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Abstract. A model of subobjects and subobject selection gives us a con-
cise expression of key semantic relationships in a variety of inheritance-
based languages. Subobjects and their selection have been difficult to
reason about explicitly because they are not explicit in the languages that
support them. The goal of this paper is to present a relatively simple
calculus to describe subobjects and subobject selection explicitly. Rather
than present any deep theorems here, we develop a general calculus that
can be used to explore the design of inheritance systems.

1 Introduction

In a system with inheritance, a class P (Point) represents a collection of members,
the methods and instance variables that are shared by instances of P. When a
class CP (ColorPoint) inherits from P, the language may be designed to do one
of two things. It may attempt to merge the members of P with those of CP,
usually by collapsing same-named members into single definitions. Alternatively,
it may allow the members of P to be inherited as an indivisible collection. This
collection, when instantiated, is known as a subobject. Each object of class CP
has a distinct subobject CP /P, which we call the P subobject of CP, as well as a
subobject CP/CP, which we call the primary subobject of CP. Subobjects are
meant to support subclass polymorphism: each subobject represents a different
view of the object, allowing it to be viewed as an instance of any of its ancestor
classes. The notion of subobjects is necessary to model the behavior of a variety
of complex multiple-inheritance systems such as in C++.

Since an instance no longer can be seen as a record with member names as
field names, member references become more complicated. In this model, it is
the subobjects that are seen as records, and an object is just a collection of
subobjects. Member references are made by selecting a subobject that defines
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the member, and referencing the appropriate field of that subobject. Since the
field reference is unremarkable, we focus on the semantics of subobject selection.

In multiple-inheritance systems, it becomes complicated even to determine the
set of subobjects for instances of a given class. In some systems, the methods and
instance variables of P may in fact be replicated many times in CP depending on
the different paths through which P may be inherited by CP. In other systems,
there may be only one subobject for each ancestor, despite multiple paths to the
same ancestor. Yet other systems may allow both kinds of inheritance to coexist,
as in C++ [10, 26].

Subobject selection is complicated by the multiple views supported by an
object. When a CP instance is viewed through its CP /P subobject, should
it still be possible to access the members defined in the CP/CP subobject as
well? What about the converse? And if both are accessible, which should be
preferred if a member is defined in both subobjects? Moreover, how are these
decisions affected by the presence of both late-binding (dynamic) and early-
binding (static) references? These are the questions our semantics is designed to
answer. We develop a core semantics, and extend it to express both single and
multiple inheritance. Our goal is to present a general calculus that can be used
to explore the design of inheritance systems.

Each of our systems is presented as a language in which an inheritance hier-
archy is built and a query is made with respect to the hierarchy. Each query
first identifies a primary subobject of some class in the hierarchy, and then asks
which subobject of that class is selected when a certain member (or sequence
of members) is referenced. An expression in one of these languages is seen as
expressing the subobject that is ultimately selected as a result of a sequence
of member references. Importantly, we are not concerned with the value of a
member reference; we model only static properties of inheritance hierarchies.

For example, suppose we have a new object of class CP, and we select (stat-
ically) the f method, and then from inside that method we select (dynamically)
the g method. What subobject of CP should the g method access? This may
be expressed as inh(P;;f,g) in inh(CP; P;g) in CP stat(f).dyn(g), which is
a term in our single-inheritance system. Call this term ¢. The semantics of our
system allows us to show that ¢ > CP/CP, which says that this term selects
the primary subobject of CP.

Our presentation is expressed in terms of an abstract syntax and an opera-
tional semantics for each member of a family of inheritance systems. Since our
goal is modeling, we prove no deep theorems about these systems, but we do state
some of their rudimentary properties. We begin with a common core in Sect. 2,
and extend it to arrive at a single-inheritance system in Sect. 3. Section 4 extends
the core in a different direction, arriving at a core system for multiple inherit-
ance. Sections 5 and 6 extend this multiple-inheritance core in two directions,
giving us replicating inheritance in one case, and shared inheritance in the other.
Finally, Sect. 7 combines the replicating and shared systems into a single system,
which closely models the C++ multiple-inheritance system.
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2 Class-System Core

We begin with a core system, which we call CSC. Although this is not a powerful
system itself, it is the common basis for all the systems that follow. Classes may
be defined in CSC, but there is no inheritance, and therefore all subobjects
are primary. Thus, subobject selection always yields the primary subobject.
Nevertheless, the study of CSC lays important groundwork for the inheritance
systems that follow.

2.1 CSC Syntax

A term T makes queries about subobject selection, but may first contribute to the
construction of a class context, the inheritance hierarchy in which the queries are
resolved. Environments encode the class context, including information about
the classes that are defined and the members defined by those classes. The class
form introduces new classes, but there is no notion of inheritance. The only
query in CSC is the trivial a, which simply selects the primary subobject of the
named class. Throughout, we let a—d range over class names, while every m is a
member name.

CSC Syntax
T = CSC term
class(a;my,...,my) inT (n > 0) class definition
Q query
Q= CSC query
a primary subobject of a

For now, a subobject is identified by two classes, although this is extended
in the multiple-inheritance systems in later sections. The first class is called the
actual class of the subobject: In an instance of class a, every subobject’s actual
class is a. The second class is called the effective class of the subobject: Each
subobject corresponds to an ancestor of the actual class, possibly the class itself.
This ancestor is the effective class of the subobject. Subobjects are annotated as
a/b, where a is the actual class and b is the effective class.

Judgments in CSC and the subsequent systems are categorized by the role
they play in the proof system. Each of the categories environments, well-formed
subobjects, and subobject selection has only one form of judgment. The access
category comprises all judgments that de-construct environments, while subobject
relations is a catch-all for the remaining judgment forms, each of which expresses
some kind of relationship among subobjects with respect to a given environment.
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CSC Judgments

environments

F E env E is a well-formed environment
access

Et a class a is a defined class

EFasm a defines the member m
wf subobjects

EFa/buf a/b is a well-formed subobject
subobject selection

EFT>afb the term T selects a/b

Environments contain information about the class names and member names
defined in an inheritance hierarchy.

Environment Syntazx

E = Environment
0 the empty environment
E,a definition of class a
E,a>m a defines the member m
E,a<b a inherits directly from b (SI only)
E,a=<,b replicating direct inheritance (RMI, SRMI)
Ela<;b shared direct inheritance (SMI, SRMI)

Sometimes it is useful to view an environment E as a set.

dom(E)={a| (@€ E)V(a<beE)V(a=,beE)V(a=,be E)}
codom(E) = {b| (e < b€ E)V (a <+ b€ E)V (a <, b € E)}

2.2 CSC Rules

The rules for CSC are listed below. This system is intended primarily as a
starting point in our derivation of inheritance systems. As such, it includes the
(Acc 3) and (WS base) rules, which are never required for any proofs in the
current system. Otherwise, the subobject-selection judgments can be seen as
motivating the other rules.

The (Sel class) rule evaluates the subterm T in an environment extended to

include a and a > m;,...,a 3 m,. The well-formedness of environments ensures
that a is not already defined in E. The member names m;, ..., m, are assumed
to be a set.

To select the primary subobject of a using (Sel pri), we have only to show
that a is a class in E. This is shown by application of (Acc a), which in turn
forces E to be well-formed.
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Environments

(Env 0) (Env a) (Env 3)

FEenv a¢dom(E) Et a class

0 env F E,a env FFE,asm env
Access

(Acc @) (Ace 2)

t- E,a,E' env FE,a>m,E env
E,a,E'\ a class Easm,E'tFasm

Well-formed Subobjects
(WS base)
Et a class
Etaja wf

Subobject Selection

(Sel pri) (Sel class)

EF a class E,a,a3my,...,a2m, =T > afc (n>0)
n

EtFapa/a E + class(a;my,...,m,) inT > afc -

2.3 CSC Basic Properties

With the CSC system we can prove such assertions as

- class(A;) in AD> A/A
t class(A;x,y) in class(B;z) in A> A/A
F class(A;x,y) in class(B;z) in B > B/B

We can state some easy properties of CSC.

Proposition 2.1 (CSC Properties)
Given an E, a term T, and a query Q:

(i) IfE+ Q o a/b then E - a/b wf.

(i) There is at most one a/b such that E+ T > a/b.

Since (Sel pri) is the only selector, and since primary subobjects are well-formed
by (Wf base), both (i) and (ii) follow.
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3 Single Inheritance

The single inheritance system SI is now defined as an extension of the CSC
system. The rules and judgment forms of SI extend those of CSC. The result is
a model of a single-inheritance system much like Simula 8] or single-inheritance
C++.

We consider both late-binding (dynamic) and early-binding (static) methods
as well as instance-variables, which are static in the same sense as static methods.
An unusual aspect of our formalism is that, rather than annotate each member as
either static or dynamic in the class declarations, we annotate the reference sites,
where the information is immediately useful. We assume that these annotations
are consistent with a system in which the annotations at the reference sites are
inferred from some information in the class declarations. Moreover, we do not
distinguish between instance variables and static methods.

3.1 SI Syntax

To complement CSC’s class, we introduce inh for class definitions with inherit-
ance. We also add three new queries: dyn for dynamic references, stat for static
references, and super for superclass references, which are also static.

SI Syntaz

T:= SI term
class(a;my,...,my) In T (n > 0) class definition
inh(a;b;mi1,...,mp) in T (n > 0) inheriting class definition
Q query

Q= SI query
a primary subobject of a
Q.dyn(m) dynamic subobject selection
Q.stat(m) static subobject selection
Q.super(m) superclass subobject selection

The new SI judgments extend the CSC judgments in order to express the
effects of inheritance. First, E F a < b asserts that a inherits directly from b.
For subobject selection, however, we must be able to compare subobjects, as
in E F a/b < afc. Finally, we need a way to express the effects of subobject
ordering on the search for a subobject that defines a member m; this is given by
E  selects(a, m, ¢), which says that the a/c subobject of a is selected by m.

SI Judgments (extending CSC judgments)

access

Ela<b a inherits directly from b
subobject relations

EFa/b<a/c a/b is more defined than a/c

E I selects(a, m,c) m selects a’s a/c subobject
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3.2 SI Rules

The SI rules, listed below, are driven by the syntax-based rules. The new in-
heritance rule (Sel inh sing) now extends E with a < b, motivating (Env <);
the condition in (Env <) that a ¢ codom(E) ensures that inheritance is acyclic
in well-formed environments. The remaining syntax-based rules, (Sel dyn), (Sel
stat), and (Sel sup), are all defined in terms of the selects relation, (Rel sel).
This rule is the key to the entire system. We paraphrase (Rel sel) as follows:

Subobject selection for a method m in a class a is a two-step process.
First we determine the set S of candidates—the set of all subobjects of

a in which m is defined. Then we select a/c, which is the least element
of S.

This rule fails when m is undefined in every ancestor of a (including a). It also
fails when S has incomparable minima, which indicates an ambiguous reference.

Of particular interest are the different ways in which selects is used by (Sel
dyn), (Sel stat), and (Sel sup). In dynamic selection, the current static context
of the reference is ignored; only the actual class of the object is considered. This
is reflected in (Sel dyn) by ignoring b, which represents the current view of an
a object. Only the actual class @ is used in subobject selection, yielding a/c,
another subobject of a.

In contrast, static selection is calculated with respect to the current static
context, disregarding the actual class of the object. Thus, (Sel stat) uses b for
its subobject selection. This yields a subobject b/c of b. Since b is an ancestor
of a, it must be that c is also. The static selection therefore yields a/c. The case
of (Sel sup) is nearly identical to (Sel stat), except that the immediate base class
of the current static context is used to resolve the reference. Thus, super-method
invocations are also static references.

The (Rel sel) rule motivates the rest of the system. The notion of a well-
formed subobject is explicitly called for, as is the need for (Ace 3), which was
defined in CSC. Subobjects are compared using <, which is defined by (Rel <
refl), (Rel < arc), and (Rel < trans). Finally, (Acc <) is required by (Sel sup),
(Rel < arc), and (Wf ind).

The well-formed subobject rules for SI implement the notion that a class a
has one subobject a/b for each ancestor class b. The term ancestor is taken to
denote the transitive and reflexive closure of the < relation. A very similar thing
happens in the < rules. The < relation is the reflexive and transitive closure of
< as if it applied to subobjects. That is, a/b < a/c if and only if ¢ is an ancestor
of b.

Environments
(Env <)

Etacless EFbclass a#b a¢codom(E)
FE a<benv
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Access
(Ace <)

FE,a<bE env
E,a<bEFa<b

Well-formed Subobjects
(Wf ind)
Etrafbuf EFb<c
Etajcuf

Subobject Relations
(Rel < refl) (Rel < arc)
Etra/buwf Etraj/buwf Etaj/cuf EFb<c
Eta/b<a/b Eta/b<alc
(Rel < trans)
Eta/b<alc Etajc<Lald
Eta/b<a/d

(Rel sel)
S={a/b| E-a/bwf EFbsm} a/c€S V(a/d € S)[EF afc < a/d]

E I selects(a, m,c)

Subobject Selection

(Sel inh sing)
E,a,a <basmy,...,a3m, -T >afc

(n20)
E+ inh(a;b;my,...,my) in T > a/c
(Sel dyn) (Sel stat)
EF Qb a/b EVt selects(a,m,c) E+Qup a/b Et selects(b,m,c)
EF Q.dyn(m) > a/c E F Q.stat(m) > a/c
(Sel sup)

EFQuoa/b EFb=<c EF selects(c,m,d)
E t Q.super(m) > a/d

3.3 SI Basic Properties

As a demonstration of some of the important properties of SI, let Z abbreviate
the string class(A;x,y) in inh(B;A;y). Then we can obtain the following

theorems in SI:
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FZinB > B/B
 Z in B.dyn(x) > B/A
F Z in B.stat(x) > B/A
F Z in B.stat(x).stat(y) > B/A
F Z in B.stat(x).dyn(y) > B/B

F Z in B.stat(x).dyn(y).super(y) > B/A

Proposition 3.1 (SI Properties)
Given an environment E, a term T, and a query Q:

(i) IEF Q> afbthen EVF a/bwi.
(ii) There is at most one a/b such that E+ T 1> a/b.

(iii) FEF Q > a/b and if Q' is a subterm of Q then there exists ¢ such that
EFQ >afe.

(iv) Suppose E+ Q > a/band E+F Q' > afe. If EF Q.dyn(m) > a/d then
Et Q'.dyn(m) > a/d.

(v) Suppose E - Q > afband E+ Q' > a/b. If E + Q.stat(m) > a/c then
E | Q'.stat(m) > a/ec.

These are trivial except (ii). Certainly (Sel pri) selects at most one subobject.
The other selectors, (Sel dyn), (Sel stat) and (Sel sup), select as many subobjects
as can be proven by (Rel sel) with a and m fixed. Fixing a and m also fixes
S, so the only question is whether there is more than one a/c such that V(a/d €
S)E F a/c < a/d]. Clearly, if a/e € S and V(a/e € S)[E + a/e < a/d] then
Etaje <afc. But EtF aje < afe since afe € S. Thus a/c = afeif < is a
partial order over S. Reflexivity and transitivity of < follow from (Rel < refl)
and (Rel < trans), respectively. Antisymmetry is proved by the following series
of lemmas.

Lemma 3.2 (< is acyclic)
There is no E, a4,...,a, (n > 1) such that

(i) + E env,
(ii) for1 <i<n, Et a; < a;y1, and
(iii) E F an < a;.

Proof. For (i)-(iii) to hold, it must be that a; < a;+1, a, < a1 must all occur in
E. Consider the one of these that occurs rightmost in E. It cannot be a; < a;41
because (since it is last) a; must already occur in the codomain of E, either as
ai—y < a; (if i > 1), or ap, < a; (if ¢« = 1). Similarly, it cannot be a, < a;,
because a,, already is in codom(FE), as a,_1 < ay.
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class A {
public:
int x() { return( 10 + this->y() ); }
virtual int y() { return( 0 ); } };
class B : public A {
public:
int y() { return( 1); } };

int main(void) {

B *bp = new(B);

printf ("bp->x() ==> %d\n", bp->x0));
}

Fig. 1. C++ single-inheritance example.

Lemma 3.3
IfEt a/b< afc then E+ b <* ¢, where <* is the reflexive, transitive closure of
<.

Proof. By induction on the derivation of E - a/b < a/c. If the last step is (Rel
< refl) or (Rel < arc) then the conclusion is true, and the hypothesis is clearly
preserved by (Rel < trans).

Lemma 3.4
IfEva/b<afcand EFa/c<afbthenb=c.

Proof. Assume b and ¢ are distinct. By Lemma 3.3, we deduce that EF b <* ¢
and E F ¢ <* b. But this contradicts Lemma 3.2.

3.4 SI Example

To demonstrate the relationship between our subobject selection calculi and the
semantics of an object-oriented language, consider the following translation from
C++ into a hypothetical intermediate language that is similar in syntax to SL
From there, we show how SI relates to the semantics of the resulting code frag-
ment.

We begin with a single-inheritance C++ program, shown in Fig. 1, which
prints “bp->x() ==> 11”. We translate this code into a more suitable interme-
diate language, without describing the language in detail. In the following code,
class definitions are nested, as in SI, to construct a class context. An instance is
created within the scope of this context, and the x member is referenced. This
reference to x uses stat because x is a non-virtual method in the C+-+ version.
The y reference, on the other hand, uses dyn because y is virtual in the original.
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class(A; x=fun(self) 10 + self.dyn(y),
y=fun(self) 0 ) in
inh(B; A; y=fun(self) 1 ) in
let bp = new(B) in
bp.stat(x)

We are not concerned with the run-time system implied by this code frag-
ment. Rather, we focus on the subobject-selection issues. The subobjects of
B in this system are {B/B,B/A}. There are three sites in the code that call
for subobject selection: new(B), bp.stat(x), and self.dyn(y). The behavior
at each site is determined by the following theorems of SI, where Z abbreviates
class(A;x,y) in inh(B; A;y):

FZinB > B/B
F Z in B.stat(x) > B/A
+ Z in B.stat(x).dyn(y) ©> B/B

The first of these says that, in a class context that defines the class A with
members x and y, that also defines the class B, inheriting from A and defining
the member y, the primary subobject of B is B/B, which represents a new
instance of B. The second says that, in this same context, if we start with a
fresh instance of B and make a static reference to x, the B/A subobject of B is
selected. Finally, if we start with a new instance of B, make a static reference to
x, and then—from the resulting B/A context—make a dynamic reference to y,
the B/B subobject is selected.

4 Multiple-inheritance Core

We now define a core system for multiple inheritance as an extension of CSC.
Significantly, MIC does not extend SI. Although SI shares many similarities with
the multiple-inheritance systems, only the CSC subset of SI can be shared without
modifications.

Like CSC, MIC is meant only as a foundation for the systems that follow. It
comprises the rules that are common to those systems, but is not coherent on its
own. (For example, it has no syntax for class definitions.) Nevertheless, we take
this opportunity to look closely at these common rules, and to deal with some of
the complications that arise in the move to multiple inheritance.

The most obvious change from SI is an extended subobject notation. In
multiple inheritance, it is sometimes necessary to distinguish the two versions of
a subobject a/c that arise when there are two inheritance paths between a and
c. Subobject notation is therefore extended to allow sequences of classnames, as
in ¢/a. We use o, § and 7y to denote (possibly empty) sequences of class names.
We freely use concatenation of sequences and individual classes, as in a/abg.

Consider the subobject a/ab. Here, a is the actual class, b is the effective class,
and « is a sequence of class names. In RMI (Sect. 5), « is a full inheritance path
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from @ to b. In SMI (Sect. 6), o is empty. In SRMI (Sect. 7), a is a subpath
satisfying certain properties to be described later.

4.1 MIC Syntax

Since each of the ensuing multiple-inheritance systems defines its own inh syntax,
MIC does not provide one. It does provide dyn and stat, which are analogous
to those in SI, but there is no obvious multiple-inheritance analog for SI's super,
since there is no longer an obvious total order among the subobjects. (The
question of whether to impose a total order, and what total order to use, is
still a source of discussion [9, 12], especially for the CLOS [25] and Dylan [22]
communities.)

MIC Syntax
T ::= MIC term
Q query
Q= MIC query
a primary subobject of a
Q.dyn(m) dynamic subobject selection
Q.stat(m) static subobject selection

Judgments in MIC include those in CSC, and some new forms. The < judg-
ment here is familiar from SI, as is the explicit subobject selection relation. These
simply have been extended to the multiple-inheritance notation for subobjects.
An additional judgment specifies the result of an injection from c¢’s subobjects
into a’s. This requires a subobject of a to disambiguate the different images of
¢’s subobjects in a.

MIC Judgments (extending CSC judgments)

subobject relations
Etra/a<al/p a/a is more defined than a/3
E t+ selects(a, m, a) m selects a’s a/a subobject
E +inj(a/a,c/B,a/y) a/v is the image of ¢’s ¢/ in a, wrt a/c

4.2 MIC Rules

A numbe; of the MIC rules are nearly copies of the corresponding rules in SI,
using the extended subobject notation. These include (Sel dyn), (Rel sel), and
(Rel < refl). The remaining rules require further explanation.

In (Sel stat), subobject selection yields b/3, which we might expect to cor-
respond to a/B3, as in SI. But in SI this is an implicit injection from the space of
subobjects of b to the space of subobjects of a: Suppose a < b. If b’s subobjects
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are {b/co,...,b/cpn}, the subobjects of a would be {a/a,a/co,...,a/cy}, so every
b/c; has exactly one image a/c; in a’s subobjects.

With multiple inheritance, however, it may be the case that a has two an-
cestors, b and ¢, with subobjects b/d and c/d respectively. If we use the same
injection as in SI, both of these subobjects inject to the same a/d subobject of
a; this is what we call shared inheritance of d, which is discussed in Sect. 6. If
we want the two subobjects to map to different subobjects of a, we need a more
elaborate injection. In Sect. 5, where we introduce replicating inheritance, the
injection maps b/d to a/bd and ¢/d to a/cd. For now, we have only the (Rel inj
id) rule, which is simply an identity map.

MIC is also incomplete because the notion of well-formed subobjects is in-
complete, as is the notion of a more-defined subobject. The rules (Rel < repl)
and (Rel < shar) are used in later sections to tie the < relation to the arcs in E,
much like (Rel < arc) in SI.

Subobject Relations

(Rel inj id) (Rel < trans)
Etraja<a/f Eta/B<aly
E Finj(a/a,a/B,a/8) Era/a<aly
(Rel sel)
(R;lf refl) S={aj/ab|Etajabwf Erbsm}
prot®— upes VepeSiBrassa

E F selects(a, m, 3)

Subobject Selection
(Sel dyn)
EFQpa/a FEIselects(a,m, )
EF Q.dyn(m) > a/B
(Sel stat)
EF QD aj/ab EFselects(b,m,3) EF inj(a/ab,b/B,a/7)
El Q.stat(m) > a/y

5 Replicating Multiple Inheritance

We are now ready to present our first complete multiple-inheritance system,
RMI. The defining assumption in RMI is that a class has one subobject for each
inheritance path to each ancestor. Subobjects in RMI encode the complete path
from the actual class of the object to one of its ancestors. If that ancestor is
reached by different paths, these different paths will cause the subobjects to be
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annotated differently, resulting in distinct subobjects. Thus, if a class C inherits
directly from A and B, where B also inherits directly from A, objects of C will
have two subobjects for A. These are annotated C/CA and C/CBA. In RMI,
each subobject is actually of the form a/ac; that is, each encoded path begins
with the actual class of the object. This will not be the case in the other systems
we study.

5.1 RMI Syntax

The only new syntax introduced by RMI is the inh form. Here, by,...,b; are
multiple immediate base classes, which we may assume to be a set. The class
syntax from CSC is dropped; we can now use an empty series of base classes to
model the equivalent behavior.

RMI Syntax

T = RMI term
inh(a; by,...,bk;my,...,my) in T (k,n > 0) class def.
Q query

Q= RMI query
a primary subobject of a
Q.dyn(m) dynamic selection
Q.stat(m) static selection

Judgments in RMI extend those in MIC with one new form: E + a <, b.
The <, relation is analogous to the < relation in SI, except that now we are
identifying this as a replicating arc.

5.2 RMI Rules

The RMI rules are surprisingly similar to their counterparts in SI. The (Sel
inh repl) rule is a simple extension of (Sel inh sing), and the <, relation is
essentially identical to SI’s <. The remaining rules are defined largely in terms
of concatenation of paths, which deserves some discussion.

The ( Wf repl) rule says that a subobject is well formed if it extends a well-
formed subobject’s inheritance path by one class, where that class is an immediate
base class of the effective class of the original subobject. Similarly, (Rel < repl)
says that one subobject is immediately more defined than another if the other’s
effective class is an immediate base class of the effective class of the original
subobject.

Finally, the injection rule (Rel inj repl) is more subtle than it might appear.
It says that injection is only well defined if the actual class of the subobject that
is being injected is the effective class of the current static context (as represented
by b in the rule). Given this circumstance, the injection is formed by splicing the
paths ab and b3 to arrive at abS. The motivation is that ab tells how to get from
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a to a particular b, and bg tells how to get from any b to a particular ancestor
of b. The spliced path uses the first path to pin down the second.

Environments
(Bnv <,)
Etaclass EFbclass a#b a¢ codom(E)
FE a<,benv
Access
(Acc <+)

FE,a<,bE env
Ea<.bE'+Fa<.b

Well-formed Subobjects
(Wf repl)
Etrafabwf EFb<,c
E+ a/abe wf

Subobject Relations
(Rel inj repl) (Rel < repl)
Etra/awf Etajabuwf

Etrafa<a/ab

E \inj(a/ab,b/bB,a/abf)
Subobject Selection

(Sel inh repl)
E,a,a <7 b1,...,a <, b,a3my,...,a3m, T D> a/a
E t inh(a; by, ..

- (k,n > 0)
Sbgymi,...,my) inT > a/a

5.3 RMI Basic Properties

As a demonstration of some of the important properties of RMI, let Z abbreviate
the string inh(A;;x,y) in inh(B; A; w,z) in inh(C; A, B;y,z). Then we can
obtain the following theorems in RMI:

FZinC > C/C

F Z in C.stat(w) > C/CB
F Z in C.stat(w).stat(y) > C/CBA
F Z in C.stat(w).stat(y).dyn(y) > C/C

t Z in C.stat(w).stat(y).dyn(z)

> C/C
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There is no a/c, however, such that + Z in C.stat(x) > a/a, even though
x is defined in an ancestor of C. This is because the set S in (Rel sel) is
{C/CA,C/CBA}, and these two subobjects are incomparable by <. Such a
reference is said to be ambiguous.

Proposition 5.1 (RMI Properties)
Given an environment E, a term T, and a query Q:

(i) FEF Q> afa then EF af/a wi.
(ii) There is at most one afc such that E+ T > a/a.

(iii) FEF Q > a/a and if Q' is a subterm of @ then there exists § such that
EFQ >a/p.

(iv) Suppose E+ Q > a/a and E + Q' > a/B. If E + Q.dyn(m) > a/vy then
Et* Q'.dyn(m) > a/y.

(v) Suppose E+ Q > a/a and EF Q' > afa. If E + Q.stat(m) > a/f then
EF Q'.stat(m) > a/p.

Again, (ii) is the only non-trivial point. The proof of (ii) is essentially
identical to the proof for Proposition 3.1. Antisymmetry of < follows from (Rel
< repl), which relies on the well-formedness of subobjects ( Wf repl) to tie the
subobject orderings to the order <, of the class hierarchy.

6 Shared Multiple Inheritance

Our second complete multiple-inheritance system, SMI, closely parallels RMI,
but differs in most details. The defining assumption of SMI is that each an-
cestor class leads to exactly one subobject in an inheriting class, regardless of
the number of paths by which it is inherited. This is, in fact, very similar to the
situation in SI, where a subobject is uniquely named by the actual class and the
effective class. It might be surprising, then, to find sequences and concatenation
in the semantics of SMI. The reason is that we define SMI with extra generality
so that later it can be merged with RMI without redefinition. For the present, it
is consistent to interpret every subobject of the form a/ab as equivalent to a/b.

6.1 SMI Syntax

The syntax of SMI is identical to that of RMI.
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SMI Syntax

T = SMI term
inh(a;by,...,0k;m1,...,my) in T (k,n > 0) class def.
Q query

Q= SMI query
a primary subobject of a
Q.dyn{m) dynamic selection
Q) .stat(m) static selection

As in RMI, judgments in SMI extend those of MIC with one new form: E |-
a <, b, in this case. The only difference from RMI is that <, is introduced in
place of <;, indicating a shared inheritance arc.

6.2 SMI Rules

The only significant differences between RMI and SMI lie in the ( Wf shar), (Sel
inh shar), and (Rel < shar) rules. A subobject a/c is well formed in SMI if
either a = b (Wf base), or there exists another well-formed subobject such that
c is an immediate base class of its effective class. The only reason the ( Wf
shar) rule uses a/ab rather than simply a/b is so that it still applies when this
system is combined with RMI; in SMI, « is always empty, so only b is significant.
This establishes that every well-formed subobject in SMI has only a singleton
sequence in its notation. If we simplify (Rel < shar) similarly, it is clearly the
same ordering we described for SI. Finally, (Rel inj shar) is exactly the injection
that is implicit in SI’s (Rel inj sing).

Environments
(Env <,)

EFaclass EFbclass a#b a¢codom(E)
FE,a <, benv

Access
(ACC '<a)

FE,a<;bE env
Ea<,bE'Fa<,b

Well-formed Subobjects
(Wf shar)
Erajobuf EFb<,c
EtFa/cuf
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Subobject Relations
(Rel inj shar) (Rel < shar)
Etaj/abwf Etrajcuwf ErFb<,c
E + inj(a/ab,b/c,a/c) Etrajab<alc

Subobject Selection

(Sel inh shar)
E,a,a <3 b1,...,a <, bg,a3my,...,asm, -T > a/8
E +inh(a;by,...,bg;my,...,mp) in T > a/B

v
=

6.3 SMI Basic Properties

As a demonstration of some of the important properties of SMI, let Z abbreviate
the string inh(A;;x,y) in inh(B; A;x,z) in inh(C; A;y,z) in inh(D; B, C;).
Then we can obtain the following theorems in SMI:

FZinD > D/D
t Z in D.stat(x) > D/B
k Z in D.stat(x).stat(z) > D/B
F Z in D.stat(x).stat(y) > D/A
F Z in D.stat(x).dyn(y) > D/C
F Z in D.stat(y) > D/C
F Z in D.stat(y).stat(z) © D/C
F Z in D.stat(y).stat(x) > D/A
F Z in D.stat(y).dyn(x) ©> D/B

There is no a/a, however, such that - Z in D.stat(y).dyn(z) > a/a, even
though z is defined in two ancestors of D. The reference is ambiguous because
the set {D/B, D/C}, which is the set S in (Rel sel), has no least element.

Proposition 6.1 (SMI Properties)
The properties listed in Proposition 5.1 hold for SMI also.

As in SI, antisymmetry follows directly from (Rel < shar), which bases subobject
orderings on the acyclic order <, over class names.

7 Combined Shared and Replicating Multiple Inheritance

Finally, we may now develop the complete, merged multiple-inheritance system,
SRMI. As with the other multiple-inheritance systems, SRMI uses the extended
notation for subobjects. The semantics is almost entirely defined by the two
systems RMI and SMI, with only two new rules added for SRMI. This merged
system is essentially the same system we have previously defined with a less-
formal semantics [17]. There, we demonstrated that this system captures the key
semantic issues that arise in the C++ multiple-inheritance model.
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7.1 SRMI Syntax

One new syntactic form is introduced—a variation on the inh form in which two
sequences of base classes may be specified. The first sequence is interpreted as
shared base classes, the second as replicating bases.

SRMI Syntax

= SRMI term
inh(a; by,...,b;¢1,...,e;m1,...,my) in T (k,l,m >0)
Q query

= SRMI query

a primary
Q.dyn(m) dynamic
Q.stat(m) static

Judgments in SRMI are simply the combined judgments of RMI and SMI.

7.2 SRMI Rules

Only two rules are added to form SRMI, but three rules are also removed. The
new (Sel inh comb) rule is a simple extension of the analogous rules in RMI
and SMI. The new (Rel inj comb) rule is very similar to SMI’s (Rel inj shar),
but includes a new condition. This condition, that b # ¢, ensures that c is a
shared base class of b; the same condition would have meant something quite
different (and undesirable) if it were included in the SMI rule. In fact, many
of the interactions between the RMI and SMI versions of related rules deserve
special attention.

Take, for example, the specification of well-formed subobjects. A well-formed
subobject in SRMI is a subobject a/cy,...,cn, (n > 1) in which either ¢; = a
or there exists an ancestor b of a such that b <, ¢;. Moreover, ¢; <, ¢;41, for
0 € ¢ < n. In SRMI, this relationship is given a concise, formal definition in the
three rules ( Wf base), (Wf repl), and (Wf shar). Thus, the aggregation of rules
in SRMI leads to a rich interaction of the two systems on which it is based.

Proposition 7.1
The properties listed in Proposition 5.1 hold for SRMI also.

Again, antisymmetry for < is the only difficult point. By the use of codom
in (Env <;) and (Env <,), the combined class hierarchy is still acyclic. It is
therefore not possible for the combination of (Rel < repl) and (Rel < shar) to
violate antisymmetry.
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cvive D

/ \ . e

Fig. 2. A sample multiple-inheritance hierarchy. Dotted lines are shared arcs,
solid lines are replicating arcs. Superscripts denote member functions of the class.

SRMI: Shared and Replicating Multiple Inheritance
(extends SMI, excluding (Sel inh shar) and (Rel inj shar))
(extends RMI, excluding (Sel inh repl))

Subobject Relations
(Rel inj comb)
b#c
Etinj(a/ab,b/cB,a/cpB)

Subobject Selection

(Sel inh comb)
E,a,a <4 b1,...,a <, b,
a <y Cly...,0 <, Cyp,
ad3my,...,a 3 My
FTD>a/a
EFinh(a;b1,...,bk5¢1,-..,c;my,...,my)
inTea/a

(k,l,n > 0)

7.3 SRMI Example

In C++, members—rather than references—are divided into virtual and non-
virtual. This is modeled in SRMI by agreeing that virtual members should only
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inh(A;; ax=fun(self) 10 ) in
inh(B;; bx=fun(self) 11,
h=fun(self y) y + self.stat(bx)) in
inh(C;; cx=fun(self) 12,
vi=fun(self) fun(y) y + self.stat(cx),
vg=fun(self)
fun(y) self.dyn(vf)(y + self.stat(cx))) in
inh(D;; dx=fun(self) 13 ) in
inh(E; A; B; ex=fun(self) 100 ) in
inh(F; C; B; fx=fun(self) 200,
vi=fun(self)
fun(y) self.stat(h)(y + self.stat(fx))) in
inh(G; C; D; gx=fun(self) 300,
vg=fun(self)
fun(y)
self.dyn(vf)(y + self.stat(gx))) in
inh(H; F; E; hx=fun(self) 1000,
h=fun(self)
fun(y) y + self.stat(hx)) in
inh(I; G; F; ix=fun(self) 2000 ) in
inh(J; H; I; jx=fun(self) 5000 ) in
let ip = new(I),
jp = new(J) in
list(jp.dyn(vf), jp.dyn(vg), ip.dyn(vg))

Fig. 3. Translation of Fig. 4 into pseudo-code.

be used in dyn forms, with all others used only in stat forms. In SRMI and
in C++, a virtual member function vf may be ambiguously referenced by an
instance of class J, given the hierarchy in Fig. 2. In SRMI, instances of such
a class will always find vf to be ambiguous, regardless of the static context of
the dynamic reference. Unfortunately, only in the most recent semantics of C++
[1} can any similar requirement be found. This change in the C++ specification
deserves further discussion.

The problem with the original C++ specification {10, 26] is that ambiguity
was not considered a problem with the class definition, but rather a problem with
the specific reference. Classes were allowed to inherit members ambiguously; only
a flagrant reference to the ambiguous member could cause a compile-time error.
Suppose, as in Fig. 2, that J inherits vf ambiguously. A reference jp->v£()
would be clearly ambiguous, where jp is a pointer to an instance of J. This kind
of reference is easily detected at compile time, and leads to the expected error
message. What the original specification seems to have overlooked, however, is
that the instance may be used in a static context of one of its base classes in which
vf was not ambiguous, such as in G. That context was compiled without error;
it assumed tacitly that any derived class would have an unambiguous definition
of vf. We see that this was not a safe assumption. The result of this design flaw
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class A { public: int ax; AQ): ax(10) {} };
class B {
public:
int bx;
BO: bx(11) {}
int h(int y){ return( bx +y ); } };
class C {
public:
int cx;
cO): cx(12) {}
virtual int vf(int y){ return( cx +y ); }
virtual int vg(int y){ return( this->vf( cx +y ) ); } };
class D { public: int dx; D(): dx(13) {3
class E: public virtual A, public B {
public: int ex; EQ): ex(100) {} };
class F: public B, public virtual C {
public:
int fx;
F(): £x(200) {}
virtual int vf£(int y){ return( this->h( fx + y ) ); } };
class G: public virtual C, public D {
public:
int gx;
GO: gx(300) {}
virtual int vg(int y){ return( this->vi( gx +y ) ); } };
class H: public E, public virtual F {
public:
int hx;
H(): hx(1000) {}
int h(int y){ return( kx + y ); } };
class I: public F, public virtual G {
public: int ix; I(): ix(1000) {} };
class J: public virtual H, public I {
public: int jx; J(): jx(50000) {} };

int main(){

G *gp = new(G);
I *ip = new(I);
J *jp = new(J);

//  printf("jp->vE(0) = %d\n", jp->vf(0)); // obvious vf ambiguity
printf("jp->vg(0) = ¥%d\n", jp->vg(0)); // vf not ambiguous?! prints 511
printf("ip->vg(0) = %d\n", ip—>vg(0)); // prints 511
printf("gp->vg(0) = %d\n", gp—>vg(0)); // prints 312

}

Fig. 4. C++ multiple-inheritance example.
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J/JA J/HEB  J/FB  JJJIFB _J/C  J/GD

N A

J/HE JJF JJJIF J/G
| v
JJH J)JI

~,,

Fig. 5. The subobject poset for J in the class hierarchy shown in Fig. 2.

is that the reference that occurs in G’s static context actually chooses, by some
hidden algorithm, one of the inherited definitions of vf and calls that code. Thus,
J.dyn(vf) is not necessarily the same as J.stat(vg).dyn(vf), and the semantics
of the latter case is underspecified.

In the recent drafts of the proposed standard for C++ [1], this problem is
remedied by forcing a class to provide its own definition of any such ambiguously
inherited member function. The error is now associated with the class definition
rather than the references. This leads to the behavior specified in SRMI, in
which a virtual member leads to the same result whatever the static context
of the reference. The irony of this result is that SRMI detects ambiguity on
a reference-by-reference basis, much as in the original C++ specification. In
fact, C++ implementors have always had enough information to know they were
getting into trouble with virtuals in base-class contexts, but their hands were tied
by the earlier specification. Because they could not be certain that an instance of
J would make its way to an inherited context that referenced vf, they could not
give an error. The new specification allows (in fact, requires) the implementor
to make the more conservative choice.

Figure 3 shows a program in a hypothetical language, much as we used in
the SI example. This program corresponds to the C++ code in Fig. 4, and
implements the hierarchy in Fig. 2.

SRMI agrees, with both the old and the new C++ specifications, in that
jp.dyn(vt) is ambiguous. We notice that jp.dyn(vg) is also ambiguous, since
it leads to self.dyn(vf), where self is the J instance. As shown in Fig. 5,
which contains the subobjects for J and their ordering, the subobjects J/F and
J/JIF are unrelated. The new C++ specification says that the J definition should
not compile at all, due to the ambiguity of vi. We simply show that a dynamic
reference to the vf member of a J instance is equally ambiguous in any context.
Finally, SRMI agrees with both the old and new specifications in that ip.dyn(vg)
yields 312. This is the result of calling, in turn, G: :vg, F: :vf, and B: :h.
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Formally, we show these three results by the proofs of the following assertions.
Let Z be the appropriate string inh(A;;ax) in ... inh(J; H;I; jx), encoding the
class hierarchy above.

There is no a/a such that

F Z in J.dyn(vf) > a/a
or F Z in Jstat(vg).dyn(vf) D> a/a
however,
t Z inl.dyn(vg) >1/G
F Z inl.dyn(vg).dyn(vf)) > I/IF

+ Z inl.dyn(vg).dyn(vf).stat(h) > I/IFB

8 Related Work

The models of inheritance developed by Kamin [11], Reddy [16], and Cook and
Palsberg (7, 6] laid the foundations for formal models of inheritance. While some
of these mention the desire to model multiple inheritance, there is no compre-
hensive model proposed. Multiple inheritance introduces many design issues
that have not been given a fully satisfactory taxonomy, although Carnese [3],
Snyder [23] and Knudsen [13], for example, have made progress in this direction.
Sakkinen [18] gives a comprehensive, informal introduction to the design issues
surrounding subobjects in inheritance systems. Carré and Geib’s point-of-view
notion for multiple inheritance [4] is also aimed at understanding subobjects.

The C++ multiple-inheritance system [26] is a combination of design ideas,
originating with Krogdahl’s multiple-inheritance design [14]. The resulting sys-
tem, as Sakkinen notes {19, 20}, is best understood in terms of the subob-
jects of each kind of object. Snyder’s informal model [24] of the C++ sys-
tem, however, intentionally simplifies some of the complicating features of the
multiple-inheritance system. Although Wallace [27] and Seligman [21] have de-
veloped formal models of C++, the former sheds little light on issues such as
subobjects, subobject selection, and ambiguity analysis, while the latter models
only single inheritance.

Unlike these models, our formalisms are not full language semantics. We
develop instead a framework for resolving crucial static issues, which correspond
to essential tasks that take place at compile time. Given the information obtained
at this stage, a member reference in the run-time system is resolved with only
a small run-time cost. We have previously presented a subobject-based algebra
[17] for resolving similar issues in a system that is essentially the same as the
system SRMI developed here. The current treatment, in terms of a logic system,
allows us to make detailed comparisons of the semantics of a family of related
inheritance systems.

Despite our interest in static issues, we do not develop a type theory for
our object models. Some semantics have dealt chiefly with the type-safety vs.
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expressiveness issues that arise in object-oriented languages, including those that
support multiple inheritance [2, 15, 5]. The kind of multiple inheritance modeled
in these systems does not resemble SRMI as much as it does SMI, which is simpler
in many respects. In fact, a provably-safe static type system for a system such
as SRMI is an open problem.

9 Conclusions

Expanding on our algebraic semantics of subobjects, we have presented a rel-
atively simple calculus to describe subobjects and subobject selection explicitly.
This gives us a framework for resolving crucial static issues in a formal proof
system. The generality of this new methodology allows us to express a number
of important design choices in inheritance-based languages, such as the distinc-
tion between a replicating and shared inheritance. This is demonstrated by the
incremental development of several related inheritance systems, culminating in
the system SRMI, whose semantics is a subtle combination of the preceding sys-
tems. This last system is of particular interest, due to its correspondence to the
C++ inheritance model, which has no satisfactory formal characterization.

A complete picture of multiple inheritance must deal with a number of run-
time issues we have omitted here, as well as an analysis of the type-safety issues,
among other things. We have chosen here to focus on a simple descriptive account
of the issues relating to subobject selection. Although this is a static character-
ization based on class names, there is no reason it cannot be applied to dynamic
classes, as long as each class is somehow uniquely identified. This enriched ex-
position of subobjects can be seen as the foundation for a broad formal theory
of multiple inheritance.
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