An Implementation Method of Migratable Distributed
Objects Using an RPC Technique Integrated with
Virtual Memory Management

Kenji KONO'™ and Kazuhiko KATO? and Takashi MASUDA!

! Department of Information Science, Graduate School of Science,
University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
Email: {kono,masuda}@is.s.u-tokyo.ac.jp
2 Institute of Information Sciences and Electronics, University of Tsukuba
Tsukuba, Ibaraki 305, Japan
Email: kato@is.tsukuba.ac.jp

Abstract. Object abstraction is indispensable to construction of dis-
tributed applications to encapsulate the details of execution entities.
By applying an RPC technology integrated with virtual memory man-
agement, this paper presents a novel approach to implementing migrat-
able distributed objects. The novelties of the approach are transparency
achieved at the instruction code level, distributed dynamic methods, and
applicability to heterogeneous environments. The instruction code level
transparency naturally accomplishes object migration and enables effi-
cient manipulation of migrated objects. The distributed dynamic meth-
ods provide the programmers with flexible control of activities.

1 Introduction

Construction of distributed application, which consists of autonomous execution
entities running on loosely coupled machines, is hindered by the lack of knowl-
edge on remote execution entities. Thus, it is essential to abstract these entities
as the interacting modules with well-defined interfaces and encapsulate their
details from the others. This observation naturally leads us to building an appli-
cation as a collection of distributed objects, which are the direct embodiment of
those modules. Research efforts in this past decade have invented various imple-
mentation mechanisms for object distribution. The mechanisms proposed so far
can be classified into three approaches: 1) the virtual machine approach, 2) the
proxy-object approach, and 3) the distributed shared memory (DSM) approach.

The virtual machine approach prepares a virtual machine [11, 18, 9, 22], often
implemented as a byte-code interpreter, that provides a transparent mechanism
for passing messages among distributed objects. Since the virtual machine encap-
sulates the underlying hardware and operating systems, this approach provides

* Research Fellow of the Japan Society for the Promotion of Science.

296

a platform on top of which we can design and implement distributed object-
oriented programming languages with a high degree of distribution transparency.
In addition, object migration is achieved with relative ease because of the encap-
sulation by the virtual machine. Using object migration, application program-
mers might improve the execution performance by gathering the objects on one
address space among which messages are frequently exchanged. However, the
virtual machine approach pays a high price for these advantages; it gives up the
effective program execution in native machine code.

In the proxy-object approach, a remote object is invoked indirectly through
invocation of the prozy object [19] that is a counterpart of the stub routine in a
remote procedure call (RPC) [3]. A proxy encapsulates communication details
from application programmers. In this approach, a language preprocessor emits
the code of the necessary proxies and replaces remote object invocations with
the corresponding local proxy calls, thereby accomplishing the literal level trans-
parency. Given a language preprocessor, we can use the conventional native code
compilers not designed for the distribution purpose. The most attractive feature
of the proxy approach is flexibility; various mechanisms can be encapsulated in
proxies. For example, proxy-based systems become applicable to heterogeneous
environments if the code of data conversion is embedded in proxies. Object mi-
gration can be achieved with some restrictions on the optimizations by compilers.
This issue is discussed later in Section 3.5.

The DSM approach is to build object systems on top of DSMs implemented
by either hardware [15] or software [16]. Once DSM is provided, distributed ob-
Ject systems are not difficult to implement, since the DSM layer provides a single
logical address space shared among distributed sites. Clouds [6] takes this ap-
proach. Most DSM implementations use the memory management unit (MMU)
hardware to trap an access to absent pages, and cache the accessed pages on
the local memory. Object systems built on those implementations bring about
an effect similar to object migration and achieve transparency at the instruc-
tion code level. Thus, existing compilers can be used with few modifications.
Generally, DSMs assume homogeneous environments because it is fairly diffi-
cult to implement them in heterogeneous environments. Even if implemented in
heterogeneous environments, these systems are subject to many restrictions [23].

To summarize, the virtual machine approach provides a platform suitable for
object migration, but precludes execution of application programs in native ma-
chine code. The proxy-object and the DSM approaches allow efficient execution
in native machine code. The former is applicable to heterogeneous environments,
but restricts compiler optimizations if object migration is achieved. Although the
latter is not applicable to heterogeneous environments, it automatically achieves
object caching similar to object migration.

Recently, a new RPC technology has been proposed [14, 13] that enables
quite transparent treatment of remote pointers by integrating the RPC and vir-
tual memory management techniques without sacrificing the virtues of RPCs,
such as their applicability to heterogeneous environments. In this paper we de-
scribe an approach to implementing a system for migratable distributed objects

297

by applying the proposed RPC technology. The implemented system has been
named TRAP-DO. The notable feature of TRAP-DO is to put together the two ad-
vantageous points of the above-mentioned conventional approaches that enable
native code execution: one advantageous point is transparency at the instruction
code level in the DSM approach and the other is flexibility in the proxy-object
approach.

In the TRAP-DO system, object references have a uniform representation;
that is, remote objects are referenced by virtual addresses directly accessible by
ordinary CPUs in the same manner as a local object reference. An attempt to
access an absent (remote) object is detected by the hardware for virtual mem-
ory management. Thereafter, the accessed object migrates to the local address
space. After the migration, the access to the migrated object is completely the
same as the access to local objects. Thus, application programs can execute in
native machine code, and no restrictions are imposed on compiler optimizations.
This mechanism seems similar to the DSM approach; both the DSM approach
and the TRAP-DO approach accomplish the instruction code level transparency
and allows remote objects to be referenced by virtual addresses. However, the
TRAP-DO approach is quite different from the DSM approach. Unlike the DSM
approach, TRAP-DO does not share a single logical address space. Each address
space manages its own local memory and reconstructs memory image of the
migrated object independently of other address spaces. Thus, the TRAP-DO ap-
proach is applicable to heterogeneous environments if the internal representation
of the migrating object is converted according to the target machine architecture
to preserve the logical type of the migrated object. In addition, TRAP-DO is ap-
plicable to a variety of existing programming languages. This property contrasts
with typical systems in which either original languages [11, 1] are developed or
a single language is extended for distribution [20, 2, 12].

Generally, it is a difficult task to migrate objects in existing systems as
pointed out in Douglis and Ousterhout [8]. In brief, this is because the entire
state of an object may be scattered in the operating system data structures.
TRrRAP-DO provides the distributed dynamic methods that utilizes the aspect
that RPC can be applied to dynamic linking, as discussed in Hayes et al [10].
This mechanism bypasses the difficulties of migration. For example, consider the
case where an object has a pointer to the data structure held by the operating
system, and a method of the object interacts with the operating system using
the pointer. If this object migrates to another address space and that method is
executed there, the result would be an unexpected one. With a distributed dy-
namic method, the programmer can specify an address space on which a method
is executed. Using this mechanism, in the above example, the programmer has
only to direct the runtime system to execute the method in question at the
appropriate address space. This mechanism also allows the programmers to uti-
lize diverse architectures in a heterogeneous environment. For instance, they can
specify a particular implementation to be executed on the machine with special
equipment.

The rest of the paper is organized as follows. Section 2 overviews the en-

298

tire system. The implementation is described in Section 3. Section 4 reports the
experimental results. Section 5 concludes the paper.

2 System Overview

2.1 Basic Concepts

TRAP-DO supports from fine to medium-grain objects; a single address space can
hold many objects at once. A class is a template from which objects are created,
and every object is an instance of some class. TRAP-DO provides passive objects
wherein the threads and objects are completely separate entities; a thread is not
bound to a single object. We refer to a chain of nested invocations of methods
as an action, and a distributed thread of control as an activity. In the passive
object model, a single activity executes all the methods associated with an action,
migrating from one object to another.

TRAP-DO provides two kinds of objects: global and local objects. The ref-
erences to global objects can be passed beyond the address space boundaries.
Thus, global objects can be invoked from outer address spaces, and may migrate
to other address spaces. On the other hand, the references to local objects can
not be transferred to remote address spaces. If an attempt is made to pass a
reference to a local object to a remote address space, TRAP-DO automatically
detects it and raises an exception. The programmers specify global or local for
each object at the instantiation time.

In TrAP-DO, when an activity invokes a method, the target object migrates
to the address space where the invoking activity is running, and the method
is executed at that address space. This mechanism is completely hidden from
the programmers; they need not to be aware of the location of objects. In this
execution model, an activity is always bound to one address space. To allow the
programmers to flexibly control the location of activities, TRAP-DO provides the
mechanism called the distributed dynamic methods. When invoking a method,
the programmers can dynamically specify the address space on which the method
should be executed, regardless of the location of the target object. Using this
mechanism, the programmers can incorporate various strategies into their ap-
plications; for example, they can distribute the computation for load sharing, or
can exploit the heterogeneity of the distributed environment by executing a spe-
cific method on a machine with special equipment. Of course, location-dependent
methods can be executed at the appropriate address space.

The current implementation of TRAP-DO employs a string composed of the
host name and the service name as a logical name of an address space. For
instance, a string “Mozart:address-book” specifies an address space that provides
the service address-book on the host Mozart. The host name can be omitted so
that the programmers can simply specify the service name. In this case, one
host that provides the specified service is selected by the runtime system. The
logical name string can be generated by programmers at runtime. From a logical
name, the runtime system determines the actual address space and makes the

299

1: //class definition

2: class X {

3: //instance variables

4: public:

5: void foo(void);

6: void bar{(void)Q@"host:service";

7}

8:

9: ...

10: {

11: TransactionalSession(hos, hls){

12: X* o = new (global)X; //instantiate a global object
13:

14: //methods are executed on the default address spaces
15: o->foo(); //executed locally

16: o->bar(); //executed at "host:service"

17:

18: //changing the executing address space

19: o->foo()@"host:service"; //executed at "host:service"
20: o->bar()Q@"local"; //executed locally
21:
22: //an example of load sharing
23: //dynamically select an address space
24: const char* address_space = LoadSharing();

25: //then execute foo() at the address space

26: o->foo()@address_space;
27: }

28: }

Fig. 1. An Example Code of TraP-DoC.

activity migrate to the specified address space. The format of a logical name
string and how it is interpreted are the problem of naming and beyond the
range of this paper. TRAP-DO does not preclude more elaborate logical names;
as a future extension, we are planning to employ a variant of URL (uniform
resource location).

2.2 Language and Example

As a user programming language, TRAP-DO currently provides TRAP-DOC
that extends ANSI C and provides C++-like notation to deal with distribnted
objects. In order to concentrate on the distribution issues, the current TRAP-
DoC does not support inheritance.

Figure 1 shows an example of a class definition. This example defines a
class X that provides two methods foo() and bar(). While the declaration of
foo() is the same as that in C++, the declaration of bar() is annotated with
"host :service". This annotation defines the default address space on which
this method is executed. In this example, bar() is executed by default on the
address space specified by host:service. If this annotation is omitted like the
declaration of foo(), the default address space is the local address space. At
the lines 15 and 16 in Fig. 1, the methods are executed at the default address
spaces. The default address spaces can be dynamically changed as shown in the

300

object O

replication

1
.' replication

.transactional session Y

address space C

address space A

replication

transactional session X

address space B

Fig. 2. Transactional session. Two transactional sessions X and Y are operating on the
object O. The transactional session X operates on two replicas of the object O.

lines 19 and 20. The string “local” is an abbreviation of the logical name of the
local address space. At the line 26, the executing address space is dynamically
changed for load sharing. The function LoadSharing() returns the logical name
of the host whose load is the lightest, and then the foo() is executed there.
Note that TRAP-DOC accepts C++ programs without modifying the semantics
of method calls, except that TRAP-DOC does not support inheritance.

2.3 Transactional Session

Since TRAP-DoO allows multiple activities to execute concurrently and to per-
form update operations on objects, some problems must be dealt with, including
maintaining the coherent state between replicas and synchronizing multiple ac-
tivities of actions. To attack these problems we introduce transactional session
into the system. A transactional session serves as a transaction that serializes
the operations performed by multiple activities, and also serves as a session that
determines the period during which the references to remote objects are valid.
The references to remote objects are not valid beyond the transactional session;
the programmers must split their programs into several transactional sessions
among which remote object references are not shared. A programmer declares
the beginning and the end of a transactional session. In Fig. 1 a transactional
session is declared at the line 11. The role of the parameters “hos” and “hls” is
explained in Section 3.2.

A set of operations performed within a transactional session is guaranteed
to be atomic, serializable and isolated from the others by the inter-session pro-
tocol. In Figure 2, two activities within transactional sessions X and Y are si-
multaneously performing update operations on the replicas of the object O. The
inter-session protocol serializes the transactional sessions X and Y. As shown in

301

this figure, there may exist multiple replicas of a single object within a transac-
tional session. Thus, the coherency between these replicas must be maintained.
In this figure, the object O is replicated on the address spaces A and B within the
transactional session X. The protocol named intra-session protocol maintains the
coherency between these replicas. This protocol guarantees one-copy semantics
within a transactional session. In other words, the activity always observes the
results of the latest update within a transactional session. In TRAP-DO, the one-
copy semantics is relatively easy to implement, since the synchronous property
of method invocations assures that there is a single activity in each transactional
session. This property simplifies the protocol and makes it efficient.

Management of replicas causes the problem of when to release them in addi-
tion to the problem of the coherency between them. We adopt the per-session
replication policy for isolation of transactional sessions; replicas are not shared
between transactional sessions. By using the per-session replication policy, we
can dispense with distributed garbage collection to reclaim the replicas. Since
object migration may occur only during a transactional session, replicas of ob-
jects are in use only within the transactional session. The system can simply
dispose of the replicas created during a transactional session when it reaches
the end of the transactional session, since the replicas are not shared by other
transactional sessions.

3 Implementation

Our migration mechanism consists of three parts. Section 3.1 explains the in-
tegration of virtual memory management and object migration. Section 3.2 de-
scribes the intra-session protocol for replica coherency. Section 3.3 describes the
inter-session protocol for synchronization. Section 3.4 describes the support from
the programming language layer, and explains the mechanism of the distributed
dynamic methods and stub generation. Section 3.5 discusses some aspects of
TrAP-DoO.

3.1 Integrating Virtual Memory Management with Object
Migration

To provide transparent and eflicient references to objects, TRAP-DO enables
objects to be referenced by virtual addresses regardless of the location of the
objects. Since a virtual address becomes meaningless outside the address space
where it is defined, some mechanism must be provided to preserve the logical
links between objects even when virtual addresses are transferred to remote
address spaces. TRAP-DO introduces universal object identifiers (UIDs) valid in
the entire distributed system. The UID of an object consists of three parts: 1)
the address space identifier of the object’s birthplace (typically a pair of the site
ID and the process ID in the site), 2) the address of the object in the birthplace,
and 3) the specifier of the class to which the object belongs. We assume that the

302

Universal OID Universal OID
network message Swizzl
Unswizzle wizzie
Virtual address valid Virtual address valid
within the caller within the callee

Fig. 3. Swizzling and unswizzling of a UID.

Address Space A (caller) Address Space B (callss)

(. s
Page | Pagse
| Object reference X |] # |Object reference X W
Sl =2 I 3
cbject X

Object refersnces are
unswizzled into UIDs
in the network messages.

QObject

2 Object reference Y 2 reference Y
>3]
» Object
3 object ¥ e 3 reference Z

2)

4 % These pages are
»

protected from access.
/ —

Iﬁ]
L H)
Object
reference Z object Z

| o A
. J \. /

Fig. 4. Just after three object references are swizzled in the address space Y.

system can obtain an actual data structure from a class specifier by querying a
database that serves as a network name server.

When an attempt is made to pass a reference (virtual address) to a remote
address space as an input or output argument of a remote method, it is translated
into the UID at the caller, and the UID is translated into a virtual address at
the callee side. The translation from UID into a virtual address is called pointer
swizzling and the reverse translation is called pointer unswizzling (see Fig. 3).
When the callee receives the UID, it is not straightforward to swizzle the UID
into a virtual address, since the object referenced by the UID exists only at the
remote address space at this time. To swizzle the UID into a virtual address,
the callee allocates a protected area in a memory page or pages that MMU
protects from read and write access. The size of the allocated area is the same
as the object referenced by the UID, the size of which is obtained from the
class specifier embedded in the UID. The transferred UID is swizzled into the
address of the allocated area. Note that the allocated area is empty at this time.
The actual object will be copied to the location later when necessary. Figure 4
illustrates this situation. Three object references X, Y and Z are transferred
from the caller to the callee. On the callee side, three empty areas are allocated
respectively for each object in the two protected pages. As shown in the figure,
one protected page can contain a set of remote objects, and an object can cross
page boundaries.

MMU detects the first attempt to access an object allocated in a protected

303

Address Space A (caller) Address Space B (callee)
~
ero‘ N anq-
| Object reference X » Object reference X
o = :
@obi.ﬂt x
Object
2 |Object reference Y 2 reference Y
»

Object
reference 2

VA

page #5 iz released) 1
5 after the object transfer. 5
Object
reference Z obisce Z

Fig. 5. When a protected page is accessed, all objects in the page are transferred.

the callse.

object Y
3 When a page fault occurs 3
on page #5, the objects
ot Y and Z are transferred to

|
-

N
S

<

&

page, and raises an access-violation exception. The operating system kernel is
informed a priori that the runtime system handles this exception. When an
exception is raised, the exception handler determines at which location this ex-
ception was raised. At this point, the accessed object is transferred from the
caller to the callee. All objects allocated in the same page must be transferred
at this time, because the access to the page can not be detected after the release
of the page protection. When the objects are transferred, their internal repre-
sentations are encoded and decoded to preserve their types in a heterogeneous
environment. We can use the standard methods except in the case of references.
They must be unswizzled and swizzled if embedded in the transferred objects.
After the objects are transferred, the operating system kernel is directed to re-
lease the access protection of the page. Then, the faulting activity is resumed.
At this time, only the read access is permitted to detect write access afterwards.

When an object migrates to a remote address space, TRAP-DO replicates
the object and caches the replica to the remote address space. Since only one
activity exists within a session, there is an “up-to-date” replica. We call the
up-to-date replica hot object, and hot location the identifier of the address space
from which the hot object is available. The runtime system maintains an object
allocation table, the entries of which are the page number, the offset within the
page, the UID, and the hot location. The hot location indicates the address space
from which the hot object is available. The intra-session protocol manages the
hot locations to maintain the replica coherency. The runtime system refers to
this table at the page fault time to determine which object is to be transferred
from which address space. This table also serves to preserve logical links between
objects when remote invocations are nested. Whenever required, a reference can
be translated into and from a UID by this table. In the example shown in Fig. 4,
the object allocation table would be like Table 1. Figure 5 shows the transfer of
objects in the example shown in Fig. 4. In Fig. 5 a page fault is detected on page

304

#5. By looking up the object allocation table, the runtime system decides the
object Y crosses the page boundary, since the offsety plus the size of the object
Y is greater than the page size. Then the objects Y and Z are transferred from
the address space A.

page #| offset |UID|Hot location
4 Joffsetx| X A
4 |offsety| Y A
5 |offsetz| Z A

Table 1. Object allocation table.

In the description above, an object is transferred on demand. If objects are
traversed following the references, a terrible situation arises. The number of page
faults and network communications are both increased. If fine-grain objects are
transferred, network bandwidth is not utilized well. To avoid this situation, when
passing a reference or fetching an object, TRAP-DO transfers a set of objects:
a certain depth of the transitive closure of the passed object. There are many
alternative algorithms to take a certain depth of transitive closure. By default,
TRAP-DO uses the breadth-first traversal algorithm, and the programmers can
explicitly specify the closure size parameter, the maximum amount of the trans-
ferred objects. At the traversal time, the system detects cycles, and prevents
page faults by examining the page protection mode before accessing a page.

3.2 Replica Coherency Protocol

Generally, all replication techniques iaherently require a protocol for replica
coherency. TRAP-DO guarantees one-copy semantics of replicas within a trans-
actional session by the intra-session protocol. Since each transactional session
is completely isolated from the others by the per-session replication policy de-
scribed in Section 3.3, we can assume there is a single activity in the system
when discussing the intra-session protocol. Thus, it is sufficient to provide the
activated address space with the up-to-date state of objects. The basic strategy
of the protocol is to transfer a hot location set to the activated address space,
together with the arguments of the method. As mentioned in Section 3.1, the
intra-session protocol manages the hot location column of the object allocation
table. The hot location set is a collection of a pair of the UID and the hot loca-
tion of the modified object, and keeps srack of the hot locations of the modified
objects. When the activity attempts to access an out-of-date object, MMU de-
tects it and the runtime system perforras an RPC to obtain the hot object from
the hot location. If hot objects are directly transferred to the activated address
space instead of hot locations, we can expect better performance if there is lo-
cality of reference. In the intra-session protocol, the hot object set, a collection

305

Objects are updated
in the order of X, Y, 2, and W.

Address Space A Address Space B

e g
Page) Page)
#

i object W

1 The objects W and Z N
R are transferred as object W
N the hot object set.
object X ~)
! @ 2 2 object X @
[r———r—
cbject Y
3 The objects
)

X and Y are transferred s
as the hot location set .
object Z
4
™
-
5 5

. S/ \ J

4

Fig. 6. Transfer of the hot object and location sets. The objects W and Z are transferred
as the hot object set, and the others are transferred as the hot location set.

of the hot objects, is directly transferred to the activated address space for the
recently modified objects. For the less recently modified objects, the hot location
set is transferred. The programmer can specify the HOS and HLS parameters,
which limit the sizes of the hot object set and the hot location set, respectively.

TrAP-DO implements the protocol described above in the following way.
The runtime system maintains a link of dirty (modified) pages. When MMU
detects an update on a page, the runtime system determines the page to which
the update is applied, and links the entry of the page to the dirty page link
in LIFO order. We can use this link to approximately determine the order of
modifications; a recently modified page comes first in the link. When the activity
attempts to migrate to another address space, the dirty page link is traversed to
create a hot object set. Traversing the link, the objects on the modified pages
are marshalled into the hot object set, until the size of the hot object set reaches
the HOS parameter. After the creation of the hot object set, the hot location set
is created for the modified objects not marshalled into the hot object set. Then
the hot object and location sets are transferred, together with the arguments of
the remote method. Figure 6 shows this situation. On the address space A, four
objects W, X, Y, and Z are updated in the sequence of X, Y, Z, and W. Thus,
the pages #1, #4, #3, #2 are linked to the dirty page link in this order. In
this example, the objects W and Z are marshalled into the hot object set, and
the others are transferred as the hot location set. On the address space B, the
objects W and X already exist; they are out-of-date now.

The hot object and location sets are properly reflected to the objects on the
receiving side. The objects in the hot object set are replicated into the receiving
address space in the same way as described in Section 3.1, since this replication

306

Address Space A Address Space B

4 g
Pﬂga W object W im Pﬂge }

Tl ** - DY
1O g

ocut-of-date.
object Y protected frV .
3 @ access. 3 object z

object z@ /
4 / 4
object z is

newly allocated.

\. —/ | J

Fig. 7. Reflecting the hot object and location sets to the address space B.

can be regarded as object migration. The object whose UID is in the hot location
set is out-of-date. The runtime system looks up the object allocation table for
each UID in the hot location set, and closes all access permissions of the pages
on which the out-of-date objects reside. The hot location column of the object
allocation table is also updated to the new hot locations. When an attempt is
made to access an out-of-date object, a page fault occurs, and the hot objects
can be migrated as described in Section 3.1. Figure 7 illustrates this situation.
The objects W and Z in the hot object set are replicated into the address space
B. The transferred W overrides the object W on B, and the object Z is newly
allocated. The runtime system determines the object X is out-of-date from the
hot location set, and invalidates the page on which it resides.

When the size of the hot location set exceeds the HLS parameter, all hot
objects are written back to their original locations, and the replicas created dur-
ing the transactional session are invalidated. Thereafter, the hot location and
object sets are reset to zero in size. We can always obtain the hot objects from
their original locations until the activity moves beyond the address space bound-
ary. The intra-session protocol works properly even when remote invocations are
nested. While activated, the runtime system maintains the hot location set and
the UIDs of the objects in the hot object set, in order to keep track of all the
modifications during the session. The memory area for keeping them does not
suppress the application programs, since the HOS and HLS parameters limit the
sizes of the hot object and location sets.

3.3 Concurrency Control Protocol

Since multiple transactional sessions execute concurrently, concurrency must be
controlled by the system. In TRAP-DO, the inter-session protocol guarantees se-
rializable execution of transactional sessions. The inter-session protocol employs

307

an optimistic approach. Generally, optimistic approaches have the following at-
tractive features as against pessimistic approaches. The pessimistic approaches
require additional network communications to acquire and release locks or to
operate on distributed semaphores while the transaction is being executed. In
addition, the problem of distributed deadlock must be dealt with. As our system
assumes fine-to-medium grain objects, deadlocks are expected to be caused fre-
quently. On the other hand, optimistic approaches enhance the effect of object
caching, because they require no additional communications during the execu-
tion of a transactional session. Moreover, they do not cause deadlocks. The ma-
jor drawback of the optimistic approaches is that they may cause cascading roll
backs. Our current protocol avoids them by complete isolation of transactional
sessions.

TrAP-DO manages a heap area based on the per-session replication policy
to isolate a transactional session from the others. This section outlines the mech-
anism of the per-session replication and the inter-session protocol. The details
are presented in our paper in preparation [13]. TRAP-DO divides a heap into
three distinct parts: pages for replicas, global objects, and local objects. Since
global and replicated objects may be shared among multiple activities, TRAP-
Do maintains the coherent state of those objects. The programmers can avoid
concurrency control cost by allocating objects in local objects’ pages. Since lo-
cal objects are not referenced from outer address spaces, TRAP-DO need not
control the concurrency. TRAP-DO can detect an attempt to pass a reference to
a local object to a remote address space, because a reference to a local object
cannot be unswizzled into the UID by the object allocation table mentioned
in Section 3.1; the entry is not found. Each transactional session prepares its
own object allocation table. Thus, replicas are not shared among transactional
sessions; transient states of replicas are automatically isolated from the other
transactional sessions. To isolate updates on the global object pages, TRAP-DO
creates a session-local image of the global pages on a copy-on-write basis. When
an activity attempts an update on a global object page, the coherent image of
the page is preserved, and then the update is applied directly to the global ob-
ject page. When the activity switches, the transient image is preserved for each
session, and the consistent image is reloaded. Consequently, TRAP-DO prevents
each transactional session from observing the transient state of the objects in
other transactional sessions.

In the optimistic concurrency controls, the updates performed during a trans-
actional session are checked at the validation phase to ensure that the transac-
tional session does not violate the serializability. In the current inter-session
protocol, the transactional session that reaches its end fastest is successfully val-
idated. If a transactional session is validated successfully, the hot objects are
written back to their original global pages, and the replicas are disposed of sim-
ply by releasing the replica pages of the transactional session. If a transactional
session fails to be validated, it is rolled back. The roll back is done by releasing
the replica pages and transient images of the global pages.

308

3.4 Distributed Dynamic Methods and Stub Generation

The runtime system of TRAP-DO0 described in previous sections cooperates with
the programming language layer. This language layer performs three tasks: at-
taining distributed dynamic methods, stub emission, and generation of closure
traversal routines. The current user language, TRAP-DOC, is a preprocessor
from TrAP-DOC to C.

Generally, distributed dynamic methods are invoked through proxies within
which the target address space is determined by interpreting the specified log-
ical name of the address space. However, in TRAP-D0OC, most method invoca-
tions can be statically determined to be local calls. For example, invocations of
methods, both the declaration and the invocation of which are annotated with
nothing, are local calls and can be expanded into ordinary procedure calls by
the preprocessor. If the target address space is not determined statically, the
preprocessor emits proxies, or stubs, for the remote method invocation. This
proxy interprets the logical name of the address space and performs an RPC to
the target address space. As pointed out in Section 2.1, the mechanism of nam-
ing is independent of the TRAP-DO’s runtime mechanism described in previous
sections and various naming policies can be implemented on top of TRAP-DO.
The proxy generation technique used in TRAP-DO allows higher order functions
to be passed among distinct heterogeneous address spaces. This stub generation
technique is based on the one described in Ohori and Kato [17].

As described in Section 3.1, when passing a reference to an object to a remote
address space, a certain depth of the transitive closure of the reference is trans-
ferred. The language preprocessor generates a traversal routine that creates this
closure of the passed reference. By default, TRAP-DOC emits the traversal rou-
tine for breadth-first traversal. Although the traversal mechanism is hidden from
the programmers, they can incorporate their own algorithms into the system.
TRAP-DO provides the interface between the runtime system and the program-
mers. If the programmers’ traversal routines conform to this interface, the system
detects the cycles and prevents page-faults at the traversing time. This interface
and example codes are shown in another paper [13].

3.5 Discussion

To highlight some aspects of TRAP-DO, we contrast the object migration mecha-
nism based on proxy objects with that of TRAP-D0. The proxy object approach
is applicable to object migration by encapsulating the mechanism of migration
within proxies. Many systems using proxies for migration examine with software
whether the target object is present or not, each time before using a reference. In
this mechanism, each access to an object requires additional software overhead.
Amadeus [4] proposed a mechanism to avoid this additional overhead. It uses
a proxy object called “O proxy” to trap attempts to access absent objects. O
proxy contains no data but is the same size as the object it represents. The code
bound to the proxy implements the same interface as the absent object. When
a method of the O proxy is invoked, it notifies the Amadeus runtime system of

309

the attempted invocation. Then the runtime system overlays the O proxy with
the real object, and forwards the invocation to the real object. This approach
does not work properly unless all method invocations are implemented as proce-
dure calls even at the instruction code level. Hence, in the Amadeus approach,
compilers can not use some sorts of optimization techniques [7, 5] such as inline-
expansion that compilers of object-oriented programming languages use. On the
other hand, TRAP-DO does not impose any restrictions on the code generation
by compilers, because it accomplishes transparency at the instruction code level.
Thus, in TRAP-DO, compilers can optimize frequent message exchanges among
inter-related objects, and application programs can run as efficiently as possible
after object migration.

The runtime behavior of TRAP-DO is adjustable to the access pattern of
applications. In TRAP-DO, the programmers can explicitly specify the granu-
larity of migration by the closure size parameter, which limits the size of the
transferred transitive closures. For example, suppose that the reference which
designates the head of a linked list is passed, and the linked list is traversed on
the local address space. If the closure size parameter is set to zero, the linked ob-
jects are transferred on demand. Hence, the number of page faults and network
communications increase, but the amount of the transferred data is minimized,
since just the accessed portion of the linked list is transferred. If the closure size
parameter is set to infinity, no page fault is incurred and the network communi-
cation is required only once. However, since all the linked objects are transferred
at once, unnecessary objects are also transferred that are not accessed in the
local address space. According to the access pattern of the applications, the pro-
grammers can specify the closure size parameter to tailor the runtime behavior
of the system to the applications.

4 Experimental Results

In this section, we measure the basic performance of TRAP-DO and validate the
discussion in Section 3.5. The prototype TRAP-DO is implemented on SunOS
4.1.3 running on SUN Sparc workstations (SuperSPARC, 60MHz, SPECint92
98.2, SPECfp92 107.2). They have 96 Mbytes of main memory and are con-
nected by a 10 Mbps Ethernet network. The current implementation uses the
TCP/IP network protocol and specifies the TCP_NODELAY option in the socket
system call so that small packets are sent without buffering. As a canonical data
representation, TRAP-DO uses the XDR (eXternal Data Representation) [21]
that guarantees the transformation of basic data types such as integers, floating
point numbers, and strings between CPUs with different architectures. Although
the current system consists of only a few SPARC stations, the system is carefully
designed to deal with heterogeneity. Therefore, the experimental results reflect
heterogeneity overheads such as the data representation overhead.

310

4.1 Basic Performance

As described in Section 3.1, the TRAP-DO runtime system handles a page fault
before migrating an object. The experimental results in this section show that
the cost of page fault handling is small compared with the cost of network
communication. In this experiment, objects each of which is 64 bytes in size are
migrated from a remote address space to the local address space. This migration
is executed in the following steps. First, a page fault is detected. Second, the
exception handler requests the remote address space to transfer the objects.
After the object migration, activity is resumed. Varying the number of migrated
objects, we measured the total time of the migration and the cost of the page
fault handling. Table 2 shows the result. In this result, the proportion of the cost
of page fault handling to the total cost is from 2% to 21%. However, since the
TrAP-DO runtime system transfers all objects allocated in a page at once, the
size of transferred objects may be in the order of 4 Kbytes or 8 Kbytes. Thus,
the proportion of the cost of page fault handling is considered to be from 2% to

4%.

Total size of objects (bytes) 64[256]1024]4096]8192
Cost of migration (ms) 1.4§1.7 3.2 | 7.3 |12.7
Cost of page fault handling (ms) {0.3]/0.3{ 0.3 | 0.3 { 0.3
page fault handling / migration (%){21(18] 9 | 4 | 2

Table 2. Proportion of the cost of page fault handling to the cost of network commu-
nication.

4.2 Closure Size

The closure size parameter plays an important role in TRAP-Do0 as discussed in
Section 3.5. This section examines the effect of the closure size parameter. The
experimental subject was a traversal of a complete binary tree. Each node of
the tree is an object 16 bytes in size (two 4-byte references and 8-byte data).
Initially, a complete binary tree of 32,767 nodes was instantiated in the caller
address space. Then a reference to the root object of the tree is passed to a
remote method on a remote address space. The remote method traverses the
tree in a depth-first manner, following the references. We measured the average
time required to process one remote method call that retrieves the tree, varying
the number of the nodes visited in the remote method. In this experiment we
compared three cases, changing the closure size parameter in each case.

— Case (A) Closure size parameter is set to zero. The objects migrate to the
callee on demand.

311

Processing Time (sec)

12.00 o ; e
Case (A)

Case (B)

6.00

4.00

2.00

0667 020 040 " 060 0.80 1.00
Access Ratio

0.00 -

jf,;ﬂ_..//z 1
; _

Fig. 8. Relationship between the Closure Size and Processing Time

— Case (B) Closure size parameter is set to 8 Kbytes. When an attempt
is made to access an absent object, the 8 Kbytes transitive closure of the
accessed object migrates to the callee. This transitive closure is retrieved in
a breadth-first manner in the caller.

- Case (C) Closure size parameter is set to infinity. The entire tree (524,272
bytes) migrates to the callee at once.

Figure & shows the experimental result. The X-axis shows the ratios of the num-
ber of visited nodes to the total number of the nodes. The Y-axis shows the
average processing time.

In case (A), the processing time is obviously bad. Since each object is 16 bytes
in size in this experiment, the granularity of object migration is too fine to uti-
lize the network bandwidth. The increased number of network communications
degrades the execution performance. In case (C), the processing time is almost
constant because the entire tree migrates to the callee at once. Case (B) shows
the best processing time of the three for access ratios between 0.0 and 0.6. The
improved performance of case (B) over case (C) is obtained because a relatively
small number of objects are replicated. When the access ratio is larger than 0.6,
case (B) becomes worse because of the increased number of communications.
By adjusting the closure size parameter properly, the application programmers
might improve the execution performance of their applications. In this experi-
ment, the programmers should set the parameter to 8 Kbytes or so when the
access ratio is less than 0.6. When the access ratio is larger than 0.6, the pro-
grammers should set the parameter larger.

4.3 Update

Finally we examine the effect of the HOS and HLS parameters described in
Section 3.2. The HOS and HLS parameters limit the size of the hot object sets

312

Processing Time (sec)
12.00 B

10.00

HOS =0, HLS = 'a'nf'./ﬂ'

P
086 1o
Updaie Ratio

Fig. 9. Update Performance — In the case where locality of reference exists.

and the hot location sets, respectively. In this experiment, we use the same
binary tree as in the previous section. To increase the effects of the HOS and
HLS parameters, we set up the situation in which the entire tree is replicated
on two address spaces A and B. In other words, each address space has its own
replica of the identical tree. We can create this situation with the closure size
parameter set to infinity, if the activity on the address space A passes a reference
to the root object to the address space B; the entire tree migrates to the address
space B with the migration of the activity.

We first examine the case where locality of reference exists. In this case, the
activity on the address space A visits the nodes of the tree updating each visited
node in the depth-first manner. Then the activity migrates to the address space
B, traverses all the nodes of the replicated tree there, and returns to the address
space A. We measured the processing time required from the activity migration
to the address space B until it returns to the address space A, changing the
ratios of the number of the updated nodes to the total number of the nodes. As
shown in Fig. 9, the execution performance is better when the HOS parameter is
set to infinity, since the objects modified in the address space A are accessed in
the address space B. To examine the case where there is no locality, we carried
out the same experiment as described above except that the activity does not
traverse the tree at all on the address space B. The result is shown in Fig. 10. In
this case, the execution performance is worse when the HOS parameter is set to
infinity, since the hot object set transfers the objects that are not accessed in the

address space B. The experimental results in this section validate our heuristics
described in Section 3.2.

313

Processing Time (sec)
12.00 S

10.00 - S S S

8.00 ——

6.00 |-

400

i - o P
2.00 AN ”:%»
- HOS =int,, HLS =0
L/ , d
000

. |

I
i o i ’]
0.00 0.20 c.40 0.60 0.80 1.00
Update Ratic

Fig. 10. Update Performance — In the case where there is no locality of reference.

5 Conclusion

We have described the design and implementation of the TRAP-DoO distributed
object system. TRAP-DO provides migratable distributed objects by applying
the novel RPC technology integrated with virtual memory management. Com-
pared with traditional distributed object systems, this integration brings about
both the flexibility of proxy approaches and the instruction code level trans-
parency of distributed shared memory (DSM) approaches. As a result, TRAP-
Do naturally achieves object migration as DSM approaches, and is applicable
to a heterogeneous environment as proxy approaches. The instruction code level
transparency enhances the effect of object caching since it does not prevent com-
piler optimizations, and migrated objects are accessed without any additional
overhead. The flexibility of proxies enables dynamic method binding in a dis-
tributed environment. To provide a natural and consistent view of distributed
objects, TRAP-DO maintains the coherency of replicas and controls concurrency
among multiple activities. The replica coherency protocol that provides one-
copy semantics is simple and efficient because it makes use of the synchronous
property of method invocations. The protocol for concurrency control takes an
optimistic approach to avoid distributed deadlocks and additional network com-
munications for distributed locks or semaphores. These protocols release the
programmers from complex management of replicas.

Some interesting research issues still remain. The current protocol for concur-
rency control is a simple one. The primary drawbacks of the protocol is that it
does not allow concurrency within a transactional session and that the program-
mers cannot make a decision what to do when a transactional session aborts. In
principle, more elaborate protocols can be incorporated into TRAP-DO without
sacrificing other features of TRAP-D0. We are currently designing a new protocol
that allows a transactional session to create child transactions like nested trans-

314

actions. In this new protocol, child sessions can execute concurrently, and the
parent session can determine what to do when one of the child sessions aborts.

Another issue is to develop an optimal algorithm for taking the subset of

the transitive closure of an object when the object migrates to a remote address
space. If the access pattern of applications were precisely estimated, we could
minimize the cost of network communication, but it requires predetermination
of the access patterns of applications. One promising solution is to use hints
provided by the programmers.

References

1.

10.

11.

12.

13.

14.

H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum. Orca: A language for parallel
programming of distributed systems. IEEE Transactions on Software Engineering,
Vol. 18, No. 3,, March 1992.

. John K. Bennett. The design and implementation of distributed smalltalk. In

ACM OOPSLA’87, pp. 318-330, 1987.

. A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM Trans-

actions on Computer Systems, Vol. 2, No. 1, pp. 39-59, February 1984.

. Vinny Cabhill, Sean Baker, Chris Horn, and Gradimir Starovic. The Amadeus GRT

- generic runtime support for distributed persistent programming. In OOPSLA
Proceedings 1993, pp. 144-161. ACM, 1993.

. Craig Chambers and David Ungar. Making pure object-oriented languages prac-

tical. In ACM OOPSLA’91, pp. 1-15, 1991.

. P. Dasgupta, R. LeBlanc Jr., M. Ahamad, and U. Ramachandran. The Clouds

distributed operating system. IEEE Computer, Vol. 24, No. 11, pp. 34-44, Nov.
1991.

. J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented programs

using static class hierarchy analysis. In Furopean Conf. on Object-Oriented Pro-
gramming (ECOOP), pp. 77-101, 1995.

. Fred Douglis and John Ousterhout. Transparent process migration: Design alter-

natives and the Sprite implementation. Software Practice and Ezperience, Vol. 21,
No. 8, pp. 757-785, August 1991.

. J. Gosling and H. McGilton. The Java language environments: A White Paper.

Technical report, Sun Microsystems, 1995.

Roger Hayes and Richard D. Schlichting. Faciliating mixed language programming
in distributed systems. IEEFE Transactions on Software Engineering, Vol. SE-13,
No. 12, pp. 1254-1264, December 1987.

E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained mobility in the Emer-
ald system. ACM Transactions on Computer Systems, Vol. 6, No. 1, pp. 109-133,
February 1988.

K. Kato, A. Ohori, T. Murakami, and T. Masuda. Distributed C language based
on a higher-order remote procedure call technique. In Advances in Software Science
and Technology, volume 5, pp. pp. 119-143. Academic Press, 1993.

K. Kono, K. Kato, and T. Masuda. Transparent pointers in remote procedure
calls. In preparation for submission.

K. Kono, K. Kato, and T. Masuda. Smart remote procedure calls: Transparent
treatment of remote pointers. In Proc. IEEE 14th Int. Conf. on Distributed Com-
puting Systems, pp. 142-151, 1994.

15

16.

17.

18.

19.

20.

21.

22.
23.

315

. D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hennessy,
M. Horowitz, and M. S. Lan. The stanford dash multiprocessor. IEEE Computer,
pp. 63-79, March 1992.

K. Li and P. Hudak. Memory coherence in shared virtual memory systems. ACM
Transactions on Computer Systems, Vol. 7, No. 4, pp. 321-359, November 1989.
A. Ohori and K. Kato. Semantics for communication primitives in a polymorphic
language. In Proc. 20th ACM Symp. on Principles of Programming Languages,
pp- 99-112, January 1993.

H. Okamura and Y. Ishikawa. Object location control using meta-level program-
ming. In Furopean Conf. on Object-Oriented Programing (ECOOP), pp. 299-319,
1994.

Marc Shapiro. Structure and encapsulation in distributed systems: the Proxy
Principle. In Proc. IEEE Int. Conf. on Distributed Computing Systems, pp. 198—
204, 1986.

Marc Shapiro, Philippe Gautron, and Laurence Mosseri. Persistence and migration
for C++ objects. In European Conf. on Object-Oriented Programming (ECOOP),
pp. 191-204, 1989.

Sun Microsystems Inc. Ezternal Data Representation Standard:Protocol Specifica-
tion, March 1990.

J. E. White. Mobile Agents. MIT Press, 1996. To appear.

S. Zhou, S. Stumm, K. Li, and D. Wortman. Heterogeneous distributed shared
memory. IEEFE Transactions on Parallel and Distributed Systems, Vol. 3, No. 5,
pp. 540-554, September 1992.

