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Abstract. We enrich the object-oriented + concurrent specification lan-
guage Maude with language constructs for reuse and gain a high degree
of code reusability. We consider three reuse constructs: (1) Maude’s in-
heritance relation, (2) an algebra of messages and (3) the construct of
a subconfiguration. By employing these constructs for different kinds of
reuse, we show for all examples of the seminal paper on the inheritance
anomaly [11] how to circumvent the inheritance anomaly. Qur running
example is the bounded buffer.
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1 Introduction

Inheritance and concurrency are two paradigms which are difficult to combine
in a satisfactory way. In [11] the necessity of reprogramming a high proportion
of reused code when using inheritance is called the inheritance anomaly. In [13]
it is claimed that the main reason for the inheritance anomaly is the presence
of synchronization code, the code which determines which method calls can be
accepted in dependence of the state of the object. The classical example for the
use and the necessity of synchronization code is the bounded buffer which allows
its get method to be invoked only if it is not empty [5, 11, 13].

The language Maude claims to overcome the inheritance anomaly: in [13]
Meseguer, the developer of Maude, demonstrates how to use Maude’s inheritance
mechanism and modules with various ways of reuse to specify concurrent systems
in a structured and modular way.

We agree with [13] in that the inheritance anomaly is caused by the pres-
ence of synchronization code, not by the way the program is structured and
implemented. But, in resolving the inheritance anomaly, we develop a new idea:
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Maude’s inheritance mechanism, which allows only to add new attributes and
new possibilities of state changes, is not sufficient. We present constructs in a
language with object-oriented concepts + concurrency and gain a high degree of
reusability of code. For us, reusability means not necessarily only inheritance.
We introduce two new concepts: a subconfiguration and an algebra of messages.
They allow us to reuse code not only by enhancing the set of possible state tran-
sitions but also by restricting them and by composing actions from basic actions
in an object-oriented way.

Throughout, we use the bounded buffer as our example since it has been
investigated in several languages with different inheritance and reuse mechanisms
and different kinds of synchronization code [1, 5, 11, 13, 15].

2 Our specification language

This section provides a brief introduction to our specification language, which
is based on Maude as defined in [14]. We adopt some notational ideas from
OOSpectrum [16] and add the concept of a subconfiguration and a message
algebra to Maude.

2.1 Basic Concepts

Maude [14] has two parts: one which is functional and another which specifies
states (so-called configurations) and state changes. The functional part is OBJ3
[6]; it forms the subset of the language used to specify the properties of data
types in a purely algebraic way.

In the state-dependent part of Maude one writes object-oriented specifica-
tions consisting of an import list, a number of class declarations, message dec-
larations, equations and rewrite rules. An object of a class is represented by a
term -~more precisely, by a tuple- comprising a unique object identifier (of sort
0Id), a class identifier and a set of attributes with their values; e.g., the term
< B:BdBuffer | cont:C, in:I, out:0, max:M >represents an object of class
BdBuffer with identifier B and attributes cont, in, out, and max with values C,
I, 0 and M, respectively. A message is a term of sort Msg (in mixfix notation)
that consists of the message’s name, the identifiers of the objects the message
1s addressed to and, possibly, parameters; e.g., the term (put E into B) is a
message addressed to the bounded buffer B with a parameter E. A configuration
is a multiset of objects and messages. Multiset union is denoted by juxtaposition;
the term (put E into B) < B:BdBuffer | cont:C, in:I, out:0, max:M >
denotes the union of the buffer and the message of above.

State changes are specified by transition rules on configurations as defined
by the rewriting calculus given below.

As an example of a specification let us give the specification of buffers and
bounded buffers and explain it subsequently. A similar Maude specification of
bounded buffers can be found in {13]. The specification CONFIGURATION specifies
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the basic data types of objects, messages and configurations (for a formal defini-
tion see [12]). The specification DIDLIST (see App. A) specifies the sort 0IdList
of finite sequences of object identifiers together with a juxtaposition operation,
where adding an element E to a list C on the left is written E C and adding it on
the right is written C E.

Our syntax differs from Maude as follows. BD BUFFER = { ... } corresponds
to omod Buffer is ... endo. In Maude, each rewrite rule is preceded by eq or
rl; we collect equations and transitions rules under the keywords equations
and transitions. Qur subclass declarations are part of a class declaration; in
Maude class and subclass declarations are independent. Other than Maude, we
collect variable declarations by universal quantification.

BD_BUFFER = {

enriches CONFIGURATION OIDLIST ;

classes Buffer attr cont: 0IdList ;
BdBuffer subclass of Buffer ;

attr in: Nat, out: Nat, max: Nat ;
messages (new BdBuffer with _replyto _) : Nat 0Id -> Msg ;

(to _ the new BdBuffer is _), (put _ into _),
(get _ replyto _), (to . answer to get is _) : 0Id 0Id -> Msg ;
transitions V B,U,E:0Id , C:0IdList, I,0:Nat in
[P1(put E into B)
< B:BdBuffer | cont:C, in:I, out:0, max:M >
=> < B:BdBuffer | cont:E C, in:I+1 >
if (I -0<M ;
[Gl(get B replyto U)
< B:BdBuffer | cont:C E, in:I, out:0, max:M >
=> < B:BdBuffer | cont:C, out:0+1 >
(to U answer to get is E) ;
[N] (new BdBuffer with M replyto U)
< P:Proto | class:BdBuffer, next:B >
=> < P:Proto | class:BdBuffer, next:inc(B) >
< B:BdBuffer | cont:eps, in:0, out:0, max:M >
(to U the new BdBuffer is B)
endtransitions }

In general, specifications have the following structure: Sp = {enriches R;
functions F'; classes ('; messages M ; equations &; transitions T}.
The operator enriches imports specifications: each component of Sp consists of
the union of the components of the imported specifications and of Sp. We may
-omit empty parts of the specifications as, €.g., functions and equations in the
example above.

Class Buffer has only one attribute, cont, which is used to store object
identifiers. Class BdBuffer inherits the attribute via the inheritance relation
from classBuTfer, as stated by the declaration BdBuffer subclass of Buffer.
Subclasses inherit all attributes and all rewrite rules (equations and transition
rules) from their superclasses.
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A bounded buffer may react to two messages: put and get. Put stores an
element in the buffer, get removes the first element being stored in the buffer
and sends it to a “user”. The transition rule with rule label P says that an object
of class BdBuffer can react to a put message only if the actual number of objects
being stored, I-0, is smaller than the upper bound max. Sending a get message
not only triggers a state change of buffer B but also initiates an answer message
to a “user” U which contains the result (an object identifier).

While rules P and G are standard, rule N is particular to Maude. To create
a new buffer, a message new is sent to a proto-object (of class Proto) which is
responsible for creating new objects. The message new triggers a new object to
be created with default values for the attributes in, out and cont. The value
of max is determined by a parameter of the message. The proto-object changes
(increases) the value of the parameter next by inc, and we assume that this is
done in such a way that the same object identifier is never created twice.

Generally speaking, transition rules specify ezplicit, asynchronous commu-
nication via message passing: if a message is part of a configuration, a state
transition may happen and new (answer) messages waiting to be processed in
subsequent state transitions may be created as part of the resulting configura-
tion (in the specification given above only one new message is generated). The
transition rules specify not only the behavior but also the equivalent of the syn-
chronization code of other languages: the pattern given at the left-hand side
involves not only the presence of objects and messages but also certain proper-
ties like the equality of object identifiers, values of attributes and parameters of
the messages. (We could also specify more than one object at the left-hand side
of a transition rule and specify a synchronous state transition of several objects.)

Let us introduce some notation. A specification Sp = (X, E, T') consists of a
signature X, a set of equations E and a set of transition rules T. A signature
Y =(8,C,<,F, M) consists of a set of (ordinary) sort names S, a set of class
names C, a subclass relation <, a set of function symbols F and a sct of messages
M. T(¥Y, X) denotes the terms of signature ¥ with variables from X. We use
Cf as an abbreviation for Configuration, the sort of the states.

The rewriting calculus, given below in three rules, defines Maude’s semantics
in the form of a transition system.* In the following, let m, m’ denote messages,
a, attribute names, v; and w; values, o; object identifiers, C;, C{, D; and D]
class identifiers, atts; sets of pairs of attributes together with their variables,
and o a substitution. An expression e und a double arrow, e’ stands for a set
whose elements are of the form e (with the exception that %7 is a multiset of
messages).

* In contrast to [12] we do neither have a reflexivity nor a transitivity rule in the
calculus. The rule (Emb) is weaker than the replacement rule in the original calculus;
the replacement rule could be obtained by (Emb), (Equ), and a transitivity rule. 1f
subconfigurations may occur we need also the rule (Sub), sec Sect. 2.2.



236

A transition
$7 [o]
< o(0): D; | &:0[0], atts; >

y)
A}

=< o(0) : D! | &zwi[o], atts, >
m'[o]

is possible if T contains a transition rule (in which all attributes of classes Cj

together with their values are stated)

[R] W X
EOiICi | :iiliii ;
> & 0::C! | &, ¢

3

m
and there is a substitution ¢ : Vars — T(X, X), where D; < C; and
D= D, if C;=C)
T CY else

(Inst)

Let us explain this rule. A transition rule in 7T is instantiated such that all
variables of the rule are substituted according to o. The classes of the objects
of the configuration to which the rule is applied are subclasses of the objects of
the rule. Since an object of a subclass may have more attributes than the object
of the superclass, we introduce atts; to match the additional attributes of the
subclass. The values of those attributes are not changed in the transition. The
values »; are changed to w; according to the rule. For simplicity we assume that
no objects are created or deleted by the transition rule. We make two simplifying
assumptions for the case that objects change their class: the class of the object
at the right-hand side of the rule becomes the class of the (instance) object, and
classes between which class changes are possible have the same attributes.

As a notational convention we may omit at the left- and right-hand side of a
rule attributes whose values are not needed in the transition and, additionally,
at the right-hand side attributes whose values are not changed.

In the case of a conditional transition rule of the form:

myoj ..ol => 0} ...0f my...my if pr AL APy
(with equations or transitions pi,...,px) we require additionally that all p;[o]
are derivable. We need two more rules: (Emb) embeds the left-hand and the right-
hand side of a transition into a configuration containing objects and messages not
changed by the transition and (Equ) makes the transition relation compatible
with equations. Let ¢, d, ¢/, d’ and h be configurations and let =g denote equality
modulo equations in the set E:

ch—odhifcod (Emb)

d vdifcodandc=gc,d=pd {Equ)

2.2 Subconfigurations

With subconfigurations we can structure our configuration by permitting an
object to contain configurations. This enables us to restrict the choice of classes
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to which the objects in a subconfiguration may belong. A subconfiguration, as
defined below, must contain only objects belonging to a non-empty set of class
names but it may contain arbitrary messages.

Subconfiguration of {classnames}”

Since we specify explicitly which messages may pass from a configuration into a
subconfiguration or vice versa, we impose no restriction on the messages in the
subconfiguration construct.

An example of a class declaration using the subconfiguration construct is:

class HBuffer | conf: Subconfiguration of BdBuffer Flag .
Objects of class HBuffer have an attribute conf containing only objects belong-
ing to class BdBuffer or class Flag.

In the presence of subconfigurations, we have to introduce one more rule,
(Sub), to the rewriting calculus which specifies the application of transition
rules to subconfigurations. Let < 0:C | a:S, atts > be an object containing a
subconfiguration S stored under the attribute name a, and let atts denote all
other attributes with their values of o apart from a:

< 0:C | a:8,atts > - < 0:C | a:§5', atts >if § - 8’ (Sub)

2.3 The message algebra

We introduce an algebra of messages which permits the formation of composed
messages, much like process terms in process algebras, from basic messages as
defined in Maude specifications. This provides us with a new way of reusing code:
it is possible to specify messages which trigger more than one single computation
step and to have some sort of control flow within these computation steps.

MSG_ALGEBRA = {
enriches CONFIGURATION
H_y 3oy ~i3er <|-» |- ¢ Msg Msg -> Msg;

transitions V ml,m2,nl,n2:Msg, c¢,d,cl,c2,d1,d2,h:Cf in
[C] (m1 +m2) c =>d

if mi c=>d \ m2 ¢ =>d ;
[S1](mi1 ; m2) cl c2 => 41 42

if mi ci1 =>dl h A m2 c2 h => 42 ;
[S21(ml1 ;; m2) c1 c2 => d1 42 (nl1 ;; n2)

if mlici=>dlinlh A m2 c2 h => 42 n2 ;
[P11(ml | m2) c1l c2 => d1 42

if ml cl => 41 A m2 c2 =>d2 ;
[(P2] (m1 || m2) cl c2 => d1 42 (nl || n2)

if micl=>nldi A m2c2=>n2d2)
endtransitions }

Specification MSG_ALGEBRA contains three message combinators: choice (+), se-
quential (; and ; ;) and parallel (| and ||) composition. In sequential composition
there can be a dependence between the left and the right message, in parallel
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composition there must be no dependence. We have two versions of sequen-
tial and parallel composition: one composes the answer messages following the
structure of the input message (;; and ||) and one which does not pass this
structure on to the next configuration (; and |). All combinators form atomic
state transitions.

Generally, we have the freedom to specify any kind of sequential or parallel
composition or choice in a message algebra. We have chosen the combinators
given above only because we need them for the specifications in the next section.

3 Bounded Buffers and the inheritance anomaly

In this section, we extend the specification of the bounded buffer given in Sect. 2
with additional messages as originally suggested in [11] and partly also in [13].
With these extensions we demonstrate that Maude’s inheritance relation, the
message algebra and the concept of subconfiguration are powerful enough to
overcome the inheritance anomaly. The first extension (by a message last) uses
only Maude’s inheritance mechanism, the second (by a message get2) the mes-
sage algebra and for the third extension (by a message gget) we need the message
algebra and subconfigurations. The class and module hierarchy we present in this
scction are depicted in Fig. 1.

Class hierarchy Module hierarchy
CONF IGURATION

BD_BUFFER/\

Buffer

MSG_ALGEBRA
BdBuffer

las RN gget
get2 ™\
XBuffer BdBuffer2 HBuffer BD_BUFFER_X BD_BUFFER_2 BD_BUFFER_H

—> Maude’s inheritance relation —> Enrichment

— = Encapsulation

Fig. 1. Extensions of class BdBuffer and module BD_BUFFER

3.1 Message: last

One extension used in [11] to demonstrate how synchronization code requires
the redefinition of existing code is the addition of a method last which returns
the most recent element put into the buffer.
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BD_ BUFFER X = {
enriches BD_BUFFER ;
class XBdBuffer subclass of BdBuffer ;
messages (last _ replyto .),

(to _ answer to last is _): 0Id 0Id -> Msg ;
transitions V B,E,U:0Id, C:0IdList, I,0:Nat in
[L] (last B replyto U)

< B:XBdBuffer | cont:E C, out:0 >
=> < B:XBdBuffer | cont:C, out:0+1 >
(to U answer to last is E)
endtransitions }

Since XBdBuffer is a subclass of BdBuffer, an XBdBuffer inherits all attributes
and all transition rules from BdBuffer. Thus an object of class XBdBuffer is
capable of all state transitions an object of class BdBuffer is capable of in
the same context. The transition rule L defines the behavior of a XBdBuffer
when accepting a message last. When adding this new behavior to an existing
specification we do not have to redefine or alter any piece of existing code and,
thus, the inheritance anomaly does not apply.

3.2 Message: get2

Say we would like to extend the specification of class BdBuffer such that a buffer
accepts an additional message, (get2 B replyto U), which sends two elements
of buffer B to an object U. The specification given in [13] is:

subclass BdBuffer2 < BdBuffer
rl (get2 B replyto U)
< B:BdBuffer2 | cont:C E’ E, in:I, out:0, max:M >
=> < B:BdBuffer2 | cont:C, out:0+2 >
(to U answer to get2 is E’ and E)

This solution is not “suffering” from the inheritance anomaly but has one
drawback: it does not reuse the specification of the message get. Our solution
uses MSG_ALGEBRA to derive a composed message get2 from the implementation
of get:

BD_BUFFER2 = {
enriches BD_BUFFER MSG_ALGEBRA ;
class BdBuffer2 subclass of BdBuffer ;
messages (get2 _ replyto .) : 0Id 0Id -> Msg ;
(to _ answer to get2 is _ and _) : 0Id 0Id 0Id -> Msg
equations V B,U,E,E?:0Id, I,0,M:Nat in
[E1] (get2 B replyto U)
< B:BdBuffer2 >
= < B:BdBuffer2 >
((get B replyto U);;(get B replyto U)) ;
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[E2] ((to U answer to get is E);;(to U answer to get is E’))
= (to U answer to get2 is E’ and E)
endequations }

We allow the “transformation” of a get2 message to two get messages in se-
quence only if get2 is addressed to a buffer of class BdBuffer2 and, thus, we do
not extend the set of messages a BdBuffer object accepts. The rewriting calcu-
lus and the algebra of messages allow us to process a get2 message in one step,
since we have an equational “transformation” of get2 to get messages which
does not require a computation step and since the algebra of messages allows us
to build an atomic state transition get2.

Assume that we would like to implement get2 in a more conventional lan-
guage, with methods encapsulated in objects and guards for the methods such
as in [1, 5, 7, 11]. This implementation of get2 would apply get twice and its
guard would have to make sure that get2 is only invoked if the buffer contains
(at least) two elements. The synchronization code of get2 would have to be ei-
ther derived from the synchronization code of the get method invoked twice by
get2 or written “by hand”. Both might be hard, although in our example both is
rather trivial. In our approach the message algebra ensures that a get2 method
may only be invoked if both invocations of get can be executed in sequence.
This replaces the synchronization code of the message get2 and facilitates the
reuse of methods.

3.3 Message: gget

Our last modification is to make bounded buffer history-sensitive: a new mes-
sage, gget, is only accepted if the latest message was a put message. Adding a
message with a history-sensitive behavior involves a change of the behavior of
all messages: put has to set a flag, all other messages have to reset it.

BD_BUFFERH = {
enriches BD_BUFFER MSG_ALGEBRA ;
classes
Flag atts buffer : 0Id ;
FSet subclass of Flag ;
FUnset subclass of Flag ;
HBuffer atts conf: Subconfiguration of BdBuffer Flag
messages (set _), (unset _), (reset _) : 0Id — Msg ;
(gget _ replyto ) : 0Id DId -> Msg
equations V¥ B,U,F:0Id, C:Subconfiguration of BdBuffer Flag in:
[E1] (gget B replyto U)
< B:HBuffer | conf:<B:BdBuffer> <F:Flag|buffer:B> C >
= < B:HBuffer | conf:((get B replyto U)|(reset F))
<B:BdBuffer> <F:Flag> C > ;
[E2]< B:HBuffer | conf:(to U answer to get is E) C >
= (to U answer to get is E) < B:HBuffer | conf:C > ;
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[E3] (put E into B)
< B:HBuffer | conf:<B:BdBuffer> <F:Flag|buffer:B> C >
= < B:HBuffer | conf:((put E into B}|(set F))
<B:BdBuffer> <F:Flag> C > ;
[E4]) (get B replyto U)
< B:HBuffer | conf:<B:BdBuffer> <F:Flag|buffer:B> C >
= < B:HBuffer | conf:((get B replyto U)|(unset F))
<B:BdBuffer> <F:Flag> C >
endequations
transitions V F:0Id in
[S] (set F) <F:Flag> => <F:FSet> ;
[U] (unset F) <F:Flag> => <F:FUnset> ;
[R] (reset F) <F:FSet> => <F:FUnset>
endtransitions }

A history-sensitive buffer HBuffer encapsulates, in a subconfiguration, a buffer
and a flag which indicates whether the last message accepted was a put.

We model the state of the flag, according to the states-as-classes approach
[10], as classes and not, as usual, as attributes. In doing so we are able to refine
the state of class Flag and, thus, its ability to process messages by introducing
more subclasses. A flag accepts three messages and, while the state (and class)
is irrelevant for a set and unset message to be accepted, a reset message is
only accepted if the actual state of the flag is FSet.

The messages addressed to an object HBuffer are transformed by equations
to a composed message inside the subconfiguration. This composed message
consists of a message addressed to the BdBuffer and one message addressed
to the Flag. The combinator | ensures that the message responsible for the
manipulation of the buffer and the message triggering the state change of the
flag are processed in parallel. In equation E1 a message gget can be transformed
into a parallel combination of a get and a reset message at any time. The state
of the flag is only relevant for processing of the composed message consisting of
a reset and a get message.

The two messages put and get migrate —like the message gget— into a sub-
configuration and are transformed into a put, respectively a get message, and
a message addressed to the flag. A put message is transformed into a composed
message, consisting of a put and a set message, a get into a get and an unset
message. The migration of answer messages from a subconfiguration into a con-
figuration is also modeled by an equation.

The variable C of type subconfiguration in the equation matches messages
which have already passed from the overall configuration into the subconfigu-
ration. The use of configuration variables enhances also the reusability of the
specification BD_BUFFERH: if in a reusing specification more than two objects
are contained in an HBuffer then the variable C can match these objects in the
application of the transition rules by the rewriting calculus.
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3.4 Analysis

In [11] several kinds of synchronization code are investigated. The inheritance
anomaly occurs because no kind of synchronization code supports all types of
modification when reusing a class declaration which contains synchronization
code. Maude’s equivalent to “synchronization code” is the pattern to be matched
at the left-hand side of a transition rule. It consists of one or more messages,
their parameters and the internal state of the object(s). Thus, each transition
rule specifies a “synchronization constraint”, more precisely an “enabled set”,
L.e., a condition under which a message may be accepted, individually for each
message. Since each rule specifies such a pattern, adding new “enabled condi-
tions” by adding new rules is the kind of modification of existing code which can
be expressed straight-forwardly by Maude’s inheritance relation (like get2 and
last).

For other kinds of modification of the behavior of reused code, we provide
different mechanisms. With encapsulation in subconfigurations we are able to
restrict the ability of objects to react to messages. The algebra of messages
supports the specification of complex systems with a large number of objects
and a complex control flow in the reuse of specifications with “simple” transition
rules.

The reason why we are able to reuse code in many ways is that we provide
different kinds of synchronization or control code: for each particular type of
modification there is one particular construct for reuse.

One of the advantages of using equations to model the migration of messages
into and out of subconfigurations is that we do not add additional state transi-
tions or actions to a rewrite system. The migration would be some special kind
of state transition and could be modeled by an internal action (like 7 in CCS),
but this would cause the same problems in compositionality and verification as
it does in CCS.

4 Another buffer

In the previous sections we have given methods and language constructs for the
reuse of specifications. Each method covers a particular situation in reuse. But
it remains to demonstrate that these three techniques of reuse fit and can be
used together.

We specify a bounded buffer, PBuffer, which is capable of processing all the
three messages last, get2 and gget.

BD_BUFFERP = {
enriches BD_BUFFER_X BD_BUFFER_H BD_BUFFER2 ;
classes PBufferI subclass of XBdBuffer BdBuffer2 ;
PBuffer subclass of HBuffer ;
messages (new PBuffer with _ replyto _): Nat 0Id -> Msg;
(to . the new PBuffer is _): 0Id 0Id -> Msg
equations V B,E,U: 0Id, C:Cf in



243

[E1] (last B replyto U)
< B:PBuffer | conf:C >
= < B:PBuffer | conf:C ((last B replyto U)|(reset B)) > ;
[E2]< B:PBuffer | conf:C (to U answer to last is E) >
= < B:PBuffer | conf:C >
(to U answer to last is E) ;
[E31(get2 B replyto U)
< B:PBuffer | conf:C >
= < B:PBuffer | conf:C ((get2 B replyto U)|(reset B))) > ;
[E4]< B:PBuffer | conf:C (to U answer to get2 is E’ and E) >
= < B:PBuffer | conf:C >
(to U answer to get2 is E’ and E) >
endequations
transitions V P,B,U,F:0Id, M:Nat in
[N] (new PBuffer with M replyto U)
< P:Proto | class:PBuffer, next:(B,F) >
=> < P:Proto | class:PBuffer, next:(inc(B),inc(F)) >
< B:PBuffer | conf:<B:PBufferllcont:eps,in:0,out:0,max:M>

<F:FUnset |buffer:B> >
(to U the new PBuffer is B)

endtransitions }

We have two subclass relations which inherit behavior from ancestor classes.
The subclass definition of PBufferI ensures that put, get and last can be
processed by PBufferI. Furthermore, it ensures that a get2 method can actually
be converted to a sequence of two get messages. The subclass definition of
PBuffer ensures that all messages which may migrate into an HBuffer, namely
put, get and gget, may migrate into a PBuffer as well. Equations E1 to E4
specify the migration of the messages last and get2 and the answer message
into and out of the subconfiguration. Rule N ensures that the buffer contained
in the subconfiguration of PBuffer is of class PBufferI.

Note that again no changes of the reused specification are necessary. In fact,
this specification demonstrates that our three concepts of reuse can be used
together.

5 Buffers with synchronous communication

The transition rules of Maude offer a very powerful communication mechanism
which we have not used up to now in our model of bounded buffers: a rewrite
rule can employ more than one object and one message at its left-hand and right-
hand side. Such a rule specifies joint atomic state transitions by all the objects
involved. As an example we give a rule specifying a synchronous get message.

A message (sget by B and U) triggers a joint state transition of a buffer
and a user. In it, the element which is retrieved from the buffer is stored in
the attribute elem of the user; sget replaces the answer message used in the
previous sections. We call this a synchronous implicit communication.
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[SG] (sget by B and U)
< U:User | buffer:B, elem:X >
< B:BdBuffer | cont:C E, in:I, out:0, max:M >
=> < U:User | buffer:B, elem:E >
< B:BdBuffer | cont:C, out:0+1 > ;

But is this kind of rule really appropriate for reuse? Of course, this depends
on the kind of reuse, but a rule like this cannot be inherited easily when encap-
sulating one of the participants, say, the buffer in a subconfiguration. The rule
relies very much on the structure of the configuration —namely, that both user
and buffer are part of the same configuration— and on the shape of the objects.

We propose a specification, which uses the message algebra to specify a joint
atomic state transition:

(H] (h(U))
(to U answer to get is E)
< U:User | buffer:B, elem:X >
=> < U:User | buffer:B, elem:E > ;

[SE] (sget by B and U) = ((get B replyto U);h(U)) ;

Transition rule H specifies that a user requires two messages, an answer mes-
sage and a help message h, to store an element retrieved from the buffer. Equa-
tion SE specifies that a synchronous get is a sequential composition of a get and
an h message. The sequential composition ensures that the h message is always
processed after the get message and, since the h and the answer message can
only be processed in one joint synchronous transition, the answer message is
also processed.

One can imagine that the other messages of the various buffers can be spec-
ified in a synchronous version using this technique. Moreover this specification
of a synchronous communication can also be inherited to heirs which are encap-
sulated in a subconfiguration.

6 Related work

The SMoLCS approach [3, 4] combines algebraic specifications of data types and
labeled state transition relations for the specification of behavior. Particular to
this approach is a hierarchy of layers of specification with algebraic data types
at the lowest layer and communication, parallel composition, abstraction and
monitoring at successive higher layers. Algebras of actions allow to define the
semantics of composed actions, modularized in the various layers.

The concept of subconfiguration also exists in several other object-oriented
languages as, e.g., in Actor languages [1, 2] and Troll [7]. Particular to our
approach is that we model the migration of messages into and out of subconfig-
urations by equations, not by transitions. This keeps the number of transitions
reasonably small.
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7 Conclusions

Maude’s inheritance relation together with the concept of subconfiguration and
an algebra of messages make it possible to reuse specifications. Our work on a
verification technique for Maude specifications [9] demonstrates also that asyn-
chronous message passing is better than synchronous message passing with re-
spect to the inheritability of properties of specifications, a necessity for modular
verification. The use of equations in modeling the migration of messages into
and out of configurations keeps the number of transitions small. This helps to
make the verification of properties of the behavior of single objects or config-
urations feasible. The use of equations contributes to a very abstract level of
specification, where the structure of the state is of less importance, the focus of
the specification lies on synchronization and communication of the objects, and
one has few but powerful messages.

The degree of reusability of our specifications is far higher than one would ex-
pect for such a simple language in the presence of the inheritance anomaly [11].
This suggests that the basic design concepts of Maude, especially the object
model, the communication mechanism and the transition rules for the specifica-
tion of the behavior, are more appropriate for a structured design of specifications
than the design concepts of more conventional languages with synchronous com-
munication, explicit synchronization code and code of methods encapsulated in
objects.

Together with our work on verification techniques for specifications in Maude
[16], our picture of a sensible object-oriented specification language for the de-
sign of complex, concurrent systems is becoming more and more precise: Maude’s
object model, Maude’s communication mechanism, a message algebra, subcon-
figurations and, maybe, also a module concept for programming in the large.
In this paper we use Maude and made some small enhancements of its syn-
tax. But, of course, our reuse mechanisms could be part of any object-oriented
specification or programming language independent of the object model.
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A Specification of OIDLIST

OIDLIST = {
enriches 0ID ;
sort OIdList ;
functions
eps : — 0IdList ;
_ _ : 0Iq 0IdList — O0IdList ; (* left append *)
- - : DIdList 0Id — OIdList (* right append *)
equations V E1,E2:0Id, L:0IdList in
E2 eps = eps E2 ;
El (L E2) = (E1 L) E2
endequations }

Notec that we do not use subsorting to implement lists. The reason is that, in
the presence of subsorting, the union operation, in general, does not preserve
the coherence of signatures.

Coherence is a central property of order sorted signatures: in a coherent
signature two connected subsorts have a common supersort (locally upward fil-
teredness) and there is always a unique least sort for each term (regularity) [8].
This problem is illustrated by the following example: Assume we have signatures

Y, = Nat, NatList; subsorts Nat < NatList;

Yy = sorts Nat, Int; subsorts Nat < Int;

sharing the common subsignature

Xy = sorts Nat;

Then the union of ¥, and Y» (more precisely, the pushout of the inclusions
g1 ZE();)El a,ndO'QZE()L)Ez) is

Y = sorts Nat, Int, NatList; subsorts Nat < Int, Nat < NatList;

¥ is not locally upwards filtered. Hence, in the above specification 0IDLIST,
problems w.r.t. the coherence of its signature arise if 0Id is declared as a subsort
of DIdList and 0Id is also declared as a subsort in the specification 0ID. Since
we use overloading, we avoid this problem.



