Dynamic Clustering in Object Databases
Exploiting Effective Use of Relationships
Between Objects

Frédérique BULLAT, Michel SCHNEIDER
Laboratoire d'Informatique
Université Blaise Pascal Clermont-Ferrand 11
Complexe des Cézeaux, 63177 Aubiere Cédex, FRANCE
E-mail: schneider@cicsun.univ-bpclermont.fr
Phone: (33) 73.40.74.35
Fax: (33) 73.40.74.44

Abstract

This paper concerns the problem of clustering objects onto units of secondary storage to
minimise the number of I/O operations in database applications. We first investigate
problems associated with most existing clustering schemes. We then propose STD, a
Statistic-based Tunable and Dynamic clustering strategy which is able to overcome
deficiencies of existing solutions. Our main coniributions concern the dynamicity of the
solution without adding high overhead and excessive volume of statistics.
Reorganisations are performed only when the corresponding overhead is strictly justified.
Clustering specifications are buill from observation upon objects life, capturing any type
of logical or structural inter-object links. Moreover, our clustering mechanism does not
need any user or administrators hints, but remains user-controlled. A partial validation of
STD has been made using Texas.

Keywords
Clustering, Buffering, Object-Oriented DataBase System, Performance.

1 Introduction

Clustering is an effective mechanism for improving object-oriented DBMS.
Various inter-object links allow navigation through the database and retrieval of
complex objects. For an object-oriented system, it is very important to traverse the
object graphs structure efficiently. Clustering of related objects on disk minimises the
number of pages accessed during a transaction and has thus a great impact on the
overall performance of the system. It reduces client-server communication and disk
1/O costs but also the number of locks to manage as well as the number of writes to
store in journals. It improves paging performance and client buffer memory usage.
So, 'intelligent' physical placement of objects is a central issuc for performance
requirements.

345

Several characteristics can commonly be identified in existing clustering strategies
[3]. First, they are mainly static. Objects are grouped at creation and are not
reclustered afterward at run time when use of data evolve. Moreover, systems do not
generally offer any measuring and reorganisation tools. Second, clustering is rarely
self-driven and user's hints or explicit placement schema are used at object creation
time. Third, existing schemes are designed to cluster objects by considering structural
relationships among classes inside the database schema. They commonly don't

consider logica]1 relationships, neither IS-A relationships nor multiple relationships
among objects. Moreover, clustering schemes are all based on a common policy for
every objects of a given class. This does not allow any individual object behavior.
Finally, most clustering policies use disk pages as clustering unit. Hence, they do
not consider performance issued by the physical dispositions of accessed pages.
Clustering among several pages may be really efficient especially if coupled with an
appropriate buffering policy. Besides, related objects placed in consecutive pages on
disk can be accessed avoiding expensive moving of disk heads.

This paper introduces a new clustering scheme that may be convenient for any
object-oriented DBMS. Its main objectives are autonomy, flexibility, dynamicity and
of course efficiency. It tries to reach the best physical placement regarding the
database use. STD clustering specifications are based on operations performed on
individual objects in order to meet the requirements of different access patterns. We
try to determine how objects are actually used together, regardless the type of
relationships. For the reclustering problem, we propose a dynamic scheme that may
reorganise the storage space when placement of objects becomes obsolete (i.e. when
objects are not used by applications as they usually were). This can occur for many
reasons: schema evolution, changing of parent objects, added or removed structural or
logical links. A cost model is introduced to assist reorganisation decisions. A great
effort is made, first, to reduce the number of statistics to a minimal representative set;
then, to correctly estimate the benefit of reclustering before doing any change; and
finally, to wait for the appropriate moment, in order to avoid penalising applications
when reclustering. Clustering units are chunks (sets of contiguous disk pages) instead
of individual pages. Moreover, the clustering proposal is improved by a specific
buffering scheme, including appropriate prefetching and replacement policies. The
entire solution is self-driven but remains user-controlled through tuning parameters.

The remainder of this paper is organised as follows. Section 2 addresses the
problems associated with most of existing clustering schemes. Section 3 stresses out
our motivations and presents the principles of the STD clustering scheme. Section 4
presents the underlying machinery existing behind this solution from an
implementation point of view. Section 5 proposes a partial validation of STD

! We mean by 'logical' relationship all links that are not described in the DB schema but that may be
constructed at any time by applications in order to manipulate logically related objects. Examples of such
relationships can be: extensions of classes containing objects having the same values for some attributes
(in order to run database requests), or collections of neighboured objects often accessed together when
displaying geographical cards. This kind of relationship is expressed of course with physical pointers but
differs from classical structural links.

346

through an implementation with Texas and some experiments to situate the efficiency
of the clustering. Finally, section 6 concludes this paper and discusses costs,
feasibility and perspectives for this work.

2 Related Work

This section presents the main characteristics of most existing clustering schemes
and points out several associated problems. One can refer to {3] for more details on
object clustering strategies. First, in most operational OODBMS, clustering depends
on user hand-activation (made through application code, as in ObjectStore [15],
ONTOS [16], and GemStone [17] or by means of online commands, as in ORION
[14] or with a clustering procedure, as in Cactis [13]). We think that placement of
objects should be considered at any time by the system. It may of course need user
hints, but should not depends on hypothetical external activations. O seems to be
the only operational system to propose a systematic clustering solution integrated to
the DBMS [1] (this clustering strategy will be operational for the next version).
Other solutions [5, 8, 11} have been suggested but never implemented.

Another common characteristic is the lack of dynamicity. Many suggestions have
been made to get reclustering of objects [6, 8]. But these solutions are not really

dynamicz. In fact, they only control placement of objects when objects are modified.
We think that, for many reasons, an object may become misclustered even if it has
not been modified (when clustering specifications evolve, for example). We have only
found one proposal [11] that can be really considered as 'dynamic’. Based on a garbage
collection process, it is very attractive because it adds only small overhead to the
existing process. However, disk garbage collection is itself a very expensive process,
and, for this reason, is rarely implemented in existing DBMS, except in GemStone
[17]. Moreover, we think that dynamicity is at the same time, absolutely necessary
but also very dangerous since disk space organisation may never stabilise and prove
costly. Before reclustering, costs and benefits must be precisely estimated.

Besides, we consider that, in most cases, the importance of user hints is too high.
Often, for example in ONTOS [16], ObjectStore [15] and ORION [14], users state
precisely how to cluster some objects by indicating in what target segment or near
what object y an object x must be stored (within applications code or by means of
online commands). Sometimes, systems accept user hints related to the DB schema.
In ENCORE [12] and EOS [11], users affect priorities to structural links between
classes. O7 proposes to define a specific placement schema, by means of placement
trees [1] created by the DB Administrator. None of these solutions are really
convenient because programmers, administrators and even users may have no correct
idea on the way objects will be used together. This is the reason why in Cactis [13],
for example, no user hint is required. The system tries to determine itself a good
clustering.

2 we qualify by 'dynamic’ any solution able to detect and replace every object that becomes
misclustered for any reason.

347

The most critical point of a clustering strategy is, of course, the pertinence of the
clustering specifications. There are two major kinds of specifications: (i) those based
on structural links between classes (depicted in the DB schema), (ii) those built with
observation upon objects life. For the first kind (i), solutions differ essentially on the
nature of the considered links. In most cases, systems base their clustering policy on
structural links (defined in the DB schema). {7} and [8] propose to cluster upon other
kinds of relationships, as equivalence relationships and version relationships.
Generally, one type of relationship is considered at a time. [8] suggests a multi-level
strategy to order different weighted links in a same clustering sequence. Moreover, IS-

A relationships3 and logical relationships are never considered. Concerning the second
kind (ii), many papers propose to base clustering on access probabilities deduced from
statistics [13, 19, 20, 21]. Defaults of many published works in this domain are the
lack of precise information concerning: (j) the way to collect, store and handle
statistics, (j)) the generated costs, (jjj) what to do while there are not enough
statistics, (jjjj) the necessity of braking and balancing system reactions when
confronted to continuous statistics changes. In the two kinds of strategies (i) (ii),
clustering specifications are generalised at the class-level. So that, all objects of a
given class are clustered in the same way, denying any individual behavior. Lastly,
few systems handle the problem of shared objects in a deterministic way. If an object
x is linked through the same type of relationship to several other objects, there are
several clustering solutions. Some systems, as ENCORE [12], allow replication of
object x, so that each replicated object is stored near its parent. Other systems, as
EOS [11], rely on user hints. The others are self-clecting systems: i.e. they cither
place randomly x close to one of the objects, or use statistics to take decisions [13,
19].

We can also note a lack of control and tuning tools. O7 proposes a cost model [2]
based on analysis of objects methods, but it has not been implemented. [6] suggests
to control clustering efficiency within the buffering module. But nothing is said
about the way to do it. Finally, clustering efficiency is generally reduced by the lack
of adapted buffering schemes, and especially by the lack of adapted replacement
policies {9]. Traditional LRU replacement policies, for example, do not consider
relationships existing between objects of different pages when electing pages for
replacement. As a result, some likely-to-be-used objects may be swapped out because
the buffer manager does not take into consideration that these objects are strongly
related to currently-used objects. The I/O gain introduced by clustering is then
decreased by traditional buffering. {6] has suggested a context-sensitive replaccment
policy which would take care of inter-object relationships to set relevant priorities on
pages. However, the proposed solution does not take advantage of a cluster-based
policy. It has not yet been implemented but it scems that the corresponding overhead
may prove costly.

3 Clustering objects upon the inheritance graph is pertinent only in the case of DBMS having a
vertical distribution storage model (inherited attributes and member attributes are not physically stored in
the same object).

348

3 The STD Clustering Strategy

3.1 Motivations

This section addresses the main objectives of our policy. They consist in the
following points:

Clustering specifications pertinency

Considering pertinent clustering specifications is the primary point of an effective
strategy. First, we opt for clustering objects upon observations, rather than upon user
estimations. We think that schema analysis is not completely appropriate to deduce
clustering specifications. Then, we consider that different objects of a given class may
have different behaviors. So, efforts will be made to avoid clustering on classes links
basis. Finally, we want to capture any type of inter-object relationship. We are only
interested in the frequency of simultaneous accesses to objects. Our objective is to
obtain a distance between two objects on disk proportional to their attractive force,
whatever the reason for their simultaneous uses. It includes many kinds of
relationships: (i) structural links depicted in DB schema (composite links, references,
IS-A relationships), (ii) logical links which lead applications to construct data
structures incorporating objects identifiers, (iii) physical fragmentation of objects due
to the storage model of object managers (to store variable-length attributes or
inherited attributes, for example). Also, we would like to be able to solve shared
objects conflicts, thanks to the managed statistics.

Space organisation pertinency

First, clustering must be an integral part of object management fonctionalities. It
must be a constant preoccupation of the system, and its activation must not depend
on users. Second, we consider that clustering among several pages is an important
issue for efficient clustering. So, we will introduce an adapted type of storage unit.
Finally, we think that dynamicity of the solution must be closely controlled. This
means that: (i) storage costs (statistics storage costs and cluster storage costs) must
be reduced, (ii) reorganisation pertinency must be measured. Reclustering must occur
only if estimated gains exceed reorganisation costs. It must take into account the
transactional rate in order to minimise concurrency problems and user transaction
penalisation during reclustering operations. Reactions must be balanced and braked
up, when confronted to continuous statistics changes. Besides, reclustering of an
object necessitates to consider the whole set of related objects. We must avoid
bringing two objects closer, without looking at the other related objects which also
have an attractive force to respect.

Buffering policy

Introducing a buffering policy adapted to STD clustering is also one of our
preoccupation, in order to benefit of clustering among several pages. This includes
prefetching and cluster-based replacement policies. Prefetching will be closely
controlled and replacement algorithm will not be more expensive than LRU-like
policies.

Control and tuning tool

The last objective is to integrate tuning capabilities, in order to control system
reactivity and statistics pertinency, for example.

3.2 About Statistics and Dynamicity

Clustering objects upon observation of objects life means statistics management.

349

This choice supposes that if, in the recent past, objects were often used together, they
are likely-to-be-together-used in the near future. Statistics on the use of databases
allow estimations of access probabilities. Besides, a dynamic clustering scheme must
recluster scattered related pages when access costs become too high. However, if the
corresponding overhead is not justified, reclustering may actually degrade
performance. Modifying placement of a set of objects oj is justified only if
reorganisation overhead (Treorg) plus the total time of future accesses (T¢lys) to the
clustered o; is smaller than the total time of current accesses to the scattered oj (Tscat)

(81.
Treorg + Tclus < Tscat

If n is the number of future accesses (read or write) to the individual oj, we have:
Tscat = 0 * tgcat and Telyg = 0 * telys Where tgcar and telyg are elementary access
times. So, have we :

Treorg <(N*tgcat) = (N¥tejyg)
T
0> reorg
tscat ~ telus
This formula can be paraphrased as follows: the higher the overhead is, the larger the

number of future accesses; the higher the clustering benefit is, the smaller the future
access rate.

Ideally, we may manage a complete set of statistics in order to keep trace of: (i) any
simultaneous access between two objects, (ii) access frequencies of any accessed
object. Then, we could evaluate reclustering benefits. Certainly, it is not interesting
to recluster when access frequencies are too small, even if objects are strongly related.
But according to implementation considerations, it is impossible to manage the
whole set of statistics for every objects, and during the whole objects life. The way of
managing STD statistics solves this kind of problem.

3.3 The STD policy

Preliminaries

Our solution proposes to place strongly related objects as close as possible to each
other. We consider that valuated links can be determined only during objects life.
Weights of links are of course unknown at object creation time. We then propose to
have a default placement of objects, using classical DB schema clustering
specifications (priorities on structural links, as in EOS [11], for example).
Modification of this initial placement will be considered as soon as estimated weights
of links will become really significant.

The concept of inter-object link

As we said in section 3.1, we want to capture any type of inter-object relationships
(structural, logical, inheritance, version, equivalence, etc...). This includes the
relationships defined explicitly through the DB schema (aggregation, references,
inheritance), as well as those defined by programmers (for example to retrieve some
logically related objects), and those introduced by the system (for example, to retrieve
all attributes of fragmented objects). All these links are materialised in the database
by pointers using OID. So, detecting and valuating links necessitates following each
dereferencement of persistent pointers made by the system during database life. This
explains why we propose to characterise any inter-object link, leading to
simultaneous use of objects, by the following definition.

350

Definition: There is a link (0,0j) between two objects o; and 0j when oj is accessed
from oj during a transaction. Each dereferencement of a persistent pointer is
considered as a link between the initial object and the referenced object.

Statistics collecting

Statistics are collected within transactions, during an Observation Period P. During P,
each transaction Tj memorises links detected between objects. At commit time, an
asynchronous process pj is created to analyse each Tj observation results and to
compute: (i) the number of times a link has been detected during Tj between each pair
of related objects, (ii) the number of accesses to each object accessed during Tj .
Observation results computed by each process pj are stored in two transient data
structures: observations (i) are stored in an Observation Matrix called MO,
observations (ii) are stored in an Observation Vector called VO4. MO and VO arc
concurrently updated after commit time by processes pj. MO(i,j) represents the
number of times the link (0j,0j) has been detected during P, from oj to oj, by all
transactions . MO is a sparse matrix where entries are identifiers (OID) of the
referenced objects. Its size is incremented by one each time a new entry is added.
Since a maximal size n is a priori assigned to MO, the length of P varies according
to the DB access rate.
Elementary linking factors
In order to weight a link between two objects o and 0j, we propose the following
indicator computed from the statistics:

MO(G. j) | MO, 1)

VO() VO())

It constitutes an estimation of the probability p(oi/oj) of accessing oj when accessing
oj plus the probability p(oj/oi) of accessing oj when accessing 0j. Of course, this
estimation is very rough since it comes from a limited observation period. However,
wc are not at all interested in a fine estimation of this probability since the use of
objects dating from a distant period is no longer relevant of the current use. So, in the
following definition, we speak about a factor instead of an effective probability.

Definition: The elementary linking factor fejj used to weight attractive force between

objects oj and oj is deduced from observations within period P and computed, as
indicated by Figure 1.

The two thresholds Tfe and Ty are used to validate links observed during P. Tfe is
the value under which a computed linking factor is not considered as significant, since
the frequencies of accessing o; from 0j and oj from oj during P were too small. Tgy is
the value under which the number of accesses to individual objects is too small to

Justify the reclustering overhead (see section 3.2).

4 From an implementation point of vue, such structures may not be stored as matrices and vectors.
Hash tables, for example, may be used to keep and retrieve efficiently STD transient and persistent
statistics.

351

fori-->2ton, forj-->1ton-1, // Every link belonging to MO is processed
do
if MOG,j) # 0
then
if (VO(i) >= Ta) or (VO(j) >= Tfa)
// Access frequencies to objects must be high enough to

// consider the corresponding linking factor as significant
then

fe = ME(i,j):M+M
Vo) Vo))
if fejj < Tfe then fejj=0
// The linking factor is considered as not significant
// and set to null if its value is under the Tfe threshold

Fig. 1. Computing of elementary linking factors

The elementary linking factor matrix ME is constructed at the end of the period P. Tt
is sparse and triangular (fejj values are the same as feji values since they represent the
frequency of having objects oi and oj accessed simultaneously, regardless the link
orientation). It defines a graph of elementary inter-object links (Figure 2). This 1s a

non-oriented weighted graph in which nodes represent objects and arcs represent
weighted relationships among objects.

Two sub-graphs of
related objects

p
0, TR o
o, Oh
\ fey
fey5 03 e nimn
0
n-1

ME - The elementary linking The corresponding graph of
factor matrix elementary links

Fig. 2. Elementary inter-object links
Consolidated linking factors

Significance of elementary linking factors is limited to the context of a period P.
They are used to compute consolidated linking factors.

352

Definition: The consolidated linking factors feij are persistent values updated at the
end of period P, as follows:

fcij(new) = w* fcij(old) +(1-w)* feij

where w is a weighting coefficient introduced to respect the different levels of
significance (factors computed during a period P are much less significant than factors
consolidated by several periods results).

Consolidated factors are stored in the persistent consolidated linking factors matrix
MC. As ME, matrix MC is a triangular sparse matrix. Each cell MC(@,j) is a
composite structure containing: (i) the consolidated linking factor fcij for the link
(0i,0), (ii) the date udateijs, of the last updating of fcjj, (iii) a flag cflagjj indicating
if o; and 0j have already been clustered together, this flag is managed by the
reclustering procedure (see section 4.1.2 for details).

Elimination of obsolete consolidated factors
Updates of consolidated linking factors are dated in order to periodically eliminate
links that have not been detected for a long time.

fori-->2ton, forj-->1ton-I,
do
if fej;# 0
then
feijnew) = wfCij(old) + (1 - w)xfejj
udatejj=Pcurrent
if (fcjj > Tfc and cflagjj = 0)
then
nd= nd+ 1
clusdemand(nd)s(oi,()j)
endif
endif
enddo

Fig. 3. Consolidation phase

Definition: Consolidated linking factors fcij are considered as obsolete after a time Ty
following the last link (0i,0j) detection. Periodically, consolidated links are
eliminated as follows:

fcij = 0 if Peyrrent - udatejj > np (modulo p),

where Pgyrrent 1s the current period P number, np is the number of periods P included

3 The date is stored as a period number (modulo p). It is equal to the number of the last period in
which a significant link has been detected between o; and 0j.

353

in Ty, and p is the modulo value used to increment Peyrrent -

Elimination of consolidated linking factors does not imply the reclustering of oj and
0. It only means that oj and oj have not been used together for a long time. So, if
they were already clustered, they are now considered as free to be moved later closed to
other objects, if it becomes necessary.

Determination and memorisation of reclustering demands

Consolidated linking factors are considered as pertinent indicators for clustering.
Figure 3 presents how reorganisation demands are registered, in the consolidation
phase, after computation of elementary factors at the end of each period P.

Definition: The weight of a consolidated linking factor fcjj is high enough to justify
clustering of oj and oj, as soon as: fcij > Tte, where Ty is the threshold value under
which clustering benefit do not exceed reclustering overhead.

Determination of the Tf. value is essential (see section 4.2). It directly influcnces the
DB stability but also the storage space organisation pertinency.

Triggered reclustering works

At the end of a period P, nq reclustering demands are registered. These demands are
grouped in reclustering units in order to distribute reclustering on separate work-
times. As soon as the transactional rate is low enough (the I/O rate is periodically
scanned), one reclustering unit is processed at a time (details are given in section 4.1).

Buffering

The purpose of buffering is to cache likely-to-be-used objects in main memory in
order to avoid /O operation every time an object is required. Buffering schemes cover
two different issues: (i) page replacement policies, (ii) buffer allocation [10]. We are
only interested in the first point, which is closely linked to clustering policies. LRU-
like policies are usually recognised as good policies because they are simple and
efficient. However, when buffers are full, such replacement schemes evict the least-
recently-used page, without regarding if contained objects are related or not with
currently-used objects. So, some likely-to-be-used objects may be swapped on disk.

We said earlier that having grouping units larger than individual pages 1s an important
issue for clustering. We think that clustering among several pages is improved by: (i)
loading partial or entire clusters in memory, (ii) keeping all pages of likely-to-be-used
clusters in memory. So, the buffering solution included in the STD clustering
proposal consists in: (j) having the possibility of running DB applications in a
'smart’® prefetching mode; entire clusters or moving cluster-windows are prefetched in
advance, (jj) modifying LRU-like policies, in order to date cluster (or cluster-window)
uses instead of page uses, (jjj) electing for replacement the least-recently-used cluster
(or the least-recently-used cluster-window) instead of the least-recently-used page. This
buffering scheme may be named LRUc (Least-Recently-used cluster).

The 'smart’ STD prefetching policy is based on the moving cluster-window concept
presented in the following definition and described in Figure 4.

6 ‘smart’ means that depth of prefetching is closely controlled. Aggressive prefetching policies may
not be truly effective since they may prefetch objects not actually needed.

354

Definition: A moving cluster-window is a limited view of the physical stored cluster
(composed of s pages), that may be the unit of prefetching. It is a sub-graph of the
object graph stored in the cluster, centered to the initial required object. Instead of
loading the individual page containing the accessed object o, the most strongly
related objects, stored around oj in the cluster, will be prefetched.

wl

w1: prefetched window
if accessing object x

!

Physical STD cluster
composed of 8 pages w2: prefetched window

if accessing object y

[=
b=

-
s = 3 pages

Fig. 4. The concept of moving cluster-window.

4 Algorithmic Details

4.1 Reclustering Technique

We have seen how our statistic-based model allows detection of strong inter-object
links, weighted by their access frequencies. Definition and computation of linking
factors allows determination of sub-graphs Gk containing strongly related objects.

Definition: Clusters are variable-length chunks of storage space, containing strongly
related objects oj. Each cluster is a set of contiguous disk pages, large enough to
receive the related oj and having a unique identifier (clusterID). The system knows at
any time the cluster to which any object o; belongs.

Qbjective: To have each sub-graph Gy, stored within a cluster. Inside each cluster, the

distance on disk between two objects will be proportional to the importance of the
corresponding linking factor.

Construction of Reclustering Units

Among the ng reclustering demands registered at the end of period P (each
concerning two objects o; and 0j to cluster), several records may be related to one
another, by having one of objects oj or 0j in common. Related records must be
processed at the same time, since all of the concerned objects will be stored in the
same cluster.
Definition: A reclustering unit Uy is a sub-graph of related objects, for which
reclustering demand(s) have been recorded and which have to be stored in a same
cluster. The set of reclustering units is constructed from the reclustering file after the
consolidation phase. All objects of a reclustering unit will be processed at a same
time. Figure 5 gives an example of the construction of reclustering units.

Reclustering
demands

(Oi » oj)

(01,02)
(03, 04)
(0,,0;)
(07, 09)
(07’ 010)

Fig. 5.

355

Unit 1

Unit 2

Construction of reclustering units.

Reclustering Procedure

A reclustering unit Uk is a graph of related objects (minimum two objects),
corresponding to new significant attractive forces. Processing a given unit consists in
the following phases:

(i) Determining in the MC matrix all objects connected to graph Uk, in order to
determine the new graph Gk of consolidated links corresponding to the current
reclustering unit.

(ii) Creating the object clustering sequence corresponding to graph G, by means of
the algorithm presented in section 4.1.3.

(iii) Distributing the obtained object sequence among one or several pages.

(iv) Storing the object sequence into a new cluster (another allocated disk space
composed of contiguous pages).

(v) Freeing places occupied previously by moved objects.

(vi) Memorising the new belonging cluster for each reclustered object and updating in
the MC matrix flags indicating whether two objects belong to the same cluster or
not.

Figure 6 presents an example of such processing, considering: (a) database space
organisation before clustering, (b) the current value of consolidated factors in MC, (¢)
the T threshold value, and (d) the unit to process: Unit 2 of Figure 5. (¢) and (f)
presents how this unit is processed through phases (i) to (v).

cluster K1 cluster K2
9 05 07 01501593 T =5
0 fe
™ +° AN /8800 3
.ee / 5 cos %0 9 000 6 0 7 (c) Tfe value
%3 % % 10040 409 ——
%\Vo0o000 20 P
page pl page p2 page pl10
(a) Database before reclustering (b) Extract of MC (d) Unit 2
" 6 cluster K3
0 o) 0
! | 10 % T e
8 ° |7 ’\@e’ eee &&e‘ see o ,
K
05 03 g [¢) 5/
page pl page p2 page pl0 page plS page pl6

(e) U2 extended to graph G2,
considering MC - Phase (i) (f) Database after reclustering - Phase (ii) to (v}

Fig. 6. Processing of a reclustering unit

356

We can see on the example processed in Figure 6 that if links become obsolete (set to
null, as the link (06, 07)) or no longer pertinent (under the Tf; value, as the link
(05,07)), they are not considered in the new cluster construction. Then, some objects
(06 and 07 in Figure 6) may remain in the same page, but no longer belong to any
cluster.

Determination of the Stored Object Sequence

The algorithm used to order the object sequence is inspired by the Kruskal
algorithm (construction of a minimum-cost spanning tree from a general graph) and
by the solution proposed in [8] to suggest a multi-level strategy able to order at the
same time different types of relationships between objects. Of course, we do not adapt
this algorithm for the same purpose, since we are not interested in distinguishing the
different types of links. Besides, we are not interested in directed links as in [8].
Contrary to the Kruskal algorithm, our proposed scheme must of course consider
maximum-costs in order to obtain distance on disk between two related objects
proportional to their attractive force. The idea of super-node introduced in [8] is kept
but has been slightly modified.

Definition: A super-node in an object graph is a set of related objects, constructed
progressively, by grouping objects related by the most relevant arc, relatively to the
following rules.

Rule R1: The list of objects in a super-node S (for example S= {02, 05, 04, 09}), can
only be considered in the direct order (02, 05, 04, 09) or in the reversc order (og, 04,
05, 02), so that the distance between objects remains continuously unchanged.

while graph Gk is not reduced to a single super-node
do

Identify the most relevant weight W among every weighted arcs
Construct list L containing arcs weighted by W
for each arc aj belonging to L

do

Group and arrange in a same super-node nodes related by arc a;
enddo
for each super-node S connected to the same node by several arcs
do
Determine and keep only the most weighted arc.
enddo
enddo

The clustering sequence is given by the final super-node.

Fig. 7. Ordering the related objects.

Rule R2: When two super-nodes S1, S2 are grouped in a super-node S, we must
identify, in the initial graph, which arc (0j,0j) is responsible for the grouping. Then,

3567

in order to minimise the distance between o; and 0j (in the super-node S and finally
on disk), we may have: (i) S constructed either with {S1, S2} or with {S2, S1}, (ii)
objects inside S1 and S2 maintained in the same order or reversed.

Rule 3: When constructing a super-node S, any arc (weighted to w) existing
previously between an object of S and another node (simple-node or super-node) Nj,
becomes an arc between S and Nj (weighted to w).

Figure 7 presents our proposed ordering scheme. An example is processed in Figure
8.

For each object o in the obtained clustering sequence, the distance on disk between o;

and each of its related object is proportional to the weight of the corresponding link.
The clustering sequence obtained in the example processed in Figure 8 is: {05, 01,

04, 03, 07, 08, 010, 02, 018}.

N /‘\ .
AN N N

Initial graph 4 Iteration 1
3/0' ! 3 ||,

\ / 0,0,0,0,0.0,000.
04

OIX

Iteration 2 O3 Iteration 3 Iteration 4

Fig. 8. Example of an obtained clustering sequence.

The problem resulting from shared objects in other clustering strategies is solved here
in a deterministic way, since we choose systematically the most weighted link.

4.2 Tuning Capabilities

A set of tuning parameters, described in Figure 9, has been introduced in order to
control mainly system reactivity and statistics pertinency. Until now, their
determination is under the DB administrator responsibility but we are currently
processing extensive experiments in order to fix some of the proposed parameters to
optimal values or range of values. In particular, determination of the thresholds value
1s essential since they directly influence the DB stability as well as the storage space
organisation pertinency.

Activation/deactivation options (Figure 10) are proposed to take into consideration
particular behaviors of specific databases or transactions. For example, for a special
transaction used one time in a year and using intensively the database in a specific
way, programmers may choose intentionally not to update STD statistics. Besides,
for particular databases inside which objects life are very short, the DB administrator
may choose intentionally to keep initial default placement of objects (NoRecluster
and NoStatDB options).

358

n Maximum entries in the Observation Matrix MO during a period P.
np Number of observation periods after which a consolidated factor fcij is
obsolete if the link (0i,0j) has not been detected.
p The number of the current observation period is computed modulo p.
Tga Threshold value (in number of object accesses during a period P) under
which the number of accesses to individual objects is too small to be
considered in elementary linking factors computation
Tge Threshold value under which elementary linking factors are not considered
to update consolidated factors.
Tge Threshold value under which a consolidated linking factor is not considered
as significant (toactivate reclustering or to be considered in new cluster
construction). Reclustering under this value, would be globally negative.
w Weighting coefficient introduced to minimise significance of elementary
observations relative to consolidated observations.
s Size of the current moving cluster-window
(number of pages prefetched in case of accessing a clustered object).

Fig. 9. Tuning parameters.

For each database:
- Prefetching NoPrefetchDB/ PrefetchClusterDB / PrefetchWindowDB
- Dynamicity ~ NoRecluster / Recluster
- Statistics NoStatDB / StatDB

For each transaction:

- Prefetching NoPrefetch / PrefetchCluster / PrefetchWindow
- Statistics NoStat / Stat

Fig. 10. STD options.

5 Tests with Texas
5.1 Main Characteristics of Texas

Texas is a persistent storage system for C++, designed and developed at the
University of Texas, Austin [18]. Our choice of Texas for testing STD technique
comes essentially from the fact that the source is free available and can be easily
modified. Texas runs under Unix and is a virtual memory mapped system. The source
is coded in C++ and the data formats in memory are those of C++. Persistent objects
are stored on disk pages in the same format as they are in memory. Texas uses
physical OID coded on four octets. When a disk page is loaded in memory, all the
disk adresses toward referenced objects must be converted to memory adresses. The
conversion, usually called swizzling, is made in Texas by reserving a memory page
for each referenced disk page. But a referenced disk page is effectively loaded in
memory only the first time it is needed (when a fault page is detected).

359

During an execution, a database is represented by an object called Pstore. This
object is used to memorize the main information concerning the management of the
database and more particularly: (i) a pointer to the zone containing the root objects
(each root object can be accessed through a name), (ii) a pointer to the zone of
available pages, (iii) a pointer to the swizzling table containing the links beetween
each disk page and its corresponding memory page.

5.2 Implementation of the STD Technique Through Texas

The implementation has necessitated a complete comprehension of the internal
working of the system and of the code organization. It has been made thanks to many
sollicitations of the authors via e-mail. It is not possible to describe here in details
the modifications and the adjunctions made on the source. We only give the main
principles. Implementation is achieved by tying data structures as attributed of the
Pstore object and algorithms as methods.

The new attributes added to Pstore are the following:

- observation for the implementation of the observation matrices

- consolidation for the implementation of the consolidation matrice
- clustering for the implementation of the clustering

- objectlist for the implementation of the temporary access sequence (o objects
during a transaction.

The construction of a cluster unit is made according to the following stages:

1) Each OID of the unit is used to load the referenced page and to capture the size of
the corresponding object database.

ii) The cluster is created at the end of the file. The objects of the unit are copied in
the order of the cluster sequence. The size of each object is used to control that the
current page is not full. Otherwise a new page is allocated to the cluster. A list, called
movedobjectlist, is used to store the old and the new OID for each object.

1i1) To upade pointers to moved objects, each page is loaded in memory. Each time
an adress contains an old OID in the movedobjectlist, it is replaced by the new one.
The replacement is made by the swizzling module of Texas which has been modified
to take into account the movedobjectlist.

5.3 The Benchmark

We have adapted the well known OOI Catell benchmark [4] to test STD
technique. It is based on (i) a database schema containing two types of objects (ii)
recommandations to generate an instance of a database and (iii) sevcral typical
manipulations.

The database schema is given on figure 11. The size of the two attributes X,Y of
the type Part can be modified if necessary to vary the tests. Each Part object is
connected to three other Part objects. Connections are represented through the type
Connection : there exists one Connection object for each pair of connected Part
objects.

360

PART CONNECTION
- connect-to
X: int Type: string
Y: int
Type:
string connect-from

Fig. 11. The database schema for the benchmark

An instance of a database is generated with a number of Part objects equal to
partnb. 90% of the connections are randomly established by respecting a principle of
locality. More precisely a Part object is randomly connected with three Part objects
having indices in the interval max(i-refzone*partnb) and min(i+refzone*partnb) where
refzone is a ratio fixing the amplitude of the locality (max and min are used to
impose the interval to be included in [1, partnb]). The other 10% of the connections
are established with any object in the database.

Among the different manipulations suggested by the benchmark, we will use only
the traversal. It consists in exploring the different objects which can be reached
through the connections from a root object generated with the database. Since cycles
are always possible, the traversal is not a finite procedure and must be stopped at a
predetermined level from the root. The number of visited objects is a simple function
of the level. A traversal with 4 levels reads 160 objects. A same object can be found
many times during the traversal. This situation does not induce any problem for STD
technique which consists in following the effective use of objects.

5.4 Tests and Results

STD technique has been designed to take into account different applications on the
database and it is important to simulate the concept of application. In our tests an
application is charaterized by

-a traversal (i.e. a root and a level)
-the number of times trnb the traversal is made.

Different roots have been generated with the database to simulate three different
applications numbered 1 to 3. The efficiency of STD is measured by the number of
page faults, before the clustering and after the clustering.

We now give the most significant results we have obtained.

The first experiment (figure 12) concerns the influence of the refzone parameter
with a unique application. The clustering power of STD is very effective even for
narrow localities (for his benchmark, Cattel considers that a value of 0.01 for refzone
is realistic).

refzone before after ratio

partnb 5000
0.001 17 4 4.2
Tfa 1 0.01 38 5 7.6
0.05 55 5 11.0
Tfc 1 0.1 57 5 11.4
0.2 66 5 14.2

Fig. 12. Number of page faults before and after reclustering
depending on refzone

361

The second experiment (figure 13) has the objective to situate the influence of the
Tfa parameter with three different applications. The average ratio has been obtained by
weighting the individual ratios with the weight of each application. The efficiency of
STD is maximal for Tfa=4. For Tfa=4, application 3 has no longer any influence on
the clustering. For Tf,=8, only application 1 influences the clustering. When Tfa=16,
a unique cluster of seven objects is constructed (this cluster results from cycles in the
connections between Part objects). This run ensures that Tg, has really the expected
effect. These different threshold values for Tfy depend directly on the values of trnb
(traversal number) for the three applications. trnb represents approximately the
average number of object uses for an application.

application before after

trnb level Tta=1 fa= =8 | Tfa=12] Tfa=14
partnb | s000 | L* Tia=4) Tta-8

1 15 4 38 7 6 5 5 38
refzone | 0-01 2 5 4 29 7 6 30 30 30

3 2 4 40 7 36 40 40 41
Tfc 1

average 5.0 4.1 2.6 2.6 1.0

ratio

Fig. 13. Number of page faults before and after reclustering
depending on Tgy

For this experiment, the three applications share the use of many objects. Other
experiments have shown that the number of shared objects have little influence on the
results. We can say that STD technique clusters the objects in thc best way,
independantly the existence of shared objects.

The third experiment (figure 14) situates the influence of the Tf; parameter in
similar conditions. The efficiency of clustering is maximal for Tfc=1 and diminishes
slightly when Ty varies from 1 to 50. The diminution becomes very important when
Tg¢ reaches number 50. When Ty is greater than 50 we observe a degradation due to

the fact that only a few objects are clustered in supplementary pages at the end of the
file. The database remains strictly unchanged when Tf:=100.

application before after
trnb level Tic=1 - — _
partnb 5000 # Ttc=30 | Tfc=35 | Tfc=51
1 15 4 38 7 8 9 40
refzone | 0.01 2 5 4 29 7 7 7 31
3 2 4 40 7 7 9 43
Tfa 1
average 50 | 47 42 0.9
ratio

Fig. 14. Number of page faults before and after reclustering

depending on Tg¢

362

The last experiment reported here (figure 15), concerns some measures about the
execution time (i) for the traversal before and after the clustering, (i1) for the
consolidation phase and (iii) for the clustering. The conditions are those of figure 13.
The before traversal includes the observation time which is very small (a fraction of a
second) compared with the traversal time. First we can observe that the ratio between
the traversal times before and after has not exactly the same value as the ratio between
the number of page faults before and after. This comes from the fact that 1/0
operations resulting from a page fault have variable execution time. When Tgy
increases, the execution times for the consolidation phase and for the clustering
decrease since the collecting activity diminishes and the number of clustered object
becomes lower.

Execution time
in seconds Tfa=1 Tfa=4 | Tfa=8 | Tfa=16|
partnb 5000
Before traversai 10 9 9 9
refzone 0.01 After traversal 3 4 5 8
Consolidation phase 4 3 2 1
Tfc 1 Cluster construction 13 10 9 6
Number of objects
in clusters 364 274 176 65

Fig. 15. Some execution times for different values of Tg,

(runs on SUN SPARC/ELC under SUN OS V4.3.1)

The conclusion that we can draw from these results can be reasonably optimistic.
First, it appears that Tfa and Tt control effectively the strategy and are not difficult
to adjust. Second, the balance between the gain and the overhead of STD technique
when Tf3=1 and Tfc=1 can be established as follows. Including the consolidation
time, there remains an excess of 10-(3+4)=3 seconds between the time before and
after. Thus, after only five runs of the three applications, the total excess overcomes
the clustering time and the reclustering technique becomes globally beneficial. In fact,
the consolidation time is relatively smaller than the value taken here since it must be
considered on a total period. So, for this benchmark, the balance is really much more
favorable. Hovewer, this benchmark does not integrate all the aspects of the STD
technique and this preliminary conclusion must be confirmed by more extensive tests.

6. Conclusion

The STD strategy described in this paper is an attempt to incorporate in a unique
framework several proposals able to improve performance in object database systems.
The main idea is to take advantage of effective use of inter-object relationships to
manage clustering of objects on disk and cluster-based buffering. We first have
investigated problems associated with most existing clustering schemes in order to
Justify our precise motivations. Several points are rather innovating in the STD
clustering proposal: (1) Clustering specifications are not made at a class level, so that
distinct objects of a same class may be clustered in a different way. (ii) Clustering is

363

made upon observation of effective use of links between objects rather than on a
priori user hints or DB schema analysis. (iii) Considering that any relationship,
leading to simultaneous use of objects, is expressed in databases by physical pointer
traversals, the STD concept of link allows detection of any type of relationships
(structural relationships defined in the schema, but also implicit links installed by
programmers or by the DBMS itself). Clustering sequences take into consideration
the different types of link, but do not have to distinguish them. Distance between
related objects on disk only respects attractive force between objects. (iv) Automatic
dynamic reclustering, free of user activations, is proposed. It deals implicitly with
modifications of programs code and with database schema evolution. (v) Even if the
solution is based on statistics management, efforts have been made to reduce storage
costs, to filter and keep only pertinent information, and to brake-up reorganisations
when confronted to continuous statistics changes. A strict control of reclustering
avoids continuous reorganisations and excessive overhead. (vi) STD clustering
scheme allows a deterministic solution to the problem of shared objects. (vii)
Another idea is to accept large clusters among several contiguous disk pages. This
permits to minimise disk head moves when large sets of related objects are accessed.
Besides, the buffering policy has been adapted to take advantage of such clusters. In
particular, we proposed a 'smart’ prefetching policy and suggested to replace LRU
policies by cluster-based replacement policies. Our approach remains efficient thanks
to the idea of moving cluster-window centered on the page of the accessed object.
(viii) The clustering mechanism does not require any user or administrator hints but
remains user-controlled, with the presence of tuning parameters and
activation/deactivation options.

A partial implementation of the STD technique has been made using Texas. It
permits to cxperiment the clustering efficiency with a benchmark adapted from QO1.
It appears that in nominal conditions, the number of fault pages is divided by five
after reclustering. Overhead of STD technique is balanced by gain in access time only
after five uses of the application.

This strategy may be convenient for any OODBMS, but requires some attention for
its implementation. It is necessary to add an observation module inside the object
manager in order to follow the dereferencements of persistent pointers. Besides, it
implies management of different data structures (matrices, graphs) to storc
observations and determine the clusters. Many solutions do exist. Adaptations can be
made to minimise occupied memory space and processing overhead. Besides,
implementing dynamic reclustering in systems having physical object identifiers
requires specific solutions. Problems encountered are the same as those encountered
with DB schema evolution. Physical OID implies specific techniques to maintain DB
integrity when moving objects (forwarding pointers, as in Op, for example).
Moreover, the STD clustering scheme implies specific solutions for storage space
management. In particular, technical solutions must be developed inside DBMS
running on Unix systems, to be able to allocate contiguous disk pages. The object
manager must also be able to manage and reuse free disk space and to store instances
of different classes in a same disk page.

We think that the STD proposal relies on pertinent motivations, considering the
limited solutions available today in existing systems and the lack of advanced
implemented proposals. However, if this approach constitutes an issue to enhance the
performance of object systems, we know that its great tuning capabilities have to be
reduced to a minimum set of relevant parameters. Experiments on Texas permit us to

364

evaluate the behavior of Tfy and Tfe. They confirm our intuitive expectations. We
think that these parameters must be fixed at values depending on the use of the
database. For example, a good compromise is to fix Tfy at the value of the average
number of object uses. We lead actually other experiments to validate the dynamical
aspect of STD and to determine plausible value for Tfe.

Bibliography

1. V. Benzaken, C. Delobel, "Enhancing performance in a persistent object store:
clustering strategies in 02", 4th International Workshop on Persistent Object
Systems, September 1990, pp. 403-412.

2. V. Benzaken, "An evaluation model for clustering strategies in the O3 Object-

Oriented Database System”, Third International Conference on Database Theory,
December 1990, pp. 126-140.

3. F. Bullat, "Regroupement physique d'objets dans les bases de données", to appear
in the 1.S.I. Journal, 'Ingénierie des Systemes d'Information’, Vol. 2, no. 4,
September 1995.

4. R.G.G. Catell, "An Engineering Database Benchmark", in "The Benchmark
Handbook for Database and Transaction Processing Systems"”, Morgan Kaufman
Publishers, 1991, pp. 247-281.

5. E.E. Chang, "Effective Clustering and Buffering in an Object-Oriented DBMS",
Ph.D. Dissertation in Computer Science, Report no. UCB/CSD 89/515, University
of California, Berkely, June 1989.

6. E.E. Chang, R.H. Katz, "Exploiting Inheritance and Structure Semantics for
Effective Clustering and Buffering in an Object-Oriented DBMS", ACM SIGMOD
Conference, New York, 1989, pp. 348-357.

7. E.E. Chang, R.H. Katz, "Inheritance in Computer-Aided Design Databases:
Semantics and Implementation Issues”, CAD, Vol. 22, no. 8, October 1990, pp.
489-499.

8. J.B. Cheng, A.R. Hurson, "Effective Clustering of Complex Objects in Object-
Oriented Databases", ACM SIGMOD Conference, New York, 1991, pp. 22-31.

9.1.B. Cheng, A.R. Hurson, "On the Performance Issues of Object-Based Buffering",
ACM SIGMOD Conference, New York, 1991, pp. 22-31.

10. W. Effelsberg, T. Haerder, “Principles of Database Buffer Management', ACM
Transactions on Database Systems, Vol. 9, no. 4, December 1984, pp. 560-595.

11. O. Gruber, L.Amsaleg, "Object grouping in EOS", Workshop on Distributed
Object Management, University of Alberta, August 1992, pp. 117-131.

12. M. Hornick, S. Zdonick, "A shared Segmented Memory System for an Object-
Oriented Database"”, ACM Transactions on Office Information Systems, Vol. 5, no.
1, January 1987, pp. 70-95.

13. S.E. Hudson, R. King, "Cactis: A Self-Adaptive, Concurrent Implementation of
an Object-Oriented Database Management System”, ACM Transactions on Database
Systems, Vol. 14, no. 3, September 1989, pp. 291-321.

365

14. W. Kim, J. Banerjee, H-T. Chou, J. F. Garza and D. Woelk, "Composite Object
Support in an Object-Oriented Database System”, International Conference on
OOPSLA, Orlando (Florida), October 4-8 1987, In proceedings of ACM SIGMOD
Conference, 1987, pp. 118-125.

15. C. Lamb, G. Landis, J. Orenstein and D. Weinreb "The ObjectStore Database
System", Communications of the ACM, Vol. 34, no. 10, October 1991, pp. 50-63.
16. ONTOLOGIC Cie, "ONTOS Client Library Reference Manual”, December 1990.
17. Servio Corporation, "GemStone V. 3.2 Reference Manual”, 1992.

18. V. Singhal, S.V. Kakkad, P.R. Wilson, "Texas: An Efficient, Portable Persistent

Store”, 5th International Workshop on Persistent Object Systems, San Miniato,
Italy, September 1992.

19. I.LW. Stamos, "Static Grouping of small objects to Enhance Performance of a
Paged Virtual Memory", ACM Transactions on Computer Systems,Vol. 2, no. 2,
May 1984, pp. 155-180.

20. E.M. Tsangaris, J.F. Naughton,”A Stochastic Approach for Clustering in Object
Bases", ACM SIGMOD Conference, Denver, May 1991, pp. 12-21.

21. E.M. Tsangaris, "Principles of Static Clustering for Object-oriented Databases”,
Technical Report no. 1104, University of Wisconsin-Madison, August 1992.

Acknowledgements: The authors wish to express their deep gratitude to S. V.
KAKKAD (OOPS Research Group of Computer Science Deparment, University of
Texas) for its collaboration through e-mail about Texas.

