Protocol Classes for Designing
Reliable Distributed Environments

Benoit Garbinato Pascal Felber Rachid Guerraoui

Laboratoire de Systémes d’Exploitation
Département d’Informatique
Ecole Polytechnique Fédérale de Lausanne
Lausanne, Suisse
e-mail: bast@lse.epfl.ch

Abstract. In this paper, we present BAST, an extensible library of pro-
tocol classes. The latter is aimed at helping system programmers to build
distributed programming environments. Protocol classes constitute the
basic structuring components for higher-level programming models, such
as the transactional model, and add flexibility to distributed environ-
ments. We focus on classes that implement a generic agreement pro-
tocol named D7'M (Dynamic-Terminating-Multicast). To the program-
mer, the DTM generic protocol appears as a set of classes that can be
specialized to solve agreement problems in distributed systems. In par-
ticular, we show how those classes can be derived to build atomic com-
mitment and reliable total order protocols. An overview of the Smalltalk
design and implementation of the BAST library is also presented.

1 Introduction

This paper describes BAST, an extensible class library of distributed protocols.
BAST is aimed at assisting system programmers in building distributed program-
ming abstractions for application programmers. It is more specifically intended
to be used in the context of reliable (i.e., fault-tolerant) distributed environ-
ments design®. In this paper, we focus on protocol classes that involve solving
the distributed consensus problem, since agreement is a central problem in many
distributed algorithm that deal with failures.

1.1 Objects and distribution

Object concepts are emerging as a major trend in distributed systems, and cur-
rent research in object-based distributed environment follow several directions.
Those research directions can be grouped into three main streams: (1) the ex-
tension of object-based languages, (2) the design of reflexive architectures, and
(3) the definition of basic abstractions.

! We use the term “distributed system” in a very general sense, whereas we use “dis-
tributed environment” when we want to refer to set of abstractions that support the
programming of distributed applications.

317

Extension of object-based languages This research stream consists in ad-
ding new specialized abstractions to object-based languages, in order to support
the programming of distributed applications. The CORBA standard object frame-
work [11] belongs to this category. The aim of this approach is to facilitate the
programming of distributed applications, using high-level languages.

Design of reflexive architectures Research in reflexive architectures 1, 30]
consists in defining basic infrastructures for describing environment architec-
tures, in an object-based language which is also used to describe applications.
Approaches that provide limited reflexive facilities, such as GARF [9] and Com-
position-Filters [2], can also be considered to belong to this category. The aim of
reflexive architectures is to provide ways of extending distributed environments
with minimal impact on applications.

Definition of basic abstractions A third research stream consists in defining
adequate abstractions that represent distributed systems, or specific parts of
distributed systems. The idea here is to structure the architecture of distributed
environments in the same way it is usually done for distributed applications.
Expected benefits are modularity, extensibility, flexibility, and portability of the
distributed environments on which applications are built.

The three research streams presented above are not competitive, but can
be viewed as complementary ways to take benefits of object concepts in the
context of distributed systems. For example, defining adequate abstractions is
fundamental in order to take advantage of a reflexive architecture. This paper
describes a research work which belongs to the third stream. We are concerned
here with the design and implementation of a distributed environment as a set of
objects. We focus on classes that are related to distributed agreement protocols,
since the latter are fundamental to reliable distributed systems.

1.2 Reliability in distributed systems

“A distributed system is one that stops you from getting any work done when a
machine you’ve never even heard of crashes.” Leslie Lamport in [21].

A reliable distributed environment can be described as one that provides
abstractions capable of hiding failures to its users (at least to some extent), and
of preventing failures from putting it in a inconsistent state. In this context, two
main paradigms for building reliable distributed applications have emerged over
the years: the transaction paradigm, originated from the database community,
and the group paradigm, originated from the distributed systems community.
Each one of those two paradigms is tailored to solve a particular set of problems.

Transaction paradigm Many distributed environments provide the transac-
tion paradigm [17] as the main building block for programming reliable appli-
cations. This concept has proven to be very useful for distributed database-like

318

applications. However, the ACID? properties of the original transaction model
are too strong for several applications. For example, the Isolation property is too
strong for cooperative work applications, whereas the All-or-nothing property is
too strong for applications dealing with replicated data. This is partly due to the
fact that underlying agreement protocols are designed and implemented in an
ad hoc manner and cannot be modified. The rigidity of the original transaction
model has lead many authors to explore the design of more flexible transac-
tional models, e.g., nested transactions, but the underlying agreement protocol
still cannot be modified.

In designing the BAST class library, we have adopted an alternative approach,
which consists in providing the basic abstractions required to implement various
transaction models, rather than supporting one specific model. These abstrac-
tions implement support for reliable total order communications (allowing to
build locking), atomic commitment, etc., and are aimed at being used by system
programmers, not application programmers. As we shall see, those abstractions
are based on agreement protocols.

Group paradigm Group-oriented environments like Isis [4] or GARF [9] offer
reliable communication primitives with various consistency levels, e.g., causal or-
der multicast, total order multicast. These environments are based on the group
paradigm as fundamental abstraction for reliable distributed programming. The
group concept is very helpful to handle replication: a replicated entity (a process
in Isis or an object in GARF) is implemented as a group of replicas. It consti-
tutes a convenient way of addressing replicated logical entities without having to
explicitly designate each replica. When a failure occurs, members of a group are
notified through a group membership protocol, and can act consequently. This
is useful, for example, when implementing a primary-backup replication scheme:
if the primary replica crashes, the backups replicas are notified through some
membership protocol, and can then elect a new primary.

Membership protocols guarantee that all members of some group g agree on
a totally ordered sequence of views view; (g), views(g), .. .; a view change occurs
each time a member joins or leaves group g. Furthermore, multicasts to group g
are guaranteed to be totally ordered with respect to view changes. Finer ordering
criteria within each view are generally also available in environments such as
Isis or GARF, e.g., causal or total orderings. Membership protocols are normally
based on agreement protocols. However, the strong coupling between the group
concept and consistency leads to the inability to support reliable multicast that
involve different replicated entities, i.e., several groups. This limitation makes
group-oriented environments unable to seamlessly integrate transaction models.
There again, underlying agreement protocols are hidden, and being not accessible
they cannot be customized.

A major characteristic of the BAST class library is that it allows to decouple
the group notion from consistency issues: groups are viewed merely as a logical
addressing capability, while reliable multicast communications are supported by

2 All-or-nothing, Consistency, Isolation, and Durability.

319

adequate protocol classes. As a consequence, BAST naturally supports reliable
multicasts involving different groups of replicas.

1.3 Protocols as structuring components

We believe that protocols should be basic structuring components of distributed
environments. In the BAST class library, distributed protocols are manipulated
as classes of objects. So, it is very easy to extend and/or customize high-level
abstractions provided by distributed environments based on BAST.

What are protocol classes? A protocol class defines the behavior of objects
capable of executing a particular distributed protocol. When the protocol is
based on symmetric roles, only one class is necessary, while if it is based on
asymmetric roles, there is the need for as many classes as they are roles involved
in the protocol.

Protocol classes improve the reusability of complex algorithms, e.g., in BAsT,
the consensus protocol proposed by Chandra and Toueg [8] is implemented, once
and for all, in reusable classes. So, customizations and optimizations are easily
achieved through subclassing, and new protocols can be created and integrated
to the environment with minimal efforts. This approach also provides a modular
view of various distributed protocols, which helps to better understand the rela-
tionship between them. Making different protocols work together is then made
casier. In BAsT for example, transactions on replicated objects are achieved
seamlessly because the atomic commitment protocol and the total order multi-
cast protocol are implemented in well-defined classes, based on common generic
protocol classes. We see the BAST library of protocol classes as our contribution
to the definition of a well-structured framework for building reliable distributed
environments.

DTM generic protocol Agreement plays a central role in many distributed
algorithms that deal with failures. For this reason, classes that implement pro-
tocols solving the distributed consensus are of first importance in BAST. In the
remainder of this paper, we present protocol classes that implement what we be-
lieve to be the common denominator of many reliable distributed algorithms: the
Dynamic- Terminating-Multicast generic protocol (DTM). We also present how
the corresponding protocol classes can be customized to solve the atomic com-
mitment problem, which is central to transactional environments, and the total
order multicast, which is central to group-oriented environments. Elsewhere [15],
we have already proved that both a general atomic commitment and a total order
multicast can be considered as instances of the DTM generic protocol.

1.4 About this paper

In next sections, we presents protocol classes that support the DTM generic
protocol, and how those classes can be derived to build a total order multi-
cast protocol and a general atomic commitment protocol. We also detail how

320

DTM classes have been implemented, and from which other protocol classes
they inherit. More specifically, section 2 gives an overview of the BAsT library
of protocol classes, and presents its context and current status. Section 3 intro-
duces the distributed system that we consider and the DTM generic protocol
itself. Then, section 4 details the protocol classes that are given to system pro-
grammers wanting to use the DTM generic protocol; explanations on how to
instantiate the generic dimensions of DTM are given here. Section 5 shows how
we built a total order multicast and a general atomic commitment by subclass-
ing DTM classes. For this section, we chose a language independent approach.
The design of DTM generic protocol classes, in the context of our first Smalltalk
prototype of the BAST class library, is presented in section 6. Section 7 compares
the approach presented in this paper with other approaches described in the lit-
erature. Finally, section 8 summarizes what our approach, and the BasT class
library that supports it, brings to reliable distributed programming, as well as
the future research directions we are planning head to.

2 Overview of the BAST class library

The BAsT library of protocol classes is implemented as the fundamental struc-
turing component of the BASTET? reliable distributed environment. BASTET is
aimed at providing a complete set of powerful abstractions, that support the de-
sign and implementation of reliable distributed applications. Figure 1 presents
an overview of BASTET’s architecture: apart from the operating system ser-
vices (layer h), it is based on a fully object-oriented design and implementation.
In the BASTET environment, various abstraction levels are provided, depending
on the skills of programmers. At the highest level, all the complexity is hid-
den in ready-to-use components. This high-level layer of BASTET is an evolution
of the GARF environment, which was aimed at supporting reliable distributed
programming in a fairly automated way [9]. In BASTET, high-level abstractions
are used to hide BAST’s protocol classes to application programmers, while the
BAsT library is intended to be extended by system programmers.

2.1 BasT’s protocol classes

"The BAsT library is based on an hierarchy of protocol classes, e.g., classes imple-
menting objects capable of sending and receiving messages, classes implementing
objects capable of detecting other objects’ failures, etc. This approach allows to
build protocols in an incremental way.

® You are probably wondering why we called our reliable distributed environment
BASTET, and its protocol class library BasT. Well, Bast, also known as Bastet, was a
cat-goddess in the Egyptian mythology, worshiped in the delta city of Bubastis. As
you probably know, cats are said to have seven lives, which is quite a good replication
rate to be fault-tolerant, isn’t it! So, we thought the two names of the protectress of
cats would be nice names for our reliable distributed environment and for our class
Library.

321

al Reliable Distributed Applications

. High-level Abstractions

!
|
| The
|} Bast
=\

|

object-oriented E::]
not object-oriented I

Fig. 1. Architecture of the BASTET reliable distributed environment

Since protocols can be manipulated as classes of objects in BAST, system pro-
grammers that have know-how in distributed systems can build new protocols,
while less skilled programmers can simply use existing ones. The atomic com-
mitment and the total order protocols, presented in section 5, are examples of
such “ready-to-use” distributed protocols. New protocols can be built by expert
programmers in distributed systems by instantiating generic protocols such as
DTM, or by creating new ones using more basic components. Section 6 provides
an overview of such lower-level components.

In the remainder of this paper, we first focus on layers ¢ and d of the BAST
class library. Those layers are the subjects of section 4 and section b respectively.
Section 6 then presents layers e , f, and g, and how they are used to build the
DTM generic protocol (layer d).

2.2 Current status of BAST

The BAST library of protocol classes, as well as the BASTET reliable distributed
environment, are developed in the context of the Phoeniz research project, at
the Operating Systems Laboratory of the Swiss Federal Institute of Technology,
Lausanne. The general objective of this on-going research project Is to better
understand what problems are implied by reliability in distributed systems, and
how they can be solved through coherent and reusable tools.

At the moment, our first implementation of the BAST class library is coming
to an end, and the BASTET environment is almost fully operational. This pro-
totype is written in Smalltalk and will be used as reference version for further
developments. We have already started to work on a C++ version of the BAST
library, which will be used in the Opendreams project (ESPRIT n°29843). This
project aims at designing a CORBA compliant platform for reliable (distributed)
industrial applications.

322

3 DTM generic protocol

3.1 Distributed system model

The distributed system we consider is composed of a finite set of distributed ob-
Jects §2 = {o1,03,...,0,} that communicate by message passing. The messages
passing service provides the means to designate distant objects through remote
object references, and to send messages to them; a message can be any object.
Communication primitives are reliable, i.e., a message sent by some object o; to
some object o; is eventually received by o;, if both o; and 0j do not fail. This
ensured by retransmitting messages if necessary. We suppose that objects fail
only by crashing and that any network failure is eventually repaired.

Failure detectors In this paper, we make no assumption on the synchrony of
our distributed system, i.e., we are not interested in knowing if communication
delays are bounded or not. Instead, we use the notion of failure detector. Failure
detectors encapsulate the properties of the underlying distributed system, by be-
ing abstractly characterized through reliability properties (namely completeness
and accuracy [8]). Failure detectors are said to be unreliable if they can make
mistakes in incorrectly suspecting objects to be faulty. The relationship between
failure detectors and distributed systems can be expressed as follow: depending
on the synchrony properties of the underlying distributed system, one can build
failure detectors which differ from their reliability properties. Failure detectors
have been classified according to their reliability properties in [8]. Some prob-
lems need reliable failure detectors to be solved, while others only need unreliable
failure detectors.

3.2 Generic protocol

The DTM generic protocol enables an initiator object to multicast a message
m to Dst(m), a destination set of remote participant objects, and to reach
agreement on Reply(m), a set of replies reply. returned by each participant;
in response to m. Figure 2 presents an overview of the DTM generic protocol:
arrows represent data exchanges, while numbers in circles show in what order
data exchanges occur. The initiator object is on node A, while participant; and
participant; are on node B and node C respectively; different nodes imply dif-
ferent address spaces. From now on, we consider that objects are a priori on
different nodes. Since the interaction of the protocol with each participant is
exactly the same, arrows are numbered for participants; only.

Why is it generic? The DTM protocol is generic in the sense that the mes-
sage m sent by the initiator, the set of participants Dst(m), the response reply
generated by each participantsy, and the interpretation of Reply(m), the set of
replies on which agreement is reached, are not defined a priori. One more generic
dimension, the validity condition, allows to constrain Reply(m); if that constraint

323

Node B

participant,
Node A !

/M
ly.
@A/rep/.//
Rep[y(m) l

e]

"
%

5{ | parricipanl]
%

I

Node C

m Dst(m)

Fig. 2. DTM generic protocol

cannot be satisfied, the protocol will block. The reliability property of the DTM
generic protocol lies in the fact that it will not necessarily block if one or more
participants fail?: it depends on the chosen validity condition. The Reply(m) set
received by all non-faulty participants might simply lack the replies of faulty
participants. It is necessary to be able to express such a condition, since partici-
pants might fail and the Reply(m) set might have a contents that does not permit
to take any satisfactory “decision” (e.g., Reply(m) could be trivially empty). An
example of validity condition is the majority condition, that can be expressed as
|Reply(m)| > |Dst(m)|/2, i.e., it requires a majority of non-faulty participants
for the protocol not to block. Details on how those generic dimensions can be
tailored to fit the needs of specific problems are given in sections 4 and 5.

4 DTM generic protocol classes

4.1 Classes Initiator and Participant

In BAST, system programmers wanting to use the DTM generic protocol have
essentially to deal with two classes, the Initiator protocol class and the Participant
abstract protocol class, which are subclassed when customizing the DTM generic
protocol. Instances of those subclasses will play the role of the initiator, respec-
tively the participant, as defined in section 3.2. According to our system model,
initiators and participants objects are able to perform message passing (see sec-
tion 3.1). Figure 3 presents what objects and operations are involved while the
protocol is executing: fat arrows picture operation invocations on objects, bullet-
arrows (+e) represent objects resulting from invocations, and numbers in circles
show in what order invocations occur. Not surprisingly, figure 3 is very similar
to figure 2.

4 The DTM protocol is based on (possibly unreliable) failure detectors to determine
if an object is faulty or not.

324

Objects executing the DTM protocol The protocol starts by the invocation
of dtmcast() of an initiator object, passing it a message m, a set of remote partici-
pants objects Dst(m) and a validity condition; this invocation results in a reliable
multicast to the set of participants. When message m reaches some participanty,
the latter is invoked by the protocol through the receive() operation, taking m
as argument. In turn, participant, computes and returns its reply,. Eventually,
each non-faulty participant is invoked through the interpret() operation with the
Reply(m) set, on which consensus has been reached, as argument. So, as long
as interpret() implements a deterministic algorithm, all participants will take
the same “decision”. Operations receive() and interpret() are invoked through
callbacks by the DTM protocol.

el
W @ participant,
A’. rep®,

m“

9w

dlmcast(m Dst(m), condition)

partlcxpanr

mterprer(Reply(m m))

Fig. 3. Objects executing the DTM generic protocol

4.2 Generic dimensions

Since DTM is a generic protocol, one has to instantiate® it in order to solve
some particular problem. To achieve this, one has to define the semantics of each
generic dimenston of the protocol. As we shall see, this can be done in many
ways, depending on which dimension is considered, e.g., by deriving some class
and redefining its operations, by creating an object of some class and passing it as
argument to some operation involved in the protocol, etc. There are five generic
dimensions to consider when instantiating the DTM generic protocol : (1) the
semantics of message m, (2) the set Dst(m) of participant objects to whom m
is multicast, (3) the validity condition, (4) the semantics of reply, generated by
each participant, (5) the interpretation of the set of replies Reply(m) on which
objects in Dst(m) agree.

We are now going to detail each of those generic dimensions and show how
they can be used. Figure 4 presents the DTM protocol classes and their main op-
erations, while figure 5 summarizes how generic dimensions are expressed using
those classes.

® In this context, the verb “to instantiate” does not mean “to create an instance of

some class”, as in the object-oriented paradigm, but to “customize the DTM generic
protocol”.

325

Semantics of message m Class Initiator defines operation dtmcast(). The first
argument of dtmcast() is an instance of some subclass of abstract class Message,
which 1mplements the generic message m. When instantiating DTM, one has
typically to subclass the Message class to make it support the adequate seman-
tics.

Set Dst(m) of participants Generic dimension Dst(m) (the set of partici-
pants) is implemented by the second parameter of operation dtmcast() and it is
merely an instance of some Set class. This set contains remote object references,
i.e., instances of class MPObjectRef provided by the message passing service.
Those references are used in communications primitives to designate remote ob-
jects. Further details are given in section 6, which presents an overview of our
first implementation, in particular by presenting the foundation classes of our
message passing service. Neither Set, nor MPObjectRef are usually subclassed
when instantiating DTM.

Validity condition The third parameter of dtmcast() is an instance of some
subclass of abstract class Condition, which implements the generic validity con-
dition. When subclassing Condition, one has to provide an implementation for its
test() operation®, which must yield true if the condition is satisfied and false oth-
erwise. As for receive() and interpret(), operation test() is invoked by the protocol
through a callback. This generic dimension is closely related to object failures
and 1s at the heart of reliability issues. Its semantics and its use are detailed in
section 4.3.

Semantics of reply; and interpretation of set Reply(m) Class Participant
is an abstract class which declares two unimplemented operations, receive() and
interpret(); it is up to subclasses of Participant to provide their implementations.
Operation receive() must return an instance of some subclass of abstract class
Reply, which implements the semantics of the generic reply, each participant
yields when invoked by the protocol. So, to instantiate generic dimension replyy,
one has to subclass Reply and to provide an implementation of receive() that
ylelds an instance of that subclass. Operation interpret(} must implement the
generic interpretation of set Reply(m). The latter set is passed by the DTM
protocol to each participant as an object of some Set class, through the argument
of interpret().

4.3 Validity conditions and object failures

The validity condition is tested while the DTM protocol is collecting partic-
ipants’ replies, and is at the heart of reliability issues. When invoked by the
protocol, operation test() receives three sets as arguments: Dst(m), Reply(m)
and Suspect(m), a subset of Dst(m). The latter contains objects of Dst(m) that

¢ Operation test() is marked as unimplemented in class Condition.

326

Classes Predefined Operations
Initiator dtmcast (m, Dst(m), condition)
receive (m ‘unimplemented,
Participant (abstract) imerpret{ { R)epiy(m) gunimZementedj
Message (abstract) none
Reply (abstract) none
Condition (abstract) test (Dst(m) , Reply(m) , Suspect(m)} {unimplemented)

Fig. 4. Classes implementing the DTM generic protocol

are suspected to be faulty. Set Suspect(m) is necessary for instances of the DTM
generic protocol where failures have to be considered in the agreement process,
i.e., when the condition on Reply(m) is expressed in terms of object failures.

Examples of validity conditions are given in sections 5.1 and 5.2, which pre-
sent how DTM can be used to build an atomic commitment protocol and a
reliable total order multicast protocol respectively. In the atomic commitment
protocol presented there, the validity condition can be expressed as follow:
Vobject, € Dst(m) : replyx & Reply(m) = object, € Suspect(m). That predica-
te expresses the fact that the atomic commitment can only terminate when the
replies of all non-suspected participants are in Reply(m).

Generic Dimensions Instantiation done by ...

Semantics of m subclassing class Message
+ passing an instance of Message’s subclass to operation dtmcast(} of the Initiator subclass

Set Dst(m) building a Set of MPObjectRefs + passing it to operation dtmcast() of the Initiator subclass

subclassing class Reply + implementing operation receive() of the Participant subclass

Semantics of reply, . X i i X
* + returning an instance of Reply’s subclass in operation receive()

. » subclassing class Condition + implementing its test() operation
Validity condition L.
+ passing an instance of Condition’s subclass to operation dtmcast() of the Initiator subclass

Interpretation of Reply(m) | implementing operation interpret(} of the Participant subclass

Fig. 5. Instantiation of DTM generic dimensions

5 DTM generic protocol classes in action

We are now going to show how the generic protocol classes presented in sec-
tion 4 can be customized to define higher-level abstractions for building reliable
distributed environments. We will focus here on two elementary abstractions
based on distributed protocols: the reliable total order multicast and the atomic

commitment. As we show, both can be implemented as instances of the DTM
generic protocol.

327

5.1 Atomic commitment

Overview of the problem The atomic commitment problem requires that par-
ticipants in a transaction agree on commait or abort at the end of the transaction.
If participants can fail and we still want all correct participants to agree, the
problem is known as the non-blocking atomic commitment (NB-AC) [3]. In that
case, the agreement should be commit if and only if all participants vote yes and
if no participant fails. It has been proved that this problem cannot be solved in
asynchronous systems with unreliable failure detectors [13]. This lead to spec-
ify a weaker problem: the non-blocking weak atomic commitment (NB-WAC),
which requires merely that no participant is ever suspected. Because the DTM
generic protocol makes no assumption on the properties of the failure detector
it uses, both the NB-AC and the NB-WAC problems can be seen as instances of
DTM, depending on the failure detector considered.

Protocol classes solving the atomic commitment To solve the atomic
commitment problem using the DTM generic protocol, Initiator is subclassed
into some Transaction class and Participant into some Manager class. Class Trans-
action defines two new operations: begin() and end(), while class Manager imple-
ments inherited operations receive() and interpret(). When a Transaction object
is created, it is initialized with a set of MPObjectRef instances, which is stored
into instance variable managerSet. Those remote object references designate the
managers that will be accessed during the transaction. Operations begin() and
end() initiate and terminate an atomic sequence of operations respectively; both
operations are invoked by the client of the transaction.

When agreement on commit or abort is reached, each manager applies the
decision to the data object under its responsibility; it does so by invoking op-
eration apply() on itself. Data objects are held in instance variable dataObject,
defined by class Manager. Each Manager object also has a currentManagerSet in-
stance variable, which contains the manager set of the transaction to which that
object currently belongs’. Figure 6 gives an overview of the atomic commitment
protocol based on D'TM; as in figure 3, arrows represent invocations on objects,
while numbers in circles show in what order invocations occur. In figure 7, op-
erations and variables defined by protocol classes Transaction and Manager are
presented; we do not detail secondary classes there.

We now going to sketch how objects interact while the atomic commitment
protocol is executing. Figure 8 presents the implementation main operations in-
volved. The pseudo-code used there is very simple: statements are separated by
symbol “”, variables are untyped and declared as in || voteReq ||”, the assign-

ment symbol is “~”, and the value returned by an operation is preceded by
symbol “4”.

" We are not interested in the problem of concurrently accessed managers here. How-
ever, for simplicity sakes class Manager defines only one currentManagerSet, so concur-
rency control has to be pessimistic, i.e., achieved by locking managers before starting
a transaction. In order to avoid dead-locks, the locking phase could be based on the
reliable total order multicast protocol presented in section 5.2 (see [14] for details).

328

; @

dtmcasi(voteReq,

end() @
s

self.condition)

ssl managerSat,

k"°‘
eoe e manager
appty(dﬁdskm)
*°‘
ool
\”""’"gv
manager data,
Ima,p
el VOtese,) apply(doclsion)

Fig. 6. Overview of the atomic commitment protocol with DTM

Class Transaction Class Manager
public operations public operations
begin (managerSet); receive (voteReq);
end (); interpret { voteSet);
instance variables private operation
managerSet; apply ();
condition; instance variables
dataObject;
currentManagerSet;

Fig. 7. Protocol classes for the atomic commitment

On the initiator side When a client wants to terminate an atomic sequence
of operations on distinct remote objects, it invokes the end() operation on the
corresponding transaction object (see figure 8 (a)). Operation end() first cre-
ates a VoteRequest message, and stores it in a local variable voteReq. Class
VoteRequest inherits from class Message and defines new instance variable man-
agerSet. After operation end() has created message voteReq, it initializes mem-
ber voteReq.managerSet with the transaction’s manager set® (self.managerSet).
Then, operation end() starts the atomic commitment protocol by invoking inher-
ited operation dtmcast(). Generic set Dst(m) and the generic validity condition,
passed to dtmcast() as second and third arguments respectively, are Transac-
tion’s instance variables self. managerSet and self.condition. Variable self.condition
contains an instance of a class ACCondition, derived from class Condition. Class
ACCondition defines operation test() (see figure 8 (b)), which implements the va-
lidity condition for the atomic commitment problem. As mentioned in sec-
tion 4.3, that condition is expressed in terms of manager failures. The same
condition is suitable for the NB-AC problem and for the NB-WAC' problem,
since it all depends on the failure detector the DTM protocol is using. Predicate
Ymanagery € Dst(m) : reply, ¢ Reply(m) = managery € Suspect(m), already
discussed in section 4.3, is implemented by operation test().

8 That set was initialized through operation begin(), by the client of the transaction.

329

end ()
Il voteReq Il
voteReq « VoteRequest.new();
voteReq.managerSet « self. managerSet;
self.dimcast(voteReq,
self. managerSet,

self.condition);
(a)

receive (voteReq)
Il vote Ii
self.currentManagerSet « voteReq.managerSet;
vote « self.vote (voteReq);

T vote;
()

(b)
test (managerSet, voteSet, suspectSet)

Il predicate |l
predicate « frue;
foreach manager, € managerSet do
if vote, ¢ voteSet A manager, ¢ suspectSet then
predicate « false ;
T predicate;

. @
interpret (voteSet)

Il decision I
if |voteSet} = |self.currentManagerSet | then
decision « commit ;
foreach vote e voteSet do
if vote = no then
decision « abort;
else
decision « abort;

self.apply (decision);

Fig. 8. Implementation of the atomic commitment

On the participant side When message voteReq reaches a Manager object, op-
eration receive() first puts voteReq.managerSet in its currentManagerSet instance
variable (see figure 8 (c)); it then computes its vote (yes or no) and returns it to
the DTM generic protocol. The vote is an instance of class Vote, which derives
from class Reply and implements generic reply,. The DTM protocol then collects
the votes of all non-faulty managers and put them into voteSet, a set implement-
ing the generic Reply(m} set. During the collecting phase, the ACCondition object
may be tested several times. Eventually, operation test() returns frue and the
DTM protocol invokes each (non-faulty) manager through operation interpret()
and passes it voteSet, on which agreement has been reached. Operation inter-
pret() then computes the final decision, which is commit only if all votes in
voteSet are yes and if no manager was suspected (see figure 8 (d)). This last
point is tested by Manager objects by comparing the size of voteSet with the
size of their currentManagerSet; if both have the same size, it means that no
manager was suspected by the DTM generic protocol. The decision is finally
applied to the data object by invoking the apply() operation, which undertakes
the appropriate actions.

5.2 Reliable total order multicast

Overview of the problem The reliable total order multicast problem can be
specified by two primitives, TO-multicast(m, Dst(m)) and TO-deliver(m), and
by a set of conditions on those primitives. Those conditions express that consis-
tency and liveness must preserved despite object failures, and that if more than
one object are in the intersection of several different Dst(m) sets, they must all
perform the corresponding T'O-deliver() in the same order. Note that we are not
talking of some broadcast primitive here: the TO-multicast(m, Dst(m}) primitive
requires the destination set Dst(m) to be explicitly specified and that set can

330

be different for each invocation®. This is why the order condition is expressed
in terms of several Dst(m) sets. A formal definition of the total order multicast
problem can be found in [26]

The reliable total order multicast protocol that we present below has been
described and proved elsewhere [26], without using the DTM generic protocol.
To our knowledge, it is the first algorithm capable of solving total order multicast
problem in a distributed system with unreliable failure detectors. Since it is quite
a complex protocol, we first present it independently of its implementation as
an instance of the DTM generic protocol.

Overview of the protocol The basic idea of the algorithm is to have each
object in Dst(m) to propose a time-stamp for message m, and to reach an agree-
ment on the maximum of those time-stamps; the latter is then used as sequence
number for message m, and messages are delivered according to their sequence
numbers. Time-stamps are based on Lamport’s logical clocks [16]. So, when ob-
ject o receives message m, it sends its current logical clock value as proposed
time-stamp to all other objects in Dst(m). It then stores m in a queue of pend-
ing messages, i.¢., all messages in that queue do not have their sequence number
computed yet. When agreement is reached on m’s sequence number, object o
moves m from the queue of pending messages to a queue of delivery messages,
i.e., all messages in that queue do have their associated sequence number but
have not been delivered yet. Finally, object o performs T'0-deliver(m) for each
message m in the delivery queue which sequence number is smaller than the
proposed time-stamps of all messages in the pending queue.

Three additional conditions have to be fulfilled for the protocol to work:
(1) causal order delivery must be ensured for all messages exchanged in the
algorithm; (2) each logical object o in Dst(m) has to be replicated and its repli-
cation rate must be such that there is always a majority of correct replicas of o in
the system; (3) the sequence number has to be the maximum of the time-stamps
that have been proposed by a qualified majority of replica objects in Dst(m).

Condition (2) leads Dst(m) to contain groups of objects (replicas) rather
that individual objects, each group gathering the replicas of one logical object.
The notion of group is used here merely as a naming facility, i.e., no group
membership protocol (as in Isis [4]) is necessary for the algorithm to be correct!®.
The qualified majority of Dst(m) is a set of objects that contains a majority of
replicas of every group in Dst(m). So, condition (3) can be expressed as the
following predicate: Yg € Dst(m) : |tsSety| > 1 x |g|, where ¢sSet is the set of
time-stamps proposed by replica objects in group g, when m’s sequence number
is computed. It is beyond the scope of this paper to explain why those additional
conditions are necessary; details can be found in [26].

° In a broadcast primitive, the destination set is implicit and contains every object of
the system, i.e., Dst(m) = f2.

19 In this context, we interpret “object o € Dst(m)” as “object o € group gAgroup g €
Dst(m)”.

331

Protocol classes solving the reliable total order multicast To implement
the total order multicast protocol presented above, using the DTM generic pro-
tocol, we subclass both the Initiator and Participant classes. Class MulticastService
is a subclass of Initiator and its instances represent the reliable multicast service
to client objects. This service offers several reliable multicast primitives, imple-
menting various ordering semantics, e.g., fifo order, causal order, total order.
Class MulticastService defines new operation toMcast(), which implements the
total order multicast primitive TO-multicast() defined previously. Class Replica
is a subclass of Participant and it implements new operation toDeliver(), as well
as inherited operations receive() and interpret(). Operations toDeliver() imple-
ments the TO-deliver() primitive defined above. Instances of Replica represent
object replicas to the multicast service: they are in charge of computing a se-
quence number for each received message and reordering messages accordingly.
The actual replicated server object (to which messages are finally delivered) is
held in instance variable serverObject, defined by class Replica. So, when a Replica
object invokes operation toDeliver() on itself, the message passed as argument
is delivered to the server object, with the guaranty that total order is satisfied.
Figure 9 presents an overview of the total order multicast based on the DTM
generic protocol; in that figure, objects replica; and replica; are a priori members

of different groups.
. toDeliver(msg) '|

We now going to sketch how objects interact while the total order multicast
protocol is executing. Figure 11 presents the implementation main operations
involved; the pseudo-code is the same as in figure 8

ec,w““““‘ @

w‘v
W

m!sm"f(tsSet) '

Fig. 9. Overview of the total order multicast protocol with DTM

toMcast(msg,
groupSet)
. mumcast
@ service

dtmcast (msg,
replicaSet,
condition }

!oDeflvor(msg }

On the initiator side When a client object wants to issue a total order mul-
ticast to set of replicated logical objects, it first has to build a set of groups,
each group containing the replicas’ remote object references of one logical ob-
Jject. The client then invokes operation toMcast() on an instance of Multicast-
Service, and passes it two arguments: msg, an instance of class TOMessage, and
groupSet, the set of groups it just built. Operation toMcast() is implemented
as follow (see figure 11 (a)): all groups of replicas are merged into replicaSet, a
single set of remote object references; a validity condition is then created as an
instance of class TOCondition; finally the invocation of dtmcast() is issued, with

332

Class MulticastService Class Replica
public operation public operations
toMcast (msg, groupSet); receive (msg);

interpret (tsSet });
private operations
extractMsg (tsSet);
maxTimeStamp (tsSet);
instance variables
lamportClock;
serverObject;
pendingQueue;
deliveryQueue;

Fig. 10. Protocol classes for the reliable total order multicast

msg, replicaSet and condition as arguments. Class TOMessage is a subclass of
Message and defines new instance variable ts; member msg.ts is used by each
Replica object to hold its proposed time-stamp when msg is stored in the pend-
ing queue, and msg’s sequence number when it is stored in the delivery queue.
The pending queue and the delivery queue are held in Replica’s instance variables
pendingQueue and deliveryQueue respectively. Class TOCondition implements the
validity condition of the total order multicast protocol, i.e., its test() operation
evaluates the third condition presented earlier, based of the notion of qualified
majority. In that condition, Dst(m) contains groups of objects rather than in-
dividual objects. So, TOCondition’s implementation of test() simply ignores the
first argument passed to it by the DTM generic protocol!! (see figure 11 (b)).
Instance variable groupSet is used instead, which holds the set of groups that
was passed to operation toMcast() by the client. Private operation select(), de-
fined by class TOCondition, extracts from tsSet the proposed time-stamps of a
particular group and puts them in a new set.

On the participant side When message msg reaches a Replica object, opera-
tion receive() updates its Lamport’s clock, sets msg.ts to the updated logical time
and stores msg in the pendingQueue (see figure 11 (c)). It then returns msg.ts to
the DTM protocol. Member msg.ts contains an instance of class TimeStamp,
which derives from class Reply and implements generic reply;. The DTM proto-
col then collects time-stamps and put them into tsSet, a set implementing the
generic Reply(m). During the collecting phase, the TOCondition object may be
tested several times. Eventually, operation test() returns true and the DTM pro-
tocol invokes each (non-faulty) replica through operation interpret() and passes it
tsSet on which agreement has been reached. Operation interpret() then computes
msg’s sequence number, moves msg from the pendingQueue to the deliveryQueue,
and performs toDeliver() for all messages that have been made deliverable by
the newly computed sequence number (see figure 11 (d)). Operation interpret()

"1 First argument of test() contains the set of participants to the DTM generic protocol,
i.e., Replica objects in that case, not groups.

333

toMcast (msg, groupSet) receive (msg)
Il replicaSet condition |l s It
replicaSet « _J group ts « self.lamportClock.update(msg);
group € groupSet

msg.ts « ts;
condition « TOCondition.new(); 8918 «
. self pendingQueue.add{ msg);
condition.groupSet « groupSet;

self.dtmcast(msg, Tts (c)
replicaSet, (d)
condition); interpret { tsSet)

@] 1 msg il

) msg « self.extractMsg(tsSet);
msg.ts « self. maxTimeStamp(tsSet),
self pendingQueue.remove(msg);
self.deliveryQueue.add(msg);

foreach m, € self.deliveryQueue do

if Vmp e self.pendingQueue : m, ts > m .is then

test (replicaSet, tsSet, suspectSet)
Il predicate Il
predicate ¢« true;
foreach group € self.groupSet do
if | self.select(tsSet, group } | < %2 x | group| then
predicate « false;

self.toDeliver(m);
1T predicate; (my)

self.deliveryQueue.remove(m,,);

Fig. 11. Implementation of the reliable total order multicast

relies on private operations extractMsg() and maxTimeStamp(), defined by class
Replica. Those two operations allow to get the message associated to tsSet, and
to compute the maximum time-stamp in tsSet respectively.

6 Design and implementation

6.1 Current prototype of the BAsT class library

Our current prototype of the BAST library of protocol classes was implemented
using the Smalltalk language and environment [10]. More specifically, we used Vi-
sualWorks, the commercial Smalltalk platform by ParcPlace Systems, Inc. The
development took place on a network of Sun SPARCstations running the So-
laris 2.4 operating system. Everything is an object in BAsT, and Smalltalk was
well-suited to support such an approach. As shown in figure 1, BAST is based on
a layered architecture and provides various services, each of which corresponds
to a particular protocol.

6.2 Inside the DTM generic protocol

In previous sections, we have presented the public interfaces of the DTM protocol
classes, and how to use them. We are now going to “open” the DTM generic
protocol, by presenting the “hidden face” of classes Initiator and Participant, 1.e.,
how they implement DTM and on what other protocol classes they rely to do
this.

The nature of the DTM protocol suggests that Participant objects have to
be able to solve the distributed consensus problem, since they have to reach an
agreement on the generic Reply(m) (interpreted at the end of the protocol).

334

DTM i Consensus i Failure Detection Message Passing
Service ; Service ; Service ‘; Service
(layerd) ! { layere) ! (layerf) ! (layerg)
Initiator > MPObiject

dtmcast: msg to: dstSet ' mcast: obj to: mpObjRefSet
with: condition ; send: objto: ~ mpObjRef
: . recvMsg: obj from: mpObjRef

FDObject

recvAck: obj from: mpOb]Re;
startMonitoring: mpObjRef recvNoAck: obj from: mpObjRe
stopMonitoring: mpObjRef:

- CSObject i isSuspecting: - mpObjRef

propose: obj to: ¢sObjRefSet 1
decide: obj for: consensusld !

\

Participant

receive: ms?
interpret: replySet

'
1
'

Fig. 12. BasT’s protocol class hierarchy

Furthermore, if Participant objects were not able to detect (reliably or not) their
faulty peers, the failure of a single participant would lead the protocol to block.
This suggests that Participant objects must be able to monitor and to suspect
each others. Finally, while the DTM generic protocol is executing, distant ob-
jects exchange messages, so Initiator and Participant objects should be capable of
performing message passing.

Those considerations lead us to design the class hierarchy presented in fig-
ure 12, where arrows represent “is subclass of” relationships. In this hierarchy,
classes are protocol classes as defined previously, that is, they implement objects
that are capable of executing a particular protocol. Apart from DTM, all ser-
vices of figure 12 are based on protocols with symmetric roles, so a single class
is defined per protocol. In this figure, only new operations defined by each class
are represented, e.g., class FDObject refines operation recvAck:from: but we only
placed that operation under class MPObject. Private/secondary operations and
classes are not represented. Each service in figure 12 corresponds to a layer in
figure 1. Below, we detail classes that support the protocols corresponding to
those services; the presentation order follows a bottom-up approach. Figures 13
and 14 present the interfaces of those protocol classes; for each class, we list
newly defined operations, as well as inherited ones that are refined.

Message passing service Smalltalk does not provide support for distributed
objects, so we implemented the foundation for distant objects to be able to
send messages to each others: the message passing service. This service is the
base of all other distributed protocols and defines two classes: MPObject and
MPObjectRef. Instances of MPObject represent remote objects that are capable
of executing the message passing protocol, i.e., they know how send (and receive)
any object obj to (from) each others. Sending achieved by executing either op-
eration send:to: or mcast:to:, while receiving in performed through a callback
to recvMsg:from: by the message passing service. Because communications are
reliable, callbacks to operations recvAck:from: and recvNoAck:from: are also per-

335

Class MPObject

instance operations
send:to:
mcast:to:
recvMsg:from:
recvAck:from:
recvNoAck:from:

class operations
dispatchMsg:to:
dispatchAck:to:

dispatchNoAck:to:

Class FDObject

instance operations
startMonitoring:
stopMonitoring:
isSuspecting:
recvMsg:from:
recvAck:from:
recvNoAck:from:

class operations
dispatchMsg:to:
dispatchAck:to:

Class CSObject

instance operations
propose:to:
decide:for:
recvMsg:from:
recvAck:from:
recvNoAck:from:

class operations
dispatchMsg:to:

instance variable
currentConsensusSet

dispatchNoAck:to:
instance variable
suspectSet

Fig. 13. Protocol classes MPObject, FDObject and CSObject

formed by the protocol when necessary; class MPObject implements those opera-
tions so they do nothing. Instances of MPObjectRef are used to designate remote
objects and are passed as arguments to communication operations.

Reliable communications are implemented through timeouts and possible
retransmissions. This task is managed by private class MessagePassing, which
represent the message passing service on each node!?; callbacks on MPQbject
are triggered by this class. To implement reliable communications, class Mes-
sagePassing relies on a low-level layer written in C: the Reliable Communication
Layer'3 (RCL), developed in the context of the Phoeniz project. This layer is
built on top of the UDP protocol and adds reliability to it. This approach has
the advantage to improve performance, since low-level message management,
such as message packing and retransmitting, duplicated messages filtering, etc.,
is done in C. Furthermore, we are currently integrating RCL into Solaris 2.4 ker-
nel, which should make the communication even faster.

On each node, class MessagePassing opens a UDP port used to send (and
receive) messages to (from) others nodes. The mapping between local MPOb-
ject instances and the node where they can be found is managed by the Mes-
sagePassing class on that node. However, the dispatching of incoming messages is
delegated by class MessagePassing to the class of the target object, e.g, if a mes-
sage is addressed to some FDObject, then it is up to class FDObject to dispatch
it. In order to do this, class MPObject defines class operations dispatchMsg:to:,
dispatchAck:to: and dispatchNoAck:to:, which can be redefined by its subclasses.
As we shall see in next paragraph, this mechanism is useful for example when
common actions have to be undertaken for all instances of some subclass of
MPObject, each time a message arrives on the node. Class MessagePassing is

12 As said in section 3, different nodes imply different address spaces. In Smalltalk, this
means that a node corresponds to an execution of the Smalltalk virtual machine.

13 The VisualWorks environment provides powerful facilities that enable to dynamically
link C libraries to the Smalltalk virtual machine, and then to call C functions from
those libraries within Smalltalk code.

336

also responsible for marshaling and unmarshaling objects sent through RCL;
this is done by using the Binary Object Storage Service (BOSS) provided by the
Visual Works environment.

Failure detection service In our approach, object failures are dealt with by
failure detectors, and in BAST, this concept is supported by the failure detec-
tion service. This service is based on FDObject, a subclass of MPObject which
implements the behavior of objects capable of executing the failure detection
protocol. Each instance of FDObject manages suspectSet, a private set contain-
ing the MPObjectRef of every remote object it is currently suspecting. Class
FDObject redefines operations recvMsg:from:, recvAck:from: and recvNoAck:from:
so they adequately add or remove the MPObjectRef passed to them by the failure
detection protocol. This class also implements new operations startMonitoring:,
stopMonitoring: and isSuspecting:. The first two operations can be used to start
and stop “pinging” a remote object respectively. Operation isSuspecting: returns
true if the invoked FDObject is currently suspecting the remote object which
reference is passed as argument.

In our first prototype of BAST, we made the assumption that objects on
the same node do not fail separately, i.e., we only consider failures of Smalltalk
virtual machines, not of individual objects. This is fairly reasonable, since we
only consider crash failures: it makes little sense having one object to crash
while others on the same node (i.e., on the same address space) don’t. As a
consequence, whenever a message is received on node A from a remote object
located on node B, all objects on node A that are suspecting some object lo-
cated on node B should stop doing so. Similarly, when an object on node B
1s no more reachable by some object on node A, all objects on node A that
interested in some object located on node B should add it in their private sus-
pectSet. The dispatching of suspicion additions and removals is performed by
class FDObject, through its class operations dispatchMsg:to:, dispatchAck:to: and
dispatchNoAck:to:.

Consensus service Agreement is a central problem of many reliable distribu-
ted protocols, in particular all those that can be viewed as instances of the
DTM generic protocol. In BAST, support for solving the agreement problem is
provided by the consensus service, which implements the ¢S-consensus protocol
proposed by Chandra and Toueg {8]. That protocol enables objects to reach
agreement despite failures, in asynchronous systems augmented with unreltable
failure detectors of class 05 (see [8] for further details on the classification of
failure detectors).

Our consensus service relies on CSObject, a subclass of FDObject which im-
plements the behavior of objects that can execute the aforesaid consensus pro-
tocol. In the oS-consensus protocol, objects executing the consensus protocol
must be able to suspect each others; this is why a CSObject is also an FDObject.
When a consensus protocol begins, each CSObject involved in it starts monitor-
ing its peers, by calling operation startMonitoring: inherited from class FDObject.

337

A CSObject o; stops monitoring another CSObject o0;, as soon as all executions
of the consensus protocol involving both o; and o; terminate. This is done by
invoking operation stopMonitoring:, inherited from class FDObject.

Instances of CSObject are capable of running more than one execution of the
consensus protocol simultaneously, and they can propose any object as agree-
ment value. Class CSObject defines new operations propose:to: and decide:for:.
When a CSObject is invoked through operation propose:to:, a new execution of
the consensus protocol starts for that object. As first argument, operation pro-
pose:to: takes any object and proposes it as its agreement value to all consensus
objects referenced in its second argument, set csObjRefSet. Internally, a unique
identifier is associated to that particular execution of the consensus. When an
agreement is reached, class CSObject on each non-faulty node eventually receives
the decision message and has to dispatch it to all local object(s) involved in that
execution of the protocol. Instead of calling operation recvMsg:from: on the con-
cerned object(s), operation dispatchMsg:to: performs a callback to decide:for: on
them. First argument of decide:for: is the object on which agreement has been
reached, while second argument is the identifier associated to that execution of
the consensus protocol.

Class Initiator
instance operation
dtmcast:to:with:

Class Participant

instance operations instance operations (continued)
dtmProtocolFor: collecReplies
storeDstSetOf:as: stopCollecReplies
getDstSetOf: waitForDecision
storeCollectSetOf:as: dtmldsConcernedBy:
getCollectSetOf: recvMsg:from:
storeValidityCondOf:as: recvAck:from:
getValidityCondOf: recvNoAck:from:

Fig. 14. Protocol classes Initiator and Participant

DTM service We are now ready to look at the implementation of DTM proto-
col classes Initiator and Participant. Those classes mostly rely on inherited opera-
tions from their superclasses. Initiator and Participant’s interfaces are summarized
in figure 14, while figure 15 presents the Smalltalk code of the three main opera-
tions involved in the DTM generic protocol, i.e., dtmProtocolFor:, recvMsg:from:,
and recvNoAck:from:. Those operations are defined by class Participant.

Class Initiator derives from MPObject, the class at the top of our hierarchy. Its
implementation of operation dtmcast:to:with: directly relies on inherited opera-
tion mcast:to:. When invoked, operation dtmcast:to:with: initializes private fields
of its first argument msg, an instance of a Message’s subclass. It then multicasts
msg to dstSet, the set of participants passed to it as second argument. Class

338

Message defines three private fields: dtmld, an identifier used to distinguish dif-
ferent execution of the DTM protocol, vCond, the validity condition, and dstSet,
the set of participants to the protocol. Those informations are initialized using

arguments passed to dtmcast:to:with:.

recvMsg: obj from: mpObjRef dtmProtocolFor: msg
“Let super-classes do their job first” | reply collectSet replySet |

super recyMsg: obj from: mpObjRef.

“Store information related to that new ezecution”

“Treat incoming DTM messages” self storeDstSetOf: (msg dtmld) as: {msg dstSet).
(obj isKindOf: Message) self storeValidityCondOf: (msg dtmld) as: (msg vCond).
ifTrue:

“Ezecute DTM generic protocol phases”
self dtmProtocolFor: obj. reply :

= self receive: msg.

] self mcast: reply to: (msg dstSet).

collectSet := self collectReplies.
self propose: collectSet to: (msg dstSet).
replySet := self waitForDecision.

(@) self interpret: replySet (b)

recvMsg: obj from: mpObjRef © recvNoAck: obj from: mpObjRef C)

“Let super-classes do their job first”
super recyMsg: obj from: mpObjRef.

“Treat incoming DTM replies”
(obj isKindOf: Reply)
ifTrue:
[| dstSet collectSet vCond ready |

| dstSet collectSet vCond ready |

“Let super-classes do their job first”
super recvNoAck: obj from: mpObjRef.

“For each current execution of DTM, do...”
(self dtmlidsConcernedBy: obj)
do:

“Get information related to that ezecution”
dstSet := self getDstSetOf: (obj dtmid).
collectSet := self getCollectSetOf: (obj dtmld).
vCond := self getValidityCondOf: (obj dtmld).

“Add reply and test validity condition”
collectSet add: (obj replyValue).
ready := vCond

testWith: dstSet

with: collectSet

with: suspectSet.

“Possibly stop collecting replies”
ready

ifTrue:

(

self stopCollectReplies.

]

[:dtmid |

“Get information related to that execution’
dstSet := self getDstSetOf: dtmld.
collectSet := self getCollectSetOf: dtmld.
vCond := self getValidityCondOf: dtmld.

“Test validity condition”
ready := vCond
testWith: dstSet
with: collectSet
with: suspectSet.

“Possibly stop collecting replies”
ready
ifTrue:

self stopCollectReplies.

]

Fig. 15. Smalltalk implementation of the DTM generic protocol

Since DTM involves the execution of the consensus protocol, Participant is

a subclass of CSObject. When msg reaches

a node, the local message passing

service invokes the target participant through operation recvMsg:from:. The

,

339

participant then invokes operation dtmProtocolFor: on itself, passing it msg
(see figure 15 (a)). This call starts the DTM generic protocol, which has its
various phases implemented through operation invocations in dtmProtocolFor:
(see figure 15 (b)). The latter starts by storing informations related to that new
execution of DTM and then invokes operation receive: with argument msg. Re-
member that operation receive: is implemented differently by each subclass of
Participant, and that it returns reply, an instance of some Reply’s subclass. Ob-
Jject reply is then sent to all objects referenced in msg’s dstSet. Operation collec-
tReplies is then invoked, and blocks until the validity condition associated to msg
is satisfied. This condition is re-tested each time a reply or a negative acknowledg-
ment (no ack) is received by the participant (see figures 15 (c) and (d)). There
might be more than one execution of the DTM protocol that is concerned by
an incoming no ack. Operation dtmldsConcernedBy: returns a set containing the
dtmld of each execution that should have its validity condition re-tested.

Eventually, the call to collectReplies returns and operation propose:to: is in-
voked with initSet, the set of collected replies, and msg’s dstSet as arguments.
The invocation of operation propose:to:, inherited from class CSObject, starts the
©S-consensus protocol; this call is non-blocking. By invoking waitForDecision, op-
eration dtmProtocolFor: blocks until the consensus terminates. When operation
waitForDecision returns, it yields replySet, the set of replies on which agreement
has been reached. Finally, the protocol invokes operation interpret:, which im-
plementation is delegated to subclasses of Participant, and passes it replySet as
argument. This call concludes the execution of the DTM generic protocol. In
figure 15 (b), we emphasized the two operations that enable to customize the
DTM generic protocol, i.e., operations receive: and interpret:.

7 Related work

7.1 Distributed programming abstractions

Although not applied to the same research domain, our approach is similar
to those of [18, 6, 7], in that the main objective is to define the basic generic
abstractions for building a modular distributed environment. In the BAsT li-
brary of protocol classes, we are concerned with building distributed agreement
protocols, while [18] focuses on concurrent programming and [6, 7] focus on
persistence storage and distributed object communication and execution.

O.L Madsen has presented in [18] a library of classes representing high-level
abstractions for concurrent programming, such as Rendez- Vous and Monutors.
Those abstractions are built on top of the lower level Semaphore abstraction.
Following the same approach, BETA, described by S. Brandt and O.L Madsen
in [6], is a set of “mandatory” abstractions to support distributed object exe-
cution, and remote object invocation. Among these abstractions are: Ensemble,
representing a physical network node, Shell, representing a self-contained pro-
gram module, and NameServer, providing a mapping between textual names
and object references. CHOICES [7] is an example of a class library represent-
ing a distributed operating system. Traditional elements of operating systems,

340

such as Process, Domain or Disk, are implemented as classes with well-defined
interfaces. One can then customize the operating system, through inheritance,
in order to match particular application needs.

7.2 Transactional libraries

D. McCue has presented a class library which enables to attach persistence and
transactional features to application objects [19]. An interesting aspect of the
library is the orthogonality of characteristics: (1) an object is persistent if its
class inherits from class Persistent, (2) an object has a dedicated concurrency
control if its class inherits from class Concurrency-Controlled, and (3) an object
is recoverable if its class inherits from class Recoverable [29, 5]. These character-
istics can be obtained separately but also together, through multiple inheritance.
So, one can design objects with all transactional characteristics: serialisability,
failure atomicity and permanence.

In [22, 24, 12], the transactional system itself is designed as a class library.
This leads to a better modularity, and has enabled to change the underlying
transactional protocols with minimal effects on the rest of the system. In [22],
a (pessimistic) two-phases locking protocol can be customized for each class
according to its semantics. In [24, 12], pessimistic concurrency control protocols
are replaced by optimistic ones. All these changes are done with no effects on
application objects.

However, none of the research mentioned above discuss the way transactional
protocols, such as distributed locking and distributed atomic commitment, can
be designed and implemented on top of lower level reusable components. With
those approaches, protocols are assumed to exist and to be provided by the
underlying distributed environment. Qur work can be viewed as complementary
to these research works. Our approach precisely aims at providing a generic
way to design and implement protocols, particularly agreement protocols (e.g.,
for transactions), from more basic components, such as DTM protocol classes.
The BAST class library neither addresses how to attach transactional features
to application objects, nor is concerned with the way these protocols can be
composed to build a transactional system.

7.3 Communication protocol libraries

Several authors have discussed the need for designing and implementing libraries
of communication protocols. The STREAMS framework [25], a pioneer in the do-
main, and the z-Kernel [23], contain rich libraries of communication protocols,
but they do not deal with reliability and agreement issues. More recently, both in
the context of the Horus [28] and the CoNsUL [20] projects, libraries or reliable
distributed protocols were provided. The proposed approaches consider however
the group abstraction as the basic abstraction for reliable programming, and
hence limit the scope of both environments. As we have discussed in section 1,
transaction-oriented applications are very difficult to support on top of such
group-oriented systems. D.C. Schmidt introduced the Asx framework [27], a set

341

of C++ components that help building reusable communication infrastructures.
Those components, also known as wrappers, are aimed at performing common
communication-related tasks, e.g., connection establishment, routing, etc. How-
ever, there is no such thing as protocol classes in Asx, which can be seen as a
toolbox of reusable components.

8 Concluding remarks

In this paper, we have introduced BAST, a library which offers a coherent hier-
archy of protocol classes. Protocol classes are aimed at helping system program-
mers in building abstractions provided to application programmers. They can be
used as the basic structuring components of distributed environments, and they
significantly improve modularity. They also facilitate the customization and op-
timization of existing protocols, and enables to create new protocols very easily
by subclassing.

In fault-tolerant distributed environments, protocol that enable to reach
agreement despite failures play an essential role. The BAST library provides pro-
tocol classes that implement DTM, a generic protocol that can be customized
to solve problems in distributed systems where failures can occur. We have pre-
sented how DTM generic protocol classes can be derived to solve the atomic
commitment problem, and the reliable total order problem.

There are many research works on how to design distributed environments in
terms of objects, but protocols are usually not modeled as classes. STREAMS [25]
and z-Kernel [23] provide libraries of communication protocols but do not ad-
dress fault-tolerance, while Horus [28] and ConsuL [20] do. However, none of
those systems view protocols as classes: protocols are dealt with as sets of func-
tions. BAST is the only library of protocol classes we know of that addresses
reliability issues. Furthermore, it provides protocol classes that support both
the transaction paradigm and the group paradigm; this allows to smoothly in-
tegrate transactions on replicated objects. We see BAST as our contribution to
the design of well-structured fault-tolerant distributed environments.

Our first prototype of the BAST class library is implemented in Smalltalk.
We are currently implementing a C++ version of BasT, which will be used as
base for other research projects. Future work will also consist in studying other
protocols that are used to achieve fault-tolerance in distributed systems, and in
seeing how they can fit into the BAST class hierarchy.

References

1. G. Agha, S. Frglund, R. Panwar, and D. Sturman. A linguistic framework for dy-
namic composition of dependability protocols. In Dependable Computing for Crit-
ical Applications III Proceedings (DCCA-3), pages 197-207. IFIP Transactions,
1993. Elsevier.

2. M. Aksit, K. Wakita, J. Bosh, L. Bergmans, and A. Yonezawa. Abstracting object
interactions using composition filters. In Object-Based Distributed Programming,

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

342

volume 791 of Lecture Notes in Computer Science, pages 152-184. Springer Verlag,
1993.

. P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Re-

covery in Database Systems. Addison Wesley, 1987.
K. Birman and R. Van Renesse. Reliable Distributed Computing with the Isis
Toolkit. IEEE Computer Society Press, 1993.

. A. Black. Understanding transactions in the operating system context. Operating

Systems Review, 25(28):73-77, January 1991.

. S. Brandt and O.L Madsen. Object-oriented distributed programming in Beta. In

Object- Based Distributed Programming, volume 791 of Lecture Notes in Computer
Science, pages 185-212. Springer Verlag, 1993.

. R. Campbell, N. Islam, D. Ralia, and P. Madany. Designing and implement-

ing Choices: An object-oriented system in C++. Communications of the ACM,
36(9):117-126, September 1993.

. T.D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed

systems. Technical Report TR94-1458, Cornell University, Computer Science De-
partment, October 1994. A preliminary version appears in PODC’91.

B. Garbinato, R. Guerraoui, and K.R. Mazouni. Implementation of the GARF
replicated object plateform. Distributed Systems Engineering Journal, 2:14-27,
1995.

A.J. Goldberg and A.D. Robson. SMALLTALK-80: The Language and its Imple-
mentation. Addison Wesley, 1983.

Object Management Group and X/Open. The Common Object Request Broker:
Architecture and Specification. Object Management Group, 1990. Document No.
91.12.1 (Revision 1.1).

R. Guerraoui. Modular atomic objects. Theory and Practice of Object Systems,
1(2):89-100, 1995.

R. Guerraoui. Revisiting the relationship between non-blocking atomic commit-
ment and consensus. In J.-M. Hélary and M. Raynal, editors, Distributed Algo-
rithms - 9th International Workshop on Distributed Algorithms (WDAG’95), vol-
ume 972 of Lecture Notes in Computer Science, pages 87-100. Springer Verlag,
September 1995.

R. Guerraoui and A. Schiper. A generic multicast primitive to support transac-
tions on replicated objects in distributed systems. In IEEE International Workshop
on Future Trends in Distributed Computing Systems (FTDCS-95), August 1995.
Korea.

R. Guerraoui and A. Schiper. Transaction model vs virtual synchrony model:
Bridging the gap. In Theory and Practice in Distributed Systems, volume 938
of Lecture Notes in Computer Science, pages 121-132. Springer Verlag, 1995.

L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558-565, July 1978.

N. Lynch, M. Merrit, W. Weihl, and A. Fekete. Atomic Transactions. Morgan
Koffmann, 1994.

O.L: Madsen. Building abstractions for object-oriented programming. Technical
report, University of Arhus, Computer Science Department, February 1993.

D. McCue. Developing a class hierarchy for object-oriented transaction pro-
cessing. In European Conference on Object-Oriented Programming Proceed-
ings (ECOOP’92), volume 615 of Lecture Notes in Computer Science, pages 413—
426, Utrecht (Netherland), June/July 1992. Springer Verlag.

20

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

343

S. Mishra, L. Peterson, and R. Schlichting. Experience with modularity in Consul.
Software- Practice and Experience, 23(10):1053-1075, October 1993.

S. Mullender, editor. Distributed Systems. ACM Press, 1989.

G. Parrington and S. Schrivastava. Implementing concurrency control in reliable
distributed object-oriented systems. In European Conference on Object-Oriented
Programming Proceedings (ECOOP’88), Norway, August 1988.

L. Peterson, N. Hutchinson, S. O’Malley, and M. Abott. Rpc in the r—Kernel:
Evaluating new design techniques. ACM Symposium on Operating Systems Prin-
ciples, 23(10):91-101, November 1989.

S. Popovitch, G. Kaiser, and S. Wu. An object-based approach to implementing
distributed concurrency control. In IEEE Conference on Distributed Computing
Systems Proceedings, pages 65-72, Arlington (Texas), May 1991.

D. Ritchie. A stream input-output system. Bell Laboratories Technical Journal,
63(8):1897-1910, 1984.

A. Schiper and R. Guerraoui. Faul-tolerant total order “multicast” with an unre-
liable failure detector. Technical report, Operating System Laboratory (Computer
Science Department) of the Swiss Federal Institute of Technology, November 1995.
D.C. Schmidt. ASX: an object-oriented framework for developing distributed ap-
plications. In Proceedings of the 6* USENIX C++ Technical Conference. USENIX
Association, April 1994.

R. van Renesse and K. Birman. Protocol composition in Horus. ACM Principles
of Distributed Computing, 1995.

J. Wing. Decomposing and recomposing transaction concepts. In Workshop
OBDP93, pages 111-122, 1994.

Y. Yokote. The Apertos reflective operating system: The concept and its imple-
mentation. In Object-Oriented Programming Systems, Languages and Applications
Conference Proceedings (OOPSLA’92), pages 414-434. ACM Press, October 1992.
Special Issue of Sigplan Notices.

