, F). However, defining a method m4(D, G) is enough to solve these four ambiguities.

A B ml(AlG)

F
(B, F)
I /N, mes
/NN
J E K 1
/N
L M
Fig. 4.: Reference Type Hierarchy and Methods

Finding the minimal set of disambiguating methods is further complicated by the fact
that adding a method to solve some ambiguity can actually result in the creation of a new
ambiguity. Indeed, in the type hierarchy of Figure 4, invocation m(E,G) is initially not
ambiguous, with m3(C,G) as its most specific applicable method. However, the addition of
method m4(D,G) to solve the m(D,G) ambiguity makes m(E,G) ambiguous, as m3 now
conflicts with my.
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Unfortunately, to our knowledge, no system assists the programmer in the task of ex-
plicit disambiguation by method addition. Such help is especially needed for multi-methods
systems, notably because multi-methods are more complex to master than mono-methods
and suffer from two kinds of ambiguities, increasing the potential number of ambiguities.

To help explicitly disambiguate multi-method systems, we propose to provide the pro-
grammer with a disambiguation tool that can be integrated into the interpreter, compiler
or programming environment. This tool takes as input the signatures of a generic function’s
methods. In batch mode, its output is the minimal set of signatures of the methods that
must be added in order to eliminate ambiguities. The programmer must then provide bod-
ies to the methods of the disambiguation set, be they just resend clauses. In interactive
mode, it yields one signature of the disambiguation set at a time, in a specific order: the
programmer can either accept to solve the ambiguity by the addition of a method with that
signature, or stop the disambiguation algorithm and solve the ambiguity in another way
(e.g. by deleting methods or changing the type hierarchy). The algorithm is then restarted
from the beginning. The interactive mode gives the programmer finer control over the dis-
ambiguation process, as (s)he is not forced to solve all ambiguities through method addition.
In both modes, for each new method’s signature, the tool presents the set of methods that
created the ambiguity as an explanation to the programmer. In this paper, we focus on the
batch mode for space reason.

Our results apply to all languages in which the precedence ordering of multi-methods
conforms to argument subtype precedence and monotonicity. This includes Cecil and Dylan,
as well as CLOS and SQL3 provided the latter two slightly change their precedence order to
adopt a monotonic order, as proposed in [DHHM94]". Our results also apply to languages
with mono-methods, such as C++, Self or Laure.

Our disambiguation algorithm is based on two results: (i) the minimal disambiguation
set is unique and (ii) it is included in a set of signatures called the pole signatures. The
algorithm is composed of two steps. The first step consists in computing the pole signatures,
using the signatures of the initial set of methods as follows. Multiple inheritance ambiguities
are explicitly solved for each argument position, i.e. the set of types appearing at a given
position is augmented with the minimal set of types needed to eliminate multiple inheritance
ambiguities. This process yields a set of pole types or poles for each argument position. The

set of pole signatures is the Cartesian product of the sets of poles at each argument position.

Ezample 10. Given the methods of Figure 4, the set of poles on the first argument position is
the union of {A, B,C} and {D, E}. {4, B, C} is the set of types appearing in the first argu-
ment position, and {D, £} is the minimal disambiguation set. The poles of the second argu-
ment position are only the types appearing in the second argument position, {F, G}, as this

7 Such a change was recently adopted for Dylan
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set is not ambiguous. The pole signatures are then {(4, F), (B, F),(C,F),(D.F),(E,F), (A,
G),(B,G),(C,G),(D,G),(E,G)}.

The second step of the disambiguation algorithm is the following: for each pole signature,
the algorithm computes the MSA method of the corresponding invocation. If there are more
than one MSA method, then the invocation is ambiguous and a method with that signature
must be added to the initial set of methods with the signatures of the conflicting MSA
methods for explanation. In order to minimize the number of methods to add and to detect
ambiguities created by the addition of a method, the algorithm processes the pole signatures
in a total order that is compatible with argument subtype precedence, from the most general
to the most specific signatures.

Fzample 11. The pole signatures given above are already ordered in a way that is compatible
with argument subtype precedence from the most general to the most specific signature.
The first pole signature for which there is more than one MSA is (D,G) with m;(4,G)
and my(B, F) as conflicting MSA methods. A first method m4(D,G) is thus added to
the disambiguation set with m;(4,G) and m.(B, F) as explanation. The next and last
signature, (E,G), also has more than one MSA method, namely m3(C,G) and the newly
added m4(D, G). Hence, method ms(E, G) is added to the disambiguation set with m3(C, G)
and m4(D,G) as explanation and the algorithm ends.

Notice that the algorithm tests for ambiguity a number of signatures that is much smaller
than the total number of well-typed invocations. In the example of Figure 4, there are
34 different well-typed invocations and the algorithm only needs to test 7 signatures (the
signatures of the three methods m;,m2, and m3 can be skipped as they are obviously not

ambiguous).

4 Disambiguation Algorithm

Before presenting the disambiguation algorithm, we first give some definitions and the the-
oretical result on which the algorithm is based.

4.1 Definitions

For the rest of this paper, we call @ the set of existing types, and we consider a generic
function m of arity n, whose methods are m,, ..., m,. We also consider aset S = {s1,...,5p}
such that for all k, s, is the signature of my, i.e. sp = (T},...,TP).

We first review some notations and results introduced in {AGS94]. Here is the formal defi-
nition of a pole type that is used to solve multiple inheritance ambiguities at each argument
position:

I-Pole. A typeT € © is an i-pole of generic function m, i € {1,...,n}, denoted is_polet, (T,
iff:
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3ke{l,...,p}st. T=T}
or |min< {T' € O |ispolel (T") and T' »~ T} > 1

The first part of the conjunction corresponds to the types appearing at the i-th argu-
ment position (primary poles), while the second part defines which types must be added to
solve multiple inheritance ambiguities (secondery poles). The set of i-poles of m is denoted

n

Polei, = {T | is-pole (T)}. The set of pole signatures is denoted Poles,, = HPolein.

i=1
Ezample 12. Going back to Figure 4, D is a 1-pole because of the ambiguity created by the
1-poles A and B. In the same way, E is a 1-pole because of C and D.

Signature Specificity. A signatures = (T',...,T") € O™ is more specific than a signature
' =(T",...,T'"") € O", noted s < ¢, iff for all i in {1,...,n}, T% < T".

By analogy with methods, if s < §', s’ is said to be applicable to s.

Method Precedence Order. We note by a, the precedence order of method signatures
with respect to signature s: s; 0,8, means that s; and s; are the signatures of two methods
applicable to s (i.e., s < s; and s < s2), and s; is more specific than s, for s. This order
is used to determine the MSA method. We assume that o conforms to argument subtype
precedence, and that it is monotonic:

s1 Xspand s <51, s <sy = 81 a, s (argument subtype precedence)
s1ay5pand s’ <s = 5, oy S (monotonicity)

Conflicting Signatures. Given a set of signatures 5’ C O™, the set of conflicting signatures
of S’ w.r.t. a signature s € O, noted con flicting(s, S'), is defined as follows:

conflicting(s,S") = ming, {s' € §' | s' = s}

If S’ is a set of method signatures and s the signature of an invocation, then con flicting(s,
S') represents the signatures of the most specific applicable methods for the invocation. This
is a generalization of the notion of MSA method that takes ambiguities into account. It is
used both to test a signature for ambiguity and to determine the origin of the ambiguity as
an explanation.

Ambiguity of a Signature Set, Ambiguous Signature. A set of signatures S’ C @"
is ambiguous iff there exists a signature s € © such that |conflicting(s,S")] > 1. s is then
said to be an ambiguous signature w.r.t. S’.

Disambiguation Set. Given a set of signatures S’ C ©", A C @™ is a disambiguation set
of §"iff $'U A4 is not ambiguous.
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4.2 Main Theorem

We assume the existence of a total order on the pole signatures Poles,,, denoted by <, and
compatible with argument subtype precedence, i.e. Vs,s' € Poles,, (s < s’ = s < s'). Such

an order always exists and can be found using a topological sort [Knu73].

We then define a sequence of signatures (sx)x>p in the following way:

~ Spy1 = maz<{s € Polesy, | |conflicting(s, {s1,...,5,})| > 1}.
- Vk > p, sg41 = maz<{s € Poles,, | sy > s and |conflicting(s, {s1,...,sx})| > 1}.

As each signature s; is found by applying maz<, building (sx)x>p from this definition is
achieved by going over Poles,, in the order of <, starting from the most generic signatures.
Note that testing the ambiguity of a signature at stage k + 1 is done using all preceding
signatures, not just the first p ones.

Theorem 1. AS, = {sx | p <k} is finite, and is the minimal disambiguation set of S.

Proof: see Appendix.

Ezample 13. Consider again the types and methods in Figure 4. The original signature set
is S = {(4,0),(B,F),(C,G)}, and AS,, = {(D,G),(E,G)}.

min

4.3 Main Algorithm

As explained in Section 3, the disambiguation algorithm takes place in two steps: first,
the poles of every argument position are computed to yield the pole signatures in an or-
der compatible with argument subtype precedence, then the minimal disambiguation set is
computed by iterating over the set of pole signatures. The algorithm in Figure 5 invokes
a subroutine that builds the ordered list of pole signatures, and then performs the second
step of this process. We describe the ordering of pole signatures in the next section, and
pole computation is isomorphic to the second step of the disambiguation algorithm. Indeed,
computing the poles amounts to determining the minimal disambiguation set of the types
appearing as arguments: the types of the hierarchy are iterated over in an order compatible
with argument subtype precedence; for each type, the most specific applicable poles are
computed. If there are more than one most specific applicable pole, then the type becomes a
secondary pole. Note that, as for the second step of the main algorithm, the order in which

types are considered guarantees the minimality of the disambiguation set.

From the definition of (sg), it is straightforward to build an algorithm that produces A5,
by going over Poles,, in the order of < and adding ambiguous signatures to the original
set of signatures to test following signatures. Moreover, the set of conflicting signatures is
associated with each ambiguous signatures as an explanation.
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Disambiguation algorithm
input:  a set of methods M, a boolean interactive
output: a list result of 2-tuples (disambiguation signature,conflicting signatures)

Step 1: Computation of the Ordered Pole Signatures

S + signatures(M) ; // method signatures

P « OrderedPoleSignatures(S) ;

Step 2: Computation of AS, with explanations

A+0; // disambiguation signatures
result « 0 ;

for s in P do
CONF « conflicting(s,SU 4) ;
if CONF| > 1 then // s is ambiguousin SU A
if interactive then
if user-re fuse(s, CONF) then // ask the user if (s)he wants to stop
exit // stop execution
insert s into 4 ;
add (s, CONF) to result ;

return(result) ;

Fig. 5.: Disambiguation Algorithm

The algorithm assumes the existence of two subroutines: OrderedPoleSignatures(S)
returns the list of pole signatures in an order that is compatible with argument subtype
precedence and con flicting(s, S) returns the signatures in S that conflict as most specific
applicable to s.

Ezample 14. Back to Figure 4, let us assume that OrderedPoleSignatures(S) returns ((A,
F),(B,F),(C,F),(D,F),(E,F),(A,G),(B,G),(C,G),(D,G),(E,G)). First, (D,G) 1is
found to be ambiguous as it has (A4,G) and (B, F) as conflicting signatures. (D,G) is
thus added to A and ((D,G), {(4,G), (B, F)}) to result. Then, (E,G) is found to be am-
biguous, with (C,G) and (D,G) as conflicting signatures. (E,G) is thus added to A and
((E,G),{(C,G),(D,G)}) to result, which is then returned as the minimal disambiguation
set with associated explanations.

Finally, in testing pole signatures for ambiguity, the disambiguation algorithm can also
fill the dispatch table of the generic function, presented in [AGS94]. Indeed, the dispatch
table stores the MSA method of all pole signatures: if con flicting yields a singleton set,
then the single element is the signature of the MSA method.

5 Implementation And Complexity

This section describes the ordering of poles in OrderedPoleSignature, and the computation

of conflicting signatures in con flicting.
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5.1 Ordering the Pole Signatures

Ordering the pole signatures in an order that is compatible with argument subtype prece-
dence comes down to turning a partially ordered set into a linear list. A classical algorithm
is given in {Knu73]. The basic idea is to pick as first element one that has no predecessor,
remove this element from the original set to append it to the originally empty list, and start
over until no elements are left. In the case of pole signatures, it is necessary to scan the set
of pole signatures to find that a given signature has no predecessor. Hence, ordering the pole

signatures has a complexity of O(|Poles,|?).

However, it is possible to obtain a complexity of O(|Poles,]) if the poles of each argu-
ment position, Pole! , are themselves sorted in an order compatible with argument subtype
precedence. Indeed, it is easy to show that it suffices to produce the signatures in the lexi-

cographic ordering generated by the total orders on the poles®.

Ezample 15. The table in Figure 6 represents the pole signatures of the methods and types
of Figure 4. The order on 1-poles (resp. 2-poles) in lines (resp. columns) is compatible with
argument subtype precedence. A total order of Poles,, is a path through this table. Such a
path is compatible with argument subtype precedence, if it traverses each signature s before
the signatures on the right and below s. The path given by a lexicographic ordering, as
shown in Figure 6 satisfies the condition. For example, the signatures that are more specific
than (C, F) are all included in the grayed area.

A B C D E

G | o

Fig. 6.: Order of Pole Signatures

5.2 Computing the Conflicting Signatures

The computation of the conflicting signatures consists in finding the most specific applicable
signatures. In the case of a totally ordered set, there is a single smallest element, and the cost
to find it is linear in the number of elements of the set, if the comparison of two elements is

done in a constant time. Unfortunately, signatures are only partially ordered, increasing the

N

complexity to the square of the number of signatures to compare. As SUA4;, ;.. is a superset

8 This ordering of poles is not expensive as poles are produced in this order, from an ordering of

types that is done «:ce for all pole computations.
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of the set of applicable signatures, the worst-case complexity of con flicting is O(|S U AJ?)
signature comparisons®. However, this complexity can be lowered when there is no ambiguity,
i.e. there is a single most specific applicable signature.

The basic idea of our optimization is to store SU 4 in the total order of <. To compute
con flicting(s, SU A), the signatures in SU A are examined in the order < starting from the
smallest, i.e. most specific signatures. If there is a single MSA s;, then it is the first signature
si applicable to s. Moreover, a single loop over the ordered S U A is enough to prove it,
bringing the complexity down to O(|S U A)). Indeed, if there is a single MSA method s, we
have:

Vs € SUA, Skt = 8§ => 8kt > Sk => Spr > Sg.

On the other hand, if the iteration finds another applicable signature that is not more
generic than si, then s is ambiguous and the complexity is O(|SUA|?). Hence the complexity
of disambiguating m is O(|SUA|% x |A|+|SUA| x (|Poles,, — A|)) comparisons of signatures.

Ezample 16. Assume a new method m4(C, I) is added to the schema of Figure 4, so that [ is
now a 2-pole. Assume that (D, G) and (E, G) have already been found to be ambiguous and
added to A. Signature (D, I') must now be tested for ambiguity. Using the lexicographic order
represented in Figure 6 to sort SU A yields ((C,I), (E,G), (D,G),(C,G), (A,G),(B, F)).
The first signature applicable to (D, ) is (D, G) and no following signatures is more generic
than it. Hence (D, G) is not ambiguous. On the other hand, when (E, I) is tested for ambi-
guity, (C,I), then (E,G) are found to be applicable to (E, I), and (E,G) ¥ (C,I). Hence
(E, I) is ambiguous (con flicting((E,I)) = {(E,G), (C,I)}).

6 Future Work

Three issues are worth future investigation: impossible signatures, mixing method addition
with method selection and incremental disambiguation.

Impossible signatures We call impossible signatures, signatures that can never occur
as invocation signatures of a given generic function. They may be signatures containing
an abstract class, that is, a class that cannot have instances, or they may be forbidden
signatures as described in [ABDS94]. These signatures are user-defined and their use as
invocation signatures are type errors.

In case an impossible signature appears in a disambiguation set, defining the body of a
method with this signature may have no sense. Hence for some impossible signatures, the

® This comparison is done in constant time, if n is constant and the technique of [Cas93] is used
to keep the transitive closure of the subtyping relationship. The latter computation is done once
for all generic functions.
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programmer may want to define methods for the signatures that are directly more specific,
and not impossible. Our algorithm should be extended to ignore those signatures and rather
examine the signatures that are directly more specific.

Mixing Method Addition and Method Selection Another interesting research di-
rection consists in studying how disambiguation by method selection can be mixed with
disambiguation by method addition. Indeed, whenever the disambiguation algorithm finds
the first ambiguous signature s, it could pause and ask the programmer to choose between
two alternatives: add a new method with signature s or add a method selection clause, say-
ing “select method m; for signature s”, where m; is one of the conflicting methods. This is
especially relevant in the case where the new method only serves as a forwarder to one of
the conflicting methods. The algorithm would then look for the next ambiguous signature.
Interestingly, choosing method selection instead of method addition is not indifferent: adding
a method selection clause can actually solve more ambiguities and lead to a smaller set of

ambiguous signatures depending on which conflicting method is chosen.

m;(A)

e N/
\/

Fig. 7.: Conflicting Method Selection

Ezample 17. Consider the schema in Figure 7. In the case of disambiguation by method
addition, two disambiguation methods m(D) and m(E) must be added. The conflicting
signatures for (E) are (C) and (D). Assume that instead, a selection clause is added when
finding ambiguous signature (D). If the user selects m;(A4) for (D), m2(B) cannot be selected
for m(E) because of the monotonicity property [DHHM92]. The applicable methods for m(E)
are then m; (A) and m3(C), and the latter being more specific than the former, m(FE) is not
ambiguous as in the case of method addition. Note that (E) is ambiguous if the programmer
selects mq(B) for (D).

Incremental Disambiguation As the type hierarchy and the methods may evolve, es-
pecially during application development, it is interesting to investigate if it is possible to
compute the minimal disambiguation set based on the evolution operations performed on
the type hierarchy and methods.

7 Conclusion

In this paper, we addressed the problem of supporting programmers in the task of explicitly
disambiguating multi-methods by method addition. This process involves finding a set of
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disambiguating methods as small as possible. We proved that there always exists a single
minimal disambiguation set, and proposed an algorithm to compute it. This algorithm is
efficient in that it avoids testing all possible invocations for ambiguity, examining instead
a much smaller set of signatures, the pole signatures. Moreover, this algorithm associates
to each disambiguating method the set of conflicting signatures that caused the ambiguity.
This provides explanations and allows implementation of a disambiguating method as a
forwarder to one of the conflicting methods.

Future work involves taking impossible signatures into account. Moreover, the algorithm
can be extended to allow explicit disambiguation by mixing method addition with method
selection. Finally, we are interested in studying the relationship between the minimal dis-

ambiguation set and evolution operations on the type hierarchy and methods.

Acknowledgments: We would like to thank Eric Simon and Marie-Jo Bellosta for their
insightful comments on earlier versions of this paper, and Anthony Tomasic whose helpful
suggestions greatly improved the quality of this paper.

8 Appendix : Proof of Theorem 1

We first introduce the following definition:
Well-typed signatures. Well-Typed(m)={s€ 0" |3k € {1,...,p} s.t. s X sx}
To prove Theorem 1, we start from a slightly different definition of the sequence (s;), as

follows:

— Spy1 = maz<{s € Well-Typed, | |conflicting(s,{s1,...,5p})| > 1}
— Vk > p, skt1 = maz<{s € Well-Typed,,| sx > s and |con flicting(s, {s1,...,sx})| > 1}

In this definition, we take {sx | p < k} in Well-Typed,, instead of Poles,,. We use this
definition to prove that (si) is finite and that it is the smallest disambiguation set. Then we
prove that it is included in Polesy,, which shows that both definitions of (sy) are equivalent.

A Finiteness

To prove that {sx | k € N} is finite, it suffices to remark that it is included in &, which is
finite. For the rest of the paper, g the index of the last element of the sequence (s).

B Lemma

This lemma basically expresses that the way AS . is built “does not leave ambiguous sig-

natures behind”:

Lemma 2. Yk € {p+1,...,q}, s € Well-Typed,, s.t. s is ambiguous w.r.t. {s1,...,sx}
and § > 8.
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Proof: Let k > p and s € Well-Typed,,. We assume that s is ambiguous w.r.t. {s1,...,5k}
and s > si. In the following, we prove that s € {s1,..., sx}, to conclude that the assumption
is false.

We have |con flicting(s, {s1,...,sk})| > 1,1.e. |ming,{s; | j < k and s; > s}} > 1. Obvi-
ously the members of this minimum are strictly more generic than s, hence [ming, {s; | j < k

and s; = s}| > 1. Let us consider {s; | p < j < k and s; > s}. Two cases may occur:

~ {sj | p<j <kands; >s} =0, which implies that s > sp4;.
We show that s is ambiguous w.r.t. S. < being compatible with <, #j s.t. p < j < k and
s; = s. Hence the members of con flicting(s, {s1,...,s;}) are in S, i.e. s is ambiguous
wr.t. S.
From s > sp41 and the construction of s,y 1, it follows that s = sp41.
—{sj|p<j<kands; >s}#0:let k' =maz<{j|p<j<kands; >s} k' # g since
Skt > § 2 Sk 2> 8q. Thus spry) exists, and sp > 5 > sp 4.
We show that s is ambiguous w.r.t. {s;,...,sx }. < being compatible with <, 3 s.t.
k' < jand s; > s. Hence the members of con flicting(s, {s1,...,sx}) arein {s1,..., 8¢},
ie. s is ambiguous w.r.t. {s1,..., 8% }.

By construction of sg 41, it follows that s = sg/41.

Hence s € {s1,...,5k}, which implies that s in not ambiguous w.r.t. this set, in contra-
diction with the assumption. This concludes the proof of Lemma 2.

C AS . is a Disambiguation Set

min

To prove that A3 . is a disambiguation set, let us assume the existence of s € Well-Typedr,
ambiguous w.r.t. SU AZ,; . We show that s < s,, and then we apply Lemma 2 to conclude

that the assumption is false.

If s, > s we have {s' € Well-Typed,, | s, > s’ and |conflicting(s', {s1,...,8,})| > 1} #
@, 1.e. sq41 exists, in contradiction with the construction of g. Thus s > s,.

As a consequence, s is ambiguous w.r.t. {s1,...,85} and s > s,, in contradiction with
S

min

Lemma 2. Hence SU A3, is not ambiguous, and A3 . is a disambiguation set.

D AS. is the Smallest Disambiguation Set

min

We prove that A3, is included in every disambiguation set.

min

Let {sg _H,...,sf} be a disambiguation set. For convenience, we note that for all k,
k < p, sz = s;. Thus, {s¢,...,s%} is not ambiguous. We prove by induction on k, that
Yke{p+1,...,q}, {51,--.,8%} C {s%,...,s¢}. This induction hypothesis obviously holds
for k = 1,...,p by construction of (s‘f)ke{lw,',}.
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Assuming it is true for some k such that p < k < ¢, we take j such that {sg} =
con flicting(sk+1, {s{,-..,5%}). s¢ is unique because {s¢,...,s4} is not ambiguous. Let us
show that s¢ = sx41. We first show that s¢ # sx1 = s? is ambiguous w.r.t. {s1,...,sk+1},
then we apply Lemma 2.

Let A= {s; |t <k and s; > sg+1}. We have mz’na,HlA = conflicting(si+1,{s; | j <

k}). From the induction hypothesis, A C {s%,...,s%}, hence the elements of this set are
more generic than sg. This means that A C {s; | ¢ < k and s; > sg}. Reciprocally, 5; =

8% = 5; = 8k41, thus A= {s; | i < k and s; > s%}.

Assuming s¢ were not ambiguous w.r.t. {sy,...,s¢}, let {sa} = con flicting(s, {s1,...,
$k}) = ming , A. As a is monotonous, for s¢4; also s, would be more specific than the other

elements of A: i.e. we would have {s,} = conflicting(sk+1,{s1,---,Sk}), which is impossible

by construction of si4;. Hence s;’ is ambiguous w.r.t. {sy,...,s}.

d
3
{s1,-..,8k+1}. As sj > Sk+1, we apply Lemma 2 to show that this assumption is false.

Let us assume that s? > Sk+1: Sk4+1 1S not applicable to sj, hence s% is ambiguous w.r.t.

Finally s§ > sit1 and s§ ¥ sk41 implies 8¢ = sp4y, thus {s1,..., 8641} C {s¢,...,s2},
which concludes our proof.

E A8

min

is Made of Poles

We first recall some results mainly introduced in [AGS94].

Influence of a Pole. For alliin {1,...,n}, and all T} in Polei,,
Influencel (Ty) ={T € @ | T < T, and VT’ € Pole,, T AT or T, < T'}.

Ith Dynamic Argument. Dynamici, = {T' € © |3k € {1,...,p} s.t. T < T}}
Note that V(T?,...,T™) € Well-Typedn, Vi € {1,...,n},T* € Dynamict,.

Theorem 3. Let {T},...,T.} be Pole:,. Then {Influencei (T}),..., Influencel,(T.)} is
a partition of Dynamici,.

The latter theorem allows to define the following functions:

Pole of a Type, Poles of a Signature. For all i in {1,...,n}, all T in Dynamict,, and
all (T!,...,T™) in Well-Typed,,, we define:

polel (T) = Ty, s.t. T € Polei, and T € influencel,(Tx)
polen((T*, ..., T™)) = (polep,(T), ..., poley,(T™))

We also introduce the following lemma:

Lemma 4. Vs € Well-Typed,,,Vs' € Polesp,,s' = s = s' = polen(s).



186

Proof: Let s = (U',...,U") € Well-Typed,, sx = polen(s) = (U},...,U}), and s’ €
Polesy,, s' = (T1,...,T™). Let us show that Vi € {1,...,n}, T* = pole} (U;).

Let i € {1,...,n}. We have T* > U* because s’ > s.

From the definition of In fluencel,, as U* € Influencel (U), T* € Pole!,, and U* < T*,
we have U, < T% Thus s, < s', which concludes the proof of Lemma 4.

To show that AS ;. C Poles,,, we prove by induction that Vk > p, {s1,...,sx} C Polesp,.
This is true for k = p from the definitions of an i-pole and of Poles,,, because sy,..., s, are
the signatures of my,...,m,.

Assuming the induction hypothesis holds for some & such that p < k < g, we show that
Sk+1 € Polesy,, by proving that sgy1 = polen(sk+1)-

Let s, be polen(sky1). We show that si.; > sgy1 = 5y, is ambiguous w.r.t.
{s1,...,8k+1}), then we apply Lemma 2.

Let A= {s; |t <kands; > sgy1}. We have mina,kﬂA = conflicting(sk+1,{s; | J <
k}). From the induction hypothesis, A C Poles,,, hence the elements of this set are more

generic than s} ;. This means that A C {s; | ¢ < k and s; > Sk.1}- Reciprocally, s; >
Ske1 = Si = Sk, thus A= {s; |i< kands; = s;,,}.

Assuming s}, were not ambiguous w.r.t. {s1,...,s¢}, let {sq} = con flicting(si,,,{s1,

...,8k}) = min,, A. As a is monotonous, for sg4; also s, would be more specific than
Tlet1

the other elements of A, i.e. we would have {s,} = con flicting(si+1,{s1,..-,5&}), which is

impossible by construction of sx4;. Hence s§_; is ambiguous w.r.t. {s;,...,s¢}.

Let us assume that s}, ; > sk41: Sk41 is not applicable to s}, hence s, is ambiguous
w.rt. {s1,...,8k+1}. Moreover s}, > s¢4+1, hence we can apply Lemma 2 to show that this
assumption is false.

From s}, > sky1 and si ., ¥ Sk41, it follows that s}, = sk41, thus {s1,...,8k+1} C
Poles,,. This concludes our proof.
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