Inheritance and Cofree Constructions

Bart Jacobs
CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands.
Email: bjacobs@cwi.nl

Abstract. The coalgebraic view on classes and objects is elaborated to in-
clude inheritance. Inheritance in coalgebraic specification (of classes) will be
understood dually to parametrization in algebraic specification. That is, in-
heritance involves restriction (specialization), where parametrization involves
extension. And cofree constructions are “best” restrictions, like free construc-
tions are “best” extensions. To make this view on inheritance precise we need
a suitable notion of behaviour preserving morphism between classes, which will
be defined as a “coalgebra map up-to-bisimulation”.

1 Introduction

Two basic relations in object-oriented languages are: object o belongs to class C, and: class
C inherits from class C’ (see e.g. [23]). Class membership yields what is sometimes called
a “first order” classification of objects by classes, whereas inheritance provides a “second
order” classification of classes by their superclasses (ancestors). According to Cardelli (2,
p. 139]: “.. a theory of object-oriented programming should first of all focus on the
meaning of inheritance”. The first of these relations (class membership) is interpreted
in [12] (following [19], and also [10, 11}): briefly, a class is a coalgebra, and an object
belonging to a class is an element of the underlying state space of the class, as a coalgebra.
This will be used as a basis for an interpretation of the second (inheritance) relation in the
present paper: inheritance will involve a behaviour preserving coercion function between
classes.

Inheritance in object-oriented programming is used primarily for two purposes: reuse
and conceptual modeling (i.e. classification). In the first case inheritance is useful in im-
plementation, and in the second case its advantages come up mainly in design: it allows
suitable representations of the data domain, giving the “is-a” relation between classes (see
e.g. [22] for an elaborate discussion). We think that inheritance is intuitively a clear and
useful notion: for example, it is convenient to have a class of students inheriting from a
class of humans, so that all operations acting on humans can directly be applied to stu-
dents, without reimplementation. And because inheritance is intuitively clear, it should
admit a simple set-theoretic semantics (without complicated fixed points, like for example
in [23, 3]).

In our approach the aspect of conceptual modeling gets more attention than the aspect
of reuse. We make a clear separation between class specifications (also called “abstract”
classes) and class implementations (or, “concrete” classes), where the latter are models
of the former. We shall put more emphasis on specification, than on actual implementa-
tion. Class implementations are (non-deferred) classes as used in object-oriented languages.
They will be interpreted as so-called coalgebras, consisting of a state space (the interpreta-
tion of the class as a type), together with a collection of functions (the interpretation of the

211

methods) acting on the state space. Coalgebras may be understood as general dynamical
systems, consisting of a state space with a transition function. Objects belonging to such
a class are elements of the state space (i.e. of the carrier of the coalgebra), see [12]. A
class implementation gives the method interpretations on a state space, and an object be-
longing to that class contains specific data values. A class specification gives a behavioural
description of classes. The format of class specifications is “coalgebraic”, as opposed to the
more traditional “algebraic” format (see below).
Two ideas in particular are elaborated in this paper.

(1) In a class specification we distinguish a “core” part and a “definition” part. The
definition part may contain definitions of functions (possibly non-unary}), in terms of
unary methods in the core part. Models of the specification are models of the core
part, in which the defined functions receive their interpretation via their definitions
and the interpretations of the core part. The definition part does not contribute to
the semantics. It may be altered freely in descendants. But the core part may only
become more specific in descendants, ensuring monotony. Thus we essentially model
what is sometimes called “strict” inheritance, but we do have some flexibility in the
definition part.

In fact, the distinction between core and definition part provides a criterion for when
it is appropriate to redefine in descendant classes.

(2) Inheritance in coalgebraic specification is similar, but dual, to parametrization in
algebraic specification. Both are mechanisms for the stepwise construction of data-
structures, but the paradigm for algebraic specification is extension (with “unit”
morphism as “extension” map), and in coalgebraic specification the paradigm is re-
striction (with “counit” morphism as “restriction” or “coercion” map). Accordingly,
one has free constructions in algebraic specification where one has cofree constructions
in coalgebraic specification. We shall use some elementary category theory—involving
categories and functors only—to make this duality explicit.

We illustrate this duality between parametrization and inheritance in a simple example,
using some ad hoc notation. Consider an algebraic specification NELIST of non-empty lists
(of elements of some fixed data set A), as below. It is imported (or, used as a parameter)
in a subsequent parametrized specification LIST of possibly empty lists. Coalgebraically
we first specify an elementary bank account BANK, and then describe the inheriting spec-
ification NBANK with an additional name attribute. The crucial difference between the
algebraic and the coalgebraic specification techniques is that in the first case we only have
“constructors” pointing into the unknown type X that we are specifying, whereas in the
second coalgebraic case we have “destructors” or “observers” pointing out of X (see also
the difference between abstract data types and procedural abstraction in [4], and between
functional modules and object modules in [9] going back to [8]; the unknown X is a (single)
hidden sort in the latter approach). Our use of the terminology of constructors and de-
structors comes from data type theory, and is different from their use in C++, see [21]. A
typical constructor has the form A x X x---x X — X where A is a constant set, whereas
typical destructors are X — A and X — X%, The latter can equivalently be written as
X x B —— X, so that it is also a constructor. Hence constructors and destructors form
non-disjoint sets of function symbols.

Here, then, are the specifications: the algebraic ones on the left, and the coalgebraic

ones on the right.

212

Alg spec: NELIST Coalg spec: BANK

operations: S o ttoner
. A’;x); — X ball X — Z
asse::?:ﬁs- chba: X X Z — X
COnc(z.conc(y z)) assertions:
"conc(cor bal(ch_bal(s, z)) = bal(s) + =

= conc(conc(z, y), z))

Alg spec: LIST Coalg spec: NBANK

imports: et
NE :
‘LIST BANK
operations: - tions:
empty:1 — X oper : .
assertions: name: X — String
assertions:

zz:zg::rine;:nt;z; - : name(ch _bal(s, z)) = name(s)
A model of such a (algebraic or coalgebraic) specification consists of a “carrier” set U =
[X] interpreting the type X, together with interpretations of the specified operations (as
suitable functions) satisfying the assertions. (In the algebraic case these functions form an
algebra T(U) — U on U, and in the coalgebraic case they form a coalgebra U — S(U) on
U, for suitable functors T, S: Sets = Sets describing the signatures.)

The import clause in the LIST and NBANK specifications tells us that all the oper-
ations and assertions are copied from the imported specification. This means that every
model of the LIST specification is also a model of the NELIST specification, and every
model of the NBANK specification is also a model of the BANK specification: we have
“forget” operations U{: Models(LIST) — Models(NELIST) and V: Models(NBANK) —
Models(BANK), which respectively, forget the interpretations of the empty operation, and
of the name operation (but keep the carrier sets unaltered). At this point the difference in
interpretation of the import clause starts: algebraically one thinks of every non-empty list
as a list, whereas coalgebraically every bank account with name is seen as a bank account.
Notice the reversal of direction. Thus, (algebraic) parametrization is about ertension,
whereas (coalgebraic) inheritance is about restriction (or specialization). For example, we
can take as model of NELIST the set A* of non-empty finite sequences of A’s, and as
model of LIST the set A* of finite sequences of A’s, including the empty one. There is
then an obvious “extension” map n: A¥ — U(A*), commuting with the interpretations of
the NELIST-operations. For the coalgebraic specifications we can take as bank account
model the set Z of integers (with identity as interpretation for bal and addition for ch_bal).
And as model of a bank account with name we can take the set Z x String, with obvi-
ous interpretations of the operations. There is then a “restriction” or “coercion” map
€: V(Z x String) — Z given by first projection, which commutes with the interpretations of
the BANK-operations.

This difference between parametrization and inheritance results from the difference be-
tween the use of constructors in algebraic specification and of destructors in coalgebraic
specification. All the constructors of the imported (algebraic) specification also construct
elements of the importing specification, so that we have extension. And all destructors (or
observers) of the imported (coalgebraic) specification also act on the importing specifica-
tion, but in this case we have restriction. This difference is crucial.

In the preliminary Sections 2, 3 and 4 we explain the essentials of coalgebraic specifi-

213

cation, of free and cofree constructions, and of bisimilarity on classes. The latter means
indistinguishability of objects via attributes, and plays an important role for our notion
of morphism between classes, involving “coalgebra maps up-to-bisimulation”. The rest of
this paper is essentially devoted to examples, explaining the coalgebraic view on classes
and inheritance. Examples will be given of single inheritance, of multiple inheritance (both
with and without common ancestor) and of repeated inheritance. We are not so concerned
about specific syntactic details of the language that we use, because we start from a clear
semantics, and see language as derived.

2 Class specifications and implementations

In this section we recall the essentials from [12], which forms the basis for what follows.
We distinguish between class specifications and class implementations. These class imple-
mentations are what are usually simply called classes in object-oriented languages. Class
specifications are linguistic entities consisting of three parts describing (1) the methods
(operations), (2) the logical assertions which these methods should satisfy, and (3) the
conditions which should hold for newly created objects. A class specification may be un-
derstood as a class in Eiffel (see [15]) in which all methods (or, features, in Eiffel-speak)
are deferred (i.e. not yet interpreted) and in which pre- and post-conditions and invariants
specify! the behaviour of the methods. In C++ one can also have classes with deferred
methods (or, virtual data/member functions, in C++-speak), but assertions do not form
part of the language.

As mathematical model of class implementations we use coalgebras. These are the
formal duals of algebras. They consist of a carrier set (or local state space) U together
with a (transition) function U — T'(U) acting on this set U, with as codomain T'(U) an
expression, possibly containing U, denoting a set. Formally, T is a functor Sets — Sets;
it describes the signature of function symbols. The state space U gives an interpretation
U = [X] of the type X occurring in class specifications, and the function U — T(U)
interprets the methods. Objects belonging to a class with operations U — T(U) are
elements u € U of this state space. An object evaluates a method via function application
(to itself). Especially, we require that each class comes with a distinguished element (or
initial state) ug € U serving as interpretation of newly created objects. Below we shall use
class specifications with methods having one of the following two forms (like in [19]):

att X — A or proc:X x B — X

where A and B are constant sets, not depending on the “unknown” type X (of self). In the
first case we have an attribute giving for a “local state” s € X an {observable) attribute
value s.at = at(s) € A. One can only observe the state space X via such attributes. In the
second case we have a procedure proc which has an effect on the local state space X: it yields
for a local state s € X and a parameter value b € B a new state s.proc(b) = proc(s,b) € X.
The effect of such a procedure call may be visible via the attributes. Attributes are like
instance variables in object-oriented languages; procedures may be used to change the
values of these instance variables, see the example below. When the parameter set B is a
singleton set 1 = {+}, then we write X — X instead of X x 1 — X. Also, B may consist
of a product B; x - - - x By,. For simplicity we here restrict ourselves to these two forms of
methods. Functions X X A — B are seen as special instances of attributes using function
spaces, in X — B#. In [12] a more general form of method X x A » B+C x X is used,
giving additional expressive power. But this is not needed to describe inheritance, and
only distracts from the essentials.

1 Assertions in Eiffel are used not only for specification but also for run-time monitoring.

214

Two methods X — A and X x B — X may be combined into a single “destructor”
map X — A x X%, giving us a coalgebra on X, pointing out of X. Dually, algebras are
“constructor” maps of the form T'(X) — X pointing into X. Algebraically, one constructs
where coalgebraically one observes (or, destructs). See [12] for more details. Multiple
attributes X — A;, ..., X — A, may be combined into a single attribute X —
Ay X - x A, And multiple procedures X x By — X, ..., X X B, — X may be
combined into a single one X x (B} + -+ B;,) — X, where + is disjoint union.

A typical example of a class specification is as follows. It describes an unknown type
X behaving like a set of locations in a plane.

class spec: LOC
methods:
fst: X — R
snd: X — R
move: X xExR— X
assertions:
s.move(dz, dy).fst = s.fst + dz
s.move(dz, dy).snd = s.snd + dy
creation:
new.fst = 0
new.snd = 0
end class spec

Here we specify classes of locations with first and second coordinate attributes fst and snd
vielding real numbers, and with a move procedure yielding a new state. In the assertion
clause we have the obvious conditions that after a move with change parameters dz and dy
the first coordinate is incremented by dz and the second one by dy. In such specifications
we use ‘s’ for ‘self’ or ‘state’ as pseudovariable describing an arbitrary inhabitant of X. We
shall use the object-oriented dot (.) notation, instead of the functional notation, so that
we write s.move(dz, dy).fst for what would functionally be written as fst{(move(s, dz, dy)).
Finally in the creation clause we stipulate that newly created objects must have first and
second coordinate equal to 0 € B This is coalgebraic (behavioural) specification since
we prescribe nothing about what should be inside the local state space X or about how
the methods should be implemented, but only what the observable behaviour should be.
Typically, one cannot construct inhabitants of X via methods. This X is best seen as a
black box to which we have limited access via the specified methods. In fact, we do not
really care about what is inside X as long as X comes with operations as specified. Proper
implementation is a local responsibility.

A class (implementation) satisfying such a specification is a (coalgebraic) model of the
specification. In the example it consists of an interpretation U = [X] of the local state
space X, together with interpretations [fst]: U — R, [snd]: U — R, [move]: U xRxR —
U of the methods in such a way that the equations are satisfied. Also a class should
contain a distinguished element 4y € U satisfying the creation conditions: [fst](uo) =
0 = [snd](uo). These interpretations of the methods correspond to a single function
U — R x K x UR*R) forming a coalgebra of the functor X —» R x B x X(RxR),

Formally, a class (implementation) is a 3-tuple (U,U — T(U),uq € U}, consisting of
a state space U, a coalgebra U — T(U) on this set, and an initial state ug € U. When
part of this structure is understood from the context, we often refer to a class simply by
mentioning its state space U.

An obvious example of a class implementation is obtained by taking Cartesian coordi-

nates [X]| = B? as local states, with operations:

215

[fst] =mB? — R, ie (z,y)— 2, [snd] =7"R® — R ie. (z,y)—y.

And
[move]: B> x R x R — R? is (z,y,dz,dy) - (2 +dz,y +dy).

Obviously, the assertions in the specification hold for this interpretation. As initial state
we take the element (0,0) € R?. Another class can be obtained with polar coordinates
{X] = [0,00) x [0,27), but this complicates the definition of the (interpretations of the)
methods. A totally different class implementation has as state space the set (B?)* of finite
sequences of Cartesian coordinates. Such a sequence as object may be seen as the sequence
of consecutive changes in the lifetime of the object. We can interpret the operations as:

[fst]:(B®)* — R
((z1,91),-+ 2 (Zn,¥n)) +— Z1 4+ 2
[snd]:(B%)* — R
(z1,%1),- - (T, ¥n)) — Y14+ +¥n
[move]:(B2)* xR xR — (B2)*
(((21,91)s- -, (Zny¥n))sdz,dy) — ((21,31),- -+, (Tn, ¥n), (dz, dy)).

where the latter involves concatenation of the parameter (dzx,dy). It is not hard to see that
the equations hold in this model. The empty sequence () € (E?)* can serve as initial state.
But one can also take the singleton sequence (0, 0) € (B?)* as initial state, or ((0,0), (0,0))
etcetera. (These are all “bisimilar” (or indistinguishable), see Section 3 below.) Thus
we have another example of a class (implementation). Notice that although these three
examples give quite different interpretations, a client cannot see these differences, since
a client can only use the specified methods. Implementation is not a client’s concern.
We achieve this encapsulation by separating specification (including the interface) from
implementation.

In the remainder of this text we shall omit the interpretation braces [—]. When we
write a method, the context should make clear whether it is meant as a function symbol
in some specification, or as an interpretation thereof in some model.

2.1 Class specifications with definitions

We now extend our class specification format with an extra clause for definable functions.
This extension does not yet occur in [12]. It will help us avoid some of the anomalies usually
associated with inheritance, see [1] for a discussion. Such an extended class specification
may contain, besides a “core” part as described above, an additional part describing some
function definitions. These functions may have types of the form X™ — Aor X" xB — X,
for n > 1, where X is the local state space (the type of self). Notice that these definable
functions may thus be binary (or ternary etcetera). But the function definitions may only
use the unary methods described in the core specification. This core will determine the
meaning of the specification, and within a particular model the definable functions will
receive their meaning via their definitions. Thus, in every specific model, we have specific
interpretations of the definable functions. For example, we may write a variation LOC+
on the above specification LOC as:

216

class spec: LOC+
(methods, assertions and creation as for LOC)
definitions:
dist: X — R
dist(s) = sqrt{(s.fst)? + (s.snd)?)
eq: X x X — Bool
eq(sy,s2) = (s1.fst = sp.fst) A (s1.snd = sg.snd)
end class spec

Hence by dist we mean distance to the origin. These defined functions dist and eq do not
contribute to the meaning of the specification. Thus any model of the LOC specification
is also a model of the LOC+ specification. But in different models the interpretations of
dist and eq will be different, as a result of the different interpretations of the fst and snd
attributes. For example, in the above LOC model with state space &? we have

dist(z,y) = V22 + 32

whereas in the LOC model with state space (R?)* it will be

dis‘((zhyl)v --,(Zmyn)) = \/(Il + "‘+xﬂ)2 + (yl +-- 4+ yn)2'

There are similarly different interpretations of the equality function eq, determined by
the different interpretations of fst and snd. We shall use the function notation for these
definable functions, since for multiple state arguments there is in general no preferred
component which should be mentioned first: it seems more natural to write eq(s;,s2) than
s;.eq(sz) or sy.eq(s;). For unary methods in the core part, the dot-notation s.method does
make sense.

Since these definable functions do not contribute to the meaning of specifications, we
may freely alter them in descendants without affecting monotonicity (or “strictness”) for
the interpretations of the core part. This is the main point of separating the core part and
the definition part. The alterations that we allow are removal of definitions and overriding
of definitions, for which we shall use ad hoc syntax. An example will be presented in the
next section, consisting of a specification of circles inheriting from locations by extension
with an extra radius attribute, in the core part. For circles we shall redefine the equality
function eq, in the definition part.

Definability is a language dependent notion, but what definability means in a specific
programming language will be unproblematic. We shall use elementary language constructs
only, meant as illustration.

Within this framework one must choose in advance which methods of a class specifi-
cations are essential and belong to the core part, and which to the definition part. But
(good) class design is the hardest part of object-oriented programming anyway.

3 Bisimulation and morphisms of classes

Cousider the class specification LOC of locations from the previous section, with the imple-
mentation (class) on the set (B2)* of finite sequences of pairs of reals. A client of this class
cannot distinguish between the locations ((2, 3), (1,1)) € (B2)* and ((3,0), (0,4)) € (R?*)*:
in both cases the first coordinate is equal to 3, and the second to 4, and by moving these
points around we cannot create a difference between them. These locations (or states)

217

are indistinguishable by the methods in the LOC-specification, and are called bisimilar.
Here is the general notion. (We can restrict ourselves to class specifications with a single
attribute and procedure only, by combination of attributes and methods, as mentioned in
Section 2.)

3.1. Definition. Consider a functor X ~ A x XZ and a coalgebra ¢ = (p1,p2):U —
A x UZ of this functor, giving us interpretations of an attribute ¢; and a procedure ¢,
acting on a set U.

(i) A bisimulation on ¢ is a relation R C U x U on its state space which satisfies for
each pair z,y € U:

R(z,y) = [p1(g) =¢1(y) and forall b€ B, R(pa(2)(b), 22(y)())]-

(i) Two elements z,y € U are called bisimilar (with respect to the coalgebra structure
) if there is a bisimulation R C U x U with R(z,y). We then write z & y.

It is not hard to see that bisimilarity « is itself a bisimulation: it is the greatest
bisimulation. And it is an equivalence relation, since the identity relation, the opposite
+°P and the composite < o « are bisimulations, and are thus contained in ++. Bisimilarity
 formalizes behavioural indistinguishability. It is a standard notion in process theory (see
e.g. {17]) and in coalgebra.

Bisimilarity on the above LOC-class (R?)* is given by

((Ilnyl)’ erey (xnvyn)) hud ((ztlayi)r ceey (zlms'y:n))
<

Z1+ o ra=2i+o+z, and it FYn=v ot Ve

States in this relation « are indeed indistinguishable by the LOC-methods. Bisimilarity
on the LOC-class B? is simply the identity relation. This is because states are simply given
by their first and second coordinate. (The class is based on a terminal coalgebra, see [12].)

A client of a class can only see objects (inhabitants of a state space) up-to-bisimulation.
This will be reflected in the notion of morphism of classes that we introduce below.

3.2. Definition. Consider a class specification S with its signature of methods described
by the functor S(X) = A x XB. We define a category Class(S) of classes satisfying this
specification in the following manner.

objects pairs {U 5 S(U),uo € U) consisting of a coalgebra ¢ = (i1, p2) with
local state space U, giving an interpretation of the methods in S which
satisfies the assertions in S, together with an initial state up € U satis-
fying the creation conditions in S.
morphisms (U 5 S(U),uw € U) — (V S, 8(V),v € V) consist of a function
f:U — V between the underlying state spaces satisfying the require-
ments:
(i) f preserves bisimilarity: u e u' implies f(u) & f(u');
(i) Yr1o f=p1:U = 4
(iii) for each u € U and b € B one has ¥2(f(1))(b) = f(p2(u)(d));
(iv) fluo) & vo.

The first condition (i) is actually derivable from (ii) and (jii)—see the lemma below—
but is convenient to have explicit in the definition, for example to see that these maps are
closed under composition.

218

What is traditionally called a “morphism of coalgebras” from U % S(U) to V %S (V)is
a function f:U — V satisfying (ii) as above but (iii) with bisimilarity « replaced by equal-
ity =. The conditions (ii) and (iii) in this definition describe what may be called a “mor-
phism of coalgebras up-to-bisimulation” (like one has “bisimilarity up-to-bisimulation”,
see [17]). Since bisimilarity on terminal coalgebras is equality, changing the notion of
morphism between coalgebras in this way does not affect terminality.

For example, in the category Class(LOC) of classes of the LOC-specification we have
morphisms

f g

(B) ————R? and R — (B?)*
given by

f((xlayl)v-",(zmyn))=(Il+"'+zn)yl+"'+yn) and g(:z:,y)=((:1:,0),(0,y)).

We show that g commutes up-to-bisimulation with the move-interpretations:

move(g((z,y),dz,dy) = move(((z,0),(0,v)),dz,dy)
= ((z,0),(0,9),(d=, dy))

((z +dz,0), (y + dy,0))

g9(z +dz,y + dy)

g(move((z,y), dz, zy)).

1T

Il

3.3. Lemma. The first condition (i) for morphisms in Class(S) in Definition 3.2 is deriv-
able from conditions (ii) end (iii).

Proof. Assume coalgebras ¢, as in the definition, and a function f:U — V between
their state spaces, satisfying conditions (ii) and (iii). For an element « € U and a sequence
B € B*, define ug € U by induction on the length of 3 as:

Uy =1u and ug.y = 802(“5)(1’)

We claim that for u,u' € U with u & v and for 8 € B* the following holds.

(a) up o up;

() flup) = flup).
Notice that (b) gives the required result, for # = (). Statement (a) follows directly by
induction on 8 from the fact that « is itself a bisimulation. For (b) we have to do some
work. Define relations R,S CV x V by

R = {{f(up), f(up)) | v,u’ € U with w & v, and 8 € B*} and S=oo0Row.

Our aim is to show that S is a bisimulation. This yields that R is also a bisimulation (since
+ is reflexive), and thus that R C &, as required.

Assume therefore (v,v') € S, say with v & f(ug)Rf(up) < v', where u & u' and
B € B*. Then

o $1(0) = 41 (wg) © or(us) @ o (uh) Dy (F(uf)) = v (v).

o Ya(0)(b) = wa(f(us))(®) ‘S f(pa(ug)(B)) = Flug)RI(upy) = F(a(u)(b))
¥a(f(up))(b) o ¥2(v')(b). Hence (32(v)(b), %a2(v')(b)) € S.

The relation R used in this proof is what Milner (17} calls a “bisimulation up-to-bisimila-
rity”, since «+ o R o « is a bisimulation.

ii

,\
tid

all

219

4 Cofree constructions

“Cofree” constructions are the formal duals of “free” constructions. These free construc-
tions are well-known in mathematics, and also in computer science in the theory of algebraic
specifications. The starting point consists of two notions where one naturally gives rise to
the other by forgetting part of the structure. As paradigmatic example we take monoids
and sets. A monoid consists of a set with a unary and binary operation satisfying some
equations. Every monoid gives us a set, simply by forgetting its operations. In this sit-
uation we can say that the free monoid on a given set A consists of a monoid (M,u,-)
together with a “unit” function 7: A — M such that for every monoid (N,v,s) with a
function f: A — N there is a unique homomorphism g: (M, u,-) — (N,v,e) of monoids?
with f = g o 5. This monoid (M,e,-) is called the “free” monoid on A. It can intuitively
be understood as the “smallest” monoid which “contains” the set A vian: A — M. It is
the “best possible” monoid into which one can map A. Free monoids on a set exist: it is
not hard to see that the set A* of finite sequences of elements of A with the empty sequence
and concatenation as unary and binary operation, is the free monoid on A. The required
unit map 7: A — A* sends an element a € A to the singleton sequence {a) € A*.

Free constructions are used in algebraic specification to give meaning to parametrized
specifications, see e.g. [5]. For example, consider a specification ABMON of Abelian
monoids, with signature e:1 — X, m:X x X — X and equations m(z,e) = z,
m(z,y) = m(y,z), m(m(z,y),z) = m(z,m(y,2)). If we now wish to write a specifica-
tion ABGR of Abelian groups, we can extend the specification of monoids with an extra
function symbol i: X — X for inverse with equation m(z,i(z)) = e. One says that the
specification ABGR is parametrized by ABMON. And one thinks of ABGR as an extension
of ABMON, which can be expressed formally via an inclusion ABMON — ABGR of spec-
ifications. Semantically, every Abelian group yields an Abelian monoid by forgetting the
inverse operation. This gives us a forget operation Models(ABGR) — Models(ABMON)
induced by the inclusion ABMON — ABGR. And if we have a model of the ABMON spec-
ification, consisting of an Abelian monoid (M, u,-). then the free Abelian group on this
monoid gives us a canonical model for the specification ABGR. Also this free construction
exists, and can be described via a quotient of the free Abelian group on the underlying
set, see the “Grothendieck group” example in {14]. Ome can think of this free construc-
tion as adding to the given Abelian monoid as little as necessary to obtain an Abelian
group. One does not build an Abelian group from scratch, but one starts from an already
given Abelian monoid. Such mechanisms are important in the stepwise construction of
(algebraic) data-structures.

The general situation is the following. Suppose we have two categories C and I and
a forgetful functor #:C — D. One can think of & as the forgetful functor from monoids
to sets, or from Abelian groups to Abelian monoids. A free construction (also called
universal arrow) on an object 4 € ID (with respect to this functor &) consists of an object
B € C together with an arrow 7: A — U(B) in D which is universal in the following sense:
for each object B’ € C with a map f: A — U(B') in D there is a unique map ¢: B —~ B’ in
C such that f =U(g) o 7. In a diagram:

n

A B A—>U(B)
|
for lf inDweget 19 inC with 7 lu(g) in D.
Y
U(B") B’ U(B")

2This means that g is a function g: M — N between the underlying sets with g(u) = v and g(z - y) =
9(=) ® 9(y)-

220

Such a free construction, if it exists, is determined up-to isomorphism. And if a free
construction exists for each object A € I, then we can define a functor 7: D — C, left
adjoint to the forgetful functor U, see (13, IV] for details.

A cofree construction with respect to a functor &: C — D can now simply be defined
by duality as a free construction with respect to the associated functor L/°P:C°P — [P
between opposite categories (with arrows reversed). Explicitly, a cofree construction on an
object A € D consists of an object B € C together with a “counit” arrow e:U(B) — A in
D which is universal: for every B’ € C and map f:U(B’') — A in D there is a unique map
¢: B' — B in C with € o U(g) = f, like in:

A B UB)—F——>4
A
for Tf in D thereis 19 in C with u(g)T / in D.
|
UB") B U(B'")

Thus every map into A out of an object coming from C must factor uniquely through the
counit €. If we have such a cofree construction for each object A € D, then we get a right
adjoint to the forgetful functor U.

Cofree constructions (right adjoints to forgetful functors) are more rare in mathematics.
Here is a simple example. Consider the forgetful functor &«: PreOrd — Sets from the
category of preorders (with monotone functions) to sets. The cofree construction on a set
A yields the “indiscrete” preorder {4, A x A) on A, where A x A is the order relation on
A relating all elements. The identity function /(A4, A X A) — A is then the universal map
€. As an aside, the free construction with respect to this functor assigns to the set A the
“discrete” preorder (4, =) in which only equal elements are related. Similarly, with respect
to the forgetful functor Top — Sets from topological spaces to sets, the free construction
puts the discrete topology on a set (everything open), and the cofree construction imposes
the indiscrete topology (only @ and the set itself are open).

The main point of this paper is that cofree constructions arise naturally in the seman-
tics of inheritance of object-oriented languages. The paradigm underlying inheritance is
restriction, instead of extension: groups extend monoids and lorries inherit from vehicles
(i.e. form a restricted class of vehicles). This is because the (algebraic) operations for
constructing elements of a monoid also yield elements of a group, and dually, the (coalge-
braic) operations which act on (or, destruct) vehicles also act on lorries. Free constructions
are minimal extensions, and similarly, cofree constructions are minimal restrictions. This
minimality of restriction is called “minimal realization”, see e.g. [6, 8], but also 7, 5.3].

5 Main definitions, and examples

Class specifications have been introduced above as a means of describing the methods and
behaviour of classes (their models, or implementations). We shall now describe inheritance
both between class specifications and between class implementations (so that we get “spec-
ification and implementation hierarchies”, as discussed in [22, 1.1]). A class specification S
inherits from a class specification T if the text of S mentions “inherits from: T (instead
of the more neutral “imports: T” as used in the introduction). Then it is understood that
all the methods, assertions, creation conditions and definitions of T form part of S. But S
may contain more, namely:

(1) S may have additional methods.

(2) S may have additional assertions; moreover, the assertions of 7' may be strengthened.

221

(3) S may have additional creation conditions; moreover, the creation conditions of T'
may be strengthened.

(4) The output type A of an attribute X — A in T may be restricted to a subtype
A' < A. And the input type B of a procedure X x B — X in T may be extended
to a supertype B' « B.

(5) In the definition section of S, function definitions from T may be removed or rede-
fined, and new function definitions may be added.

These five points ensure that models of the child specification S are also models of the
parent specification T. Formally, they ensure that there is a forgetful functor

Class(S) —F . Class(T')

between the corresponding categories of classes. This expresses the monotonicity (or strict-
ness) of inheritance.

(We sketch some details of this forgetful functor F. Suppose the specification T has
an attribute X — A; and a procedure X x By — X, so that a model of these methods
is a coalgebra U — A; x UB of the functor 7(X) = 4; x X5, Assume the inheriting
specification S adds a new attribute X — A, and procedure X x B; — X, and further
restricts the attribute of T' to i: A| — A;, and extends the input of the procedure of T
to j: By — B). The functor associated with S is then S(X) = (4] x A2) x X(Bi+Ba) Tt
is not hard to see that an S-coalgebra ¢ = (@1, p2):U — (A} x Ag) x U(Pi+52) can be
mapped to a T-coalgebra, namely to the composite F(yp) = (i o m) X plinles) o o = u €
U. (i(my (w)), p2()(§(inl b))): U — A; x UB2. In going from ¢ to F(¢) the interpretations
of the additional attribute and procedure in S are forgotten, and the input and output
types are restored. This operation ¢ +— F(p) yields a functor Class(S) — Class(T)
between categories of classes since the assertion and creation conditions in S imply those
of T. On morphisms F is simply the identity.)

Two further remarks are in order. First, the monotonicity mentioned above exists
because the function definitions do not contribute to the meaning of classes. Hence one
can modify these definitions as one wishes. In fact, from a semantical perspective, the
above point (5) is totally irrelevant. We shall see an example in Subsection 5.2. Secondly,
in the examples below we shall not see instances of the fourth point. Therefore we can
describe inheritance in these examples as an inclusion T < S of specifications, giving rise
to the forgetful functor F: Class(S) — Class(T).

We have described inheritance between class specifications as a syntactic notation for
incremental specification. We now turn to inheritance between class implementations. This
will be semantic in nature.

5.1. Definition. Consider a class specification S inheriting from a class specification T
as above, together with the resulting forgetful functor

F

Class(S) Class(T)

(i) In this situation we say that a class B € Class(S) inherits from a class A €
Class(T) if there is 2 morphism of classes f: 7(B) — A in the category Class(T). This
means that the local states of B are mapped by f to the local states of A in such a way
that f commutes (up-to-bisimulation) with the interpretations of the methods in T', and
preserves the initial state (again, up-to-bisimulation).

222

We shall then call B a subclass of 4, and f: F(B) — A a coercion map (from B to
A). This coercion map turns objects of B into objects of A, in such a way that T-behaviour
is preserved.

(ii) The cofree subclass on A € Class(T) is the cofree construction on A with respect
to the forgetful functor F. It consists of a subclass B with a universal coercion &: F (B) —
A: for each subclass B’ with coercion f: F(B’) — A there is a unique map g: B’ --» B of
classes with € o F(g) = f.

The intuition is that the cofree subclass on A is the “best possible” implementation of
S, starting from the already given implementation A of the parent 7.

The following result asserts that if class a B inherits from a class A, then, elements
of B with the same B-behaviour, have, in A, the same A-behaviour. Thus, objects with
are indistinguishable in a subclass are also indistinguishable in the parent. This is because
morphisms of classes preserve behaviour.

5.2. Lemma. Let B € Class(S) inherit from A € Class(T), say via f:F(B) - A as
above. Then
zopy = f(z) o4 fly)

Proof. It is not hard to see that the composite relation
R=o40 {(f(z),f(y)) | z o5 ¥} 09y

is a bisimulation on A. Hence R C &4, and thus {(f(z), f(¥)) | = =5 Y} C oy, as
required. a

The rest of this paper is devoted to examples illustrating these concepts for toy class
specifications. With multiple and repeated inheritance one does not have one class (spec-
ification) inheriting from another, so a slightly different functor F will be used. But the
main points of the definition remain the same.

5.1 Single inheritance, without definitions

We shall elaborate the bank account example from the introduction. We first specify classes
of elementary bank accounts with a balance attribute, and a change procedure (using the
object-oriented dot notation, instead of the functional notation as in the introduction).
Then we extend this specification with a name attribute, together with an associated
procedure for setting the name (of the holder of the bank account; note that such a name
may change—e.g. through marriage).

class spec: NBANK
inherits from:

class spec: BANK BANK
methods: methods:
bal X — Z name: X — String
chbal: X xZ — X ch_name: X x String — X
assertions: assertions:
s.ch_bal(z).bal = s.bal + z s.ch_bal(z).name = s.name
creation: s.ch_name(y).bal = s.bal
new.bal =0 s.ch_name(y).name = y
end class spec creation:
new.name = “”

end class spec

223

where “” is the empty string. The idea is that the specification BANK is extended with an
additional attribute name and procedure ch_name for telling and changing the name. Thus
NBANK contains all the methods of BANK. Also the specification NBANK is extended
with some extra assertions and conditions at creation. The first two assertions tell us that
by changing the balance the name does not change, and by changing the name the balance
remains the same. These assertions make sure that after a change of name we still have
a balance, and that after changing the balance we still have a name. This corresponds to
what is called “capture” in [18].

Let us now assume that we have a class implementation A € Class(BANK) of this
specification BANK with as state space the set Z* of finite sequences of integers. The
“balance” and “change-balance” operations of A are interpreted as:

bal: Z* — Z is (Z1,-.-,Zn) > T1t o+ T
chbal: Z*x Z— Z* is {((T1,--~,Zn),Z) & (T1,.-- 3T,y Z)-

As initial state of A we take the empty sequence () € Z*.

The cofree subclass B on A gives the most efficient implementation of the extended
specification NBANK, given the implementation A of the parent BANK. Its state space
simply has an extra string field with respect to A, to accomodate for the extra name
information. That is, the state space of B is Z* x String with operations

bal((z1,.-.,Zn),@) =1 + -+ Zn, chbal((zy,.-.,Zn), &, 2) = ((F1,- .+, Za,T), @),
name((Zy,--.,ZTn) 0} =0, -chname((zi,--,Zn), @, B) = ((Z1;---+2n): B)

The initial state of B is ({), ") € Z* x String. The first projection m: Z* x String — Z* is
the appropriate universal coercion map from B to A. This will be shown in some detail.
- - First, we bave that bisimilarity-on Z* is given by

@1y Zn) 2 W1y ¥m) € bal(zi1,...,2n) = bal(y1, ..., ¥m)
& T+t zTpn=n1++ Ym-

And similarly bisimilarity on Z* x String is
(T1y-+12a)y @) S A1, Um):B) © (@14 +Tn =yt +ym) A(@=F)

It is then not hard to check that the first projection m:Z* x String — Z* is a morphism
F(B) — A in the category Class(BANK). That is, bal o w = bal, chbalor xideo 7o
ch_bal (pointwise), and 7({}, “") < ().

If we assume another class C € Class(NBANK) implementing a bank account with
name, together with a morphism f:F(C) — A in Class(BANK), then we get a map
g = {f,name): C — Z* x String. We shall show that gis a morphism of classes C — B in
Class(NBANK) by checking conditions (ii}~(iv) in Definition 3.2.

(ii) We have (bal o g){(c) = bal(f(c),name(c)) = bal(f(c)) = bal(c) since f commmtes
with the BANK-operations. And (name o g)(c) = name(f(c), name(c)) = name(c). Hence
g commutes with the NBANK-attributes.

(ili) With respect to the procedures, we compute:

(chbal o g xid)(c,z) = ch_bal(f(c),name(c),z)
(ch.bal(f(c),z), name(c))

< (f(chbal(c, z)), name(ch_bal(c, z)))
= (g o ch.bal)(c, z).

224

For commutation of the function g with the “change-name” procedure we first have to
establish that f(ch_name(c,)) = f(c) in Z*. This follows from

bal(f(ch.name(c, 8))) = bal(ch_name(c, B)) = bal(c) = bal(f(c)).

Now we get

(ch_name o g x id)(c,) = ch_name(f(c), name(c), B)

(f(c), 8)
© (f(ch_name(c, B)), name(ch_name(c, 8)))
= (g o ch_name)(c, B).

(iv) Finally, the initial state is preserved: g(co) = (f(co),name(cp)) « (Q), “*), since
f(co) 2 ().

Obviously m o g = f. And if there is another morphism of classes h: C — Z* x String
with m o h = f, then 7' o h = name o h = name, so that A = (7 0 h, 7’ o h) = (f,name) =
9- This concludes the argument.

At the end of this subsection we notice how code is reused under inheritance: the
implementations of the operations in the base class A are wrapped inside the descendant
class B, where one has an extra field. In this way there is no coercion necessary when one
calls a method from the parent class for an object of the child class.

5.2 Single inheritance, with definitions

We shall describe an example of inheritance between class specifications with definitions
(see Subsection 2.1). We will start from the class specification LOC+ of locations with
defined functions dist and eq, and extend the specification with an extra radius attribute
so that we can describe circles (like in [3]). We keep the dist definition as it is, so that
the distance of a circle to the origin is the distance of its center to the origin, and redefine
the equality function; further, we add two new function definitions perim and surf for the
perimeter and surface of a circle.

class spec: CIRC
inherits from:
LOC+
methods:
rad: X — Ryp
magn: X x Ry — X
assertions:
s.move(dz,dy).rad = s.rad
s.magn(a).fst = s.fst
s.magn{a).snd = s.snd
s.magn(a).rad = a - (s.rad)
creation:
new.rad =1
definitions:
perim: X — R>q
perim(s) = 2 - - (s.rad)
surf: X — R>p
surf(s) = x - (s.rad)?

225

redefine:
eq: X x X — Bool
eq(sy,s2) = (s1.fst = sp.fst) A (s1.snd = sz.snd) A (s1.rad = sp.rad)
end class spec

Hence the magn procedure magnifies the radius of the circle by a certain factor, which
is given as parameter. A class implementation (model) of this specification CIRC is an
implementation of the core part of the specification (the part without the definitions).
It consists of a model of the LOC-specification for which we have additional radius and
magnification operations satisfying the above assertions. ‘We thus have a forgetful functor

Class(CIRC) —%— > Class(LOC+) = Class(LOC)

so that a class B € Class(CIRC) inherits from A € Class(LOC) if there is a map of classes
F(B) — A. For example, taking A to be the class of locations on R?, the cofree subclass
of circles on A has B? x Ryp as state space with operations

fst(z,y,2) =z, snd(z,y,2) =¥, rad(z,y, z) = z,
move(z, y, z,dz, dy) = (z + dz,y + dy, z), magn(z,y, z,a) = (z,¥,2-2),

and (0,0,1) € R? x Ry, as initial state. In this class the defined functions of CIRC take
the form

dist(z,y,z) = /z? + 42, perim(z,y,2z) =2 -7 2
surf(z,y,z) =7 - 2%, eq((z,9,2), (=, ¥, 2N =(z=2)Ay=y)A(z= 2').

There is an obvious coercion map &: &% x Ry — R?, namely e(z,y,2) = (z,y). It
commutes with the (core) LOC-methods, but not with the defined functions, since we have
separate equality functions for locations and for circles. We further stipulate (operationally)
that for a location s and a circle t the expressions eq(s, t) and eq(t,s) will result in calling
the equality function for locations. Thus, in the mixed case a coercion to the ancestor class
takes place. Denotationally, this requires the composite functions

R? x (IRZ X Rzo)

Wf

e
R? x R? ———L Bool

Ad

(]Rz X]BZO) X]R2

Due to our restriction that redefinition can only be applied to functions in the definition
clause of a specification, certain inappropriate {non-monotonic) uses of inheritance are ex-
cluded under this coalgebraic interpretation. For example, if the core part of a specification
contains certain methods which are characteristic for fish, then we can never get a subclass
of birds by redefinition.

Since these definable functions are peripheral and present no complications in our de-
scription of inheritance, they will be omitted from the examples below.

226

5.3 Multiple inheritance, without common ancestor

Multiple inheritance means inheritance with multiple ancestors. It exists in Eiffel and
in C++, but not in Smalltalk. We shall present an example in which we combine a
class specification of flip-flops with the earlier class specification of locations in a class
specification of flip-flops on location:

flip-flops locations

(FF) (LOC)

\ /

flip-flops on location
(FF_on LOCQ)

Such “flip-flops on location” may be used as movable pixels on a black-and-white screen.
The class specification LOC of locations is as in Section 2. The specifications FF of
flip-flops and FF_on LOC of flip-flops on locations will be given below:

class spec: FF class spec: FF on LOC
methods: inherits from:
val: X — {0,1} FF
ont X — X LOC
of X — X assertions:
aEseThions: —smmve(dr dy).val = s.val
s.on.wval =1 s.on.fst = s.fst
s.offval =0 s.on.snd = s.snd
creation: s.off.fst = s.fst
ew.val=0 soff:snd—= ssnd
end class spec end class spec

In the class specification FF_on LOC we do not add any new methods: we only inherit the
methods from both the two parent classes FF and LOC, and specify how the attributes
of the one act on the procedures of the other. There is no need to further specify the
initial state. This gives us an example of multiple inheritance without common ancestors,
because the class specifications FF and LOC do not have a specification from which they
both inherit.

The idea is that a class implementing the FF on LOC specification implements both
the specifications FF and LOC and additionally satisfies the conditions mentioned in
FF on LOC. In this situation we have two forgetful functors F;: Class(FF_on LOC) —

"Class(FF) and F;:Class(FF on LOC) — Tlass(LOC). They can be combined into a
single functor

F=(F,F2)
Class(FF on LOC) Class(FF) x Class(LOC)

Inheritence and cofreeness -will be described with respect to -this forgetful functor F =
{F1,F2). We can say that a class B € Class(FF.on LOC) inberits from A4; € Class(FF)
and Az € Class(LOC) if there are maps of classes 7;(B) — A; and F2(B) — Ajz—or
equivalently, if there is a single map F(B) — (A4, 42).

An obvions. class implementation A; .of the flip-flop specification FF is obtained by
taking the set {0,1} of attribute values as state space. The val attribute {0,1} — {0,1}
is then simply the identity functor. The on and off procedures are interpreted as the

227

functions {0,1} = {0,1} given by on(z) = 1 and off(z) = 0. As initial state we take of
course 0 € {0,1}. (Instead of {0,1} one can take any set with at least two elements as
state space.)

As class implementation Aj of the locations specification LOC we choose the one from
Section 2 with (R?)* as state space. This gives us a pair of classes (A1, A2) € Class(FF) x
Class(LOC). We claim that the cofree construction on (A;, A2) gives us a class with state
space {0,1} x (B?)* and with operations:

val(z,a) = z move(z,a,dz,dy) = (z,a-(dz,dy))
on(z,a) = (1,0) fSt(z’((:vl’yl):'"’(Iﬂyyn))) = z1+-- +2:"
off(z,a) = (0,a) snd(z, ((z1,¥1)s--+» (Zas¥n))) = w1+ -+ Yn.

where a € (B?)* and a - (dz,dy) is the result of concatenating (dz,dy) at the end of a.
There are obvious coercion maps {0,1} x (B?)* — {0,1} and {0,1} x (B?)* — (B?*)* given
by first and second projection. For any class B € Class(FF_on LOC) with coercion maps
f1: F1(B) — A; and fa: Fo(B) — Az we get a unique map of classes B —-» {0,1} x (R?)*,
namely the tuple (f1, f2).

5.4 Multiple inheritance, with common ancestor

We slightly modify the flip-flops on location from the previous subsection to flip-flops on
circles in a situation:

LOC
/ \
FF on 1L.OC CIRC
\ /

FF_on CIRC

The extra 0/1 information on circles may be used to indicate whether a circle is filled (i.e. a
disk) or open (e.g. when displayed).
The specification FF_on LOC for flip-flops on circles is as follows.

class spec: FF on CIRC
inherits from:
FF on LOC
CIRC
assertions:
s.on.rad = s.rad
s.off.rad = s.rad
s.magn(a).val = s.val
end class spec

The set of methods in this specification FF_on_CIRC is the (ordinary, non-disjoint) union
of the sets of methods in FF_on LOC and in CIRC. A model (class implementation) of
flip-flops on circles is thus at the same time a model of flip-flops on locations and of
circles, and the underlying model of locations is the same. This means that we have the
following commuting diagram of forgetful functors between the categories of classes of these

specifications.

228

Class(LOC)
”/' ‘%
Class(FF _on LOC) Class(CIRC)

_—F

Class(FF.on_CIRC)

where H; o 71 = H; o 5 = K, say. Then we can form the comma category (H; x Ha | A)
of the two functors

Class(FF.on LOC) x Class(CIRC) Class(LOC)

m Ad, id)

Class(LOC) x Class(LOC)

(see [13]), and define a functor

Class(FF on CIRC) ——2 > (H, x Hy | A)

which send a class B € Class(FF.on_CIRC) to the pair of identities

Hi(F1(B)) Ha(F2(B))

N

K(B)

We shall describe inheritance and cofreeness with respect to this functor F.
Assume classes 4; € Class(FF.on LOC) and A; € Class(CIRC) with a common
ancestor class A € Class(LOC) via coercions f;: H; (4) — A and f2arHa(A2) = A, We

say that B € Class(FF_on_CIRC) inherits from 'Hl(Al) L Hz(Az) if there is a
morphism
Hi (A1) H2(A2)
F(B) —————> in the category (H; X Ha | A)
AL

consisting of coercion maps gy: F1(B) — A; and gy: Fo(B) — A with f; o Hy(g1) = fp ©
Ha(g2). And this B is the cofree subclass inheriting from H;(4;) — A « Ha(Ay) if every
such subclass B’ € Class(FF .on_CIRC) is a subclass of B via a unique morphism B’ --+ B
making appropriate diagrams commute.

We present one example. Assume we have implementations of FF_on LOC on {0,1} x
&2, and of CIRC on R? x R>o, with B? as common implementation of the specification
LOC of locations, via projection morphisms
,n.l

{0,1} x R? R? E? x B>p

Then the cofree subclass on these data has as state space the set {0,1} x E? x R»y. The
definition of the operations on this state space is left to the reader. We only mention that

there is an obvious commuting square of coercion maps:

229

{O,I}X]Rz]RzX]R?_Q

' mz T
2N
\ /
{0,1} x B? x B>

In the end, notice that multiple inheritance without common ancestor in the previous
subsection may be fitted in the present framework, by taking the empty specification as
common ancestor. The above comma category then becomes the cartesian product of
categories of classes, as used in the previous subsection.

5.5 Repeated inheritance

Repeated inheritance occurs when a class (specification) inherits from the same ancestor
more than once (via different inclusions). Naively this leads to name clashes. But these
clashes can be avoided by appropriate renameings of methods (like in Eiffel, see [16, 20]).
As an example, suppose we wish to specify two coupled flip-flops (CFFs), which can be
switched on independently, but can only be switched off simultaneously.

class spec: CFF
inherits from:
FF rename:
val as leftval
on as left.on
off as left off
FF rename:
val as right_val
on as righton
off as right_off
assertions:
s.left_on.right val = s.right_val
s.left off.right val =0
s.right on.left val = s.left_val
s.right off.left val = 0
end class spec

The point of this renameing is that the specification FF of flip-flops is incorporated twice.
The set of methods of the specification CFF of coupled flip-flops is the disjoint union
with itself of the set of methods of the specification FF. Disjointness is achieved via this
repaming. Thus we have two inclusions of specifications FF =3 CFF, and correspondingly
two forgetful functors

Class(CFF) Class(FF)

mapping a class B € Class(CFF) to its interpretations of the “left” and “right” part of
the specification.

There is something more going on in our understanding of repeated inheritance, which
is not expressed by the pair of functors £,R. In constructing models of the specification
CFF of coupled flip-flops from a model B of flip-flops we wish to use this same model B

230

twice; we do not seek to construct a CFF-model from two arbitrary models B, B’ of flip-
flops. This idea of using the same interpretation for an ancestor occurring twice occurs also
for multiple inheritance in the previous subsection. The approach that we propose here
to understand repeated inheritance is similar, except that we now use a comma category
as a domain. We restrict ourselves to those models B € Class(CFF) which inherit twice
from a single FF-class, i.e. to those B with maps £: £L(B) — A, m: R(B) — A to a class
A € Class(FF). Such B’s occur in the comma category ({(£,R) | A) of the functors

Class(CFF) Class(FF)

R~ A i

Class(FF) x Class(FF)
There is an associated “second projection” functor

((L,R) L &) —r Class(FF)

which we use to describe inheritance and cofreeness in this situation. Explicitly, B €

Class(CFF) together with £(B) L4 R(B) inherits from C € Class(FF) if there
is a coercion f: A — C. And this £(B) LIy R(B) is the cofree subclass inheriting

:
r

from C € Class(FF) if for every B’ with maps £(B') Ly R(B') there is a unique
pair of maps g: B’ --+ B, h: A’ --+ A making the following diagrams commute.

B —Lt A< T ®(B) a—1 ¢
o) Je le() A /
L(B') 7 Al w R(B) A

In our example, if C € Class(FF) is the implementation of flip-flops with {0,1} as state
space, then the cofree subclass on C has {0,1} x {0, 1} as state space, and operations

z, left on(z,y) 1,v), left off(z,y) = (0,0),
z, right on(z,y) = (z,1), right off(z,y¥) = (0,0).

It
1l

left _val(z,y)
right.val(z,y)

Obviously there are coercion maps {0,1} x {0,1} =2 {0, 1}, namely first and second projec-
tion. They commute with the flip-flop operations. And the above map f: A — C is simply
the identity {0,1} — {0, 1}. If we have another subclass implementation £L(B') L
R(B') with common ancestor class A’, then the required unique maps are (left val, right val)

: B’ -+ {0,1} x {0,1}, val: A’ --» {0,1}.

6 Conclusions and further work

We have presented some paradigmatic examples of inheritance within the framework of
coalgebraic specification and implementation. Of course, these example do not cover all
possibilities. For instance, one can have multiple bank accounts on the same name via
maps of specifications NBBANK =3 NBANK where the “balance” and “change-balance”
methods are renamed, but the “name” and “change-name” methods are shared. This may
be described by a combination of the above techniques.

231

In later work we shall have more to say about the existence of cofree constructions

(of the kind used above). The logical aspects (completeness, conservativity) still have

to

be investigated. In the end we should emphasize that we have described examples of

inheritance without genericity. The latter would require suitably indexed versions (via free
type variables) of the above descriptions.

Acknowledgement

Thanks are due to Jan Rutten for helpful discussions.

References

1

o

o KN B

10.

11.

. K. Bruce, L. Cardelli, G. Castagna, The Hopkins Objects Group, G. Leavens, and B. Pierce.
On binary methods. Manuscript, May 1995.

. L. Cardelli. A semantics of multiple inheritance. Inf. & Comp., 76(2/3):138-164, 1988.

. W. Cook and J. Palsberg. A denotational semantics of inheritance and its correctness. Inf. &
Comp., 114(2):329-350, 1995.

. W.R. Cook. Object-oriented programming versus abstract data types. In J.W. de Bakker,
W.P. de Roever, and G. Rozenberg, editors, Foundations of Object-Oriented Languages, num-
ber 489 in Lect. Notes Comp. Sci., pages 151-178. Springer, Berlin, 1990.

. H. Fhrig and B. Mahr. Fundamentals of Algebraic Specification I: Equations and Initial
Semantics. Number 6 in EATCS Monographs. Springer, Berlin, 1985.

. J.A. Goguen. Realization is universal. Math. Syst. Theor., 6(4):359-374, 1973.

. J.A. Goguen. A categorical manifesto. Math. Struct. Comp. Sci., 1{1):49-67, 1991.

. J.A Goguen and J. Meseguer. Universal realization, persistent interconnection and imple-
mentation of abstract modules. In M. Nielsen and E.M. Schmidt, editors, Automata, Lan-
guages and Programming (TCALP’82), number 140 in Lect. Notes Comp. Sci., pages 263-281.
Springer, Berlin, 1982.

. J.A Goguen and J. Meseguer. Unifying functional, object-oriented and relational programming

with logical semantics. In B. Shriver and P. Wegner, editors, Research Directions in Object-

Oriented Progremming, pages 417-477. The MIT Press series in computer systems, 1987.

B. Jacobs. Mongruences and cofree coalgebras. In V.S. Alagar and M. Nivat, editors, Algebraic

Methods and Software Technology, number 936 in Lect. Notes Comp. Sci., pages 245-260.

Springer, Berlin, 1995.

B. Jacobs. Coalgebraic specifications and models of deterministic hybrid systems. In M. Wirs-

ing, editor, Algebraic Methods and Software Technology, Lect. Notes Comp. Sci. Springer,

Berlin, 1996, to appear.

. B. Jacobs. Objects and classes, coalgebraically. In B. Freitag, C.B. Jones, and C. Lengauer,
editors, Object-Orientation with Parallelism and Persistence. Kluwer, 1996, to appear.

. S. Mac Lane. Categories for the Working Mathematician. Springer, Berlin, 1971.

. S. Lang. Algebra. Addison Wesley, 2°¢ rev. edition, 1984.

. B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1988.

. B. Meyer. Eiffel: The Language. Prentice Hall, 1992.

. R. Milner. Communication and Concurrency. Prentice Hall, 1989.

. J. Palsberg and M.I. Schwartzbach. Object-Oriented Type Systems. Wiley, 1994.

. H. Reichel. An approach to object semantics based on terminal co-algebras. Math. Struct.
Comp. Sci., 5:129-152, 1995,

. R. Rist-and R. Terwilliger. -Qbject-Oricniad Programming 4n £iffel Prentice Hall, 1995.

. B. Stroustrup. The C++ Programming Language. Addison-Wesley, 274 rev. edition, 1994.

. P. Wegner. The object-oriented classification paradigm. In B. Shriver and P. Wegner, editors,
Research Directions in Object-Oriented Programming, pages 479-560. The MIT Press series
in_camputer systems, 1987.

. P. Wegner. Concepts and paradigms of object-oriented programming. OOPS Messenger,
1(1):7-87, 1990.

