Conceptual Design of Active Object-Oriented Database
Applications Using Multi-level Diagrams

Mauricio J. V. Silva * C. Robert Carlson

Department of Computer Science
Illinois Institute of Technology
10 West 31st Street, Chicago, IL. 60616
email: silvimau@charlie.acc.1it.edu, cscarlson@minna.iit.edu

Abstract

Several active object-oriented database systems have been developed to address the needs of
applications with complex requirements and time execution constraints (e.g. computer
integrated manufacturing). However, no comprehensive and integrated modeling approach has
been described for conceptually modeling active object-oriented database applications.

This paper deals with these issues by extending the research of object-oriented methods
with an integrated approach, called A/OODBMT (Active Object-Oriented Database Modeling
Technique), which integrates and extends the Object Modeling Technique (OMT) method for
conceptually designing active object-oriented database applications.

A/OODBMT models database applications by defining and integrating four new types of
models, namely the nested object model (NOM), the behavior model (BM), the nested rule
model (NRM), and the nested event model (NEM). The nested object model extends the OMT
object model by adding nesting capabilities, and by providing a better abstraction mechanism
for developing database applications in multi-level diagrams. Moreover, the nested object
model adds rules to classes to specify their active behavior. The behavior model combines the
dynamic and the functional modeling techniques proposed in the OMT method. In addition,
the behavioral model represents database transactions through transaction diagrams. The
nested rule model supports a comprehensive set of rules and visually defines the rules and
their interactions using multi-level diagrams. The nested event model supports a comprehen-
sive set of events and visually represents them in the context of rules.

1 Introduction

One of the major problems with the development of new and emerging database ap-
plications (e.g. computer integrated manufacturing) is that rules describing the policy
of an organization are hard coded and dispersed all over different programs. This
approach leads to applications that are harder to validate and difficult to maintain
[Tsal91, Rasm95]. Moreover, as part of their semantics these applications need to be

* Supported by the Brazilian Government Agency - CAPES

367

active, i.e, continually monitoring changes to the database state and reacting by exe-
cuting an appropriate action without user or application intervention{Chak93].

Active Object-Oriented Database Systems (AOODBSs) [Daya88, Geha9l,
Buch92, Gatz92, Anwa93, Kapp94] try to solve these problems by providing event
driven behavior necessary for implementing time critical reactions, and by integrat-
ing rules with the database. A rule is composed of three components: an event, a
condition and an action. The rule monitors the database, which only executes the ac-
tion of the rule when the event occurs and the condition is evaluated to "true"
[Carl83, Daya88]. Rules are used to declaratively specify all the control aspects of an
application and are easy to manage because of their explicit specification.

While there has been considerable research and development of AOODBs
[Kapp95, Buch95], little attention has been paid to defining an integrated modeling
technique for conceptually modeling AOODBSs applications.

Object-Oriented methods and modeling techniques [Mona92, Hutt94] can be use-
ful for modeling the object-oriented schema of an active object-oriented database ap-
plication. However, missing from these approaches is an integration of their models
with rules and the capability to model database related features such as database
transactions.

This paper adds to the research on object-oriented methods by developing an in-
tegrated approach, called A/OODBMT (Active Object-Oriented Database Modeling
Technique), which integrates and extends the Object Modeling Technique (OMT)
method [Rumb91] for conceptually designing active object-oriented database appli-
cations.

We chose to integrate and extend the OMT method because it is one of the most
popular methods for analysis and design of object-oriented software development,
and was developed specifically for modeling and reasoning about complex applica-
tions [Rumb91, Thur94]. Moreover, because OMT uses object-oriented models, it is
capable of modeling the real world of interest more naturally than other models
which do not consider the behavior of the application[Rumb91, Mart95].

A/OODBMT models database applications by defining and integrating four new
types of models, namely the nested object model (NOM), the behavior model (BM),
the nested rule model (NRM), and the nested event model (NEM). The nested object
model extends the object model originally proposed in [Rumb91] by adding nesting
capabilities proposed in [Carl89], and by providing a better abstraction mechanism
for developing database applications in multi-level diagrams. Morcover, the nested
object model adds rules to classes to specify their active behavior. The behavior
model combines the dynamic model and the functional model originally proposed in
[Rumb91]. In addition, the behavioral model represents database transactions
through transaction diagrams. The nested rule model supports a comprehensive set
of rules, and visually define rules and their interactions in multi-level diagrams. The
nested event model supports a comprehensive set of events, and visually represents
them using multi-level diagrams.

In A/OODBMT, each model describes one aspect of the system but contains ref-
erences to the other models(see Figure 1). The nested object model contains descrip-
tions of the classes and objects in the system that the behavioral model operates on.

368

The operations in the nested object model are described in the behavior model. The
behavior model also uses operation events defined in the nested event model to de-
scribe the control aspects of the objects. Rules referenced in the nested object model
are defined in nested rule model, and are executed in the context of the database
transactions defined in the behavioral model. Rules specified in the nested rule
model are triggered by events defined in nested event model.

A/OODBMT
Model
Nested Object Behavioral Nested Rule Nested Event
Model Model Model Model
| wes || [_cgovems [[| [coriggem |
context of >
uses—>
useg—>

Fig. 1. Relationships among A/OODBMT Models

The remainder of this paper is organized as follows. Section 2 describes previous
research and compares it to this approach. Section 3 describes the steps followed dur-
ing conceptual design of active database applications using A/OODBMT models, and
illustrates the application of these steps by modeling a library database system.
Finally, Section 4 concludes the paper.

2 Related Work

The purpose of this section is to compare existing approaches to our approach. We
analyze these approaches in the context of five modeling issues involved in the de-
velopment of active object-oriented database applications. These include modeling
objects, modeling passive object behavior (operations), modeling transactions, mod-
eling rules (active behavior), and modeling events.

Current object-oriented methods have been used to model the objects of a system.
However, their representation of objects employs "flat-diagrams”, which can lead to
very complicated diagrams if the objects have many associations [Carl89]. The
Nested Object Model in A/OODBMT has been defined to deal with this problem. It
provides a multi-level representation approach to the definition of the objects in a
system, including their attributes, methods and rules.

In the object-oriented paradigm, the functionality of a system is achieved by the
interaction and execution of object methods. Most object-oriented methods have used
state diagrams to model object operations[Shal92, Jaco92, Rumb91]. In particular,
[Rumb91] has used Harel state diagrams [Hare88], since it models the operations in
multi-level diagrams. Moreover, [Rumb91] has used data-flow diagrams to model the

369

functionality of the whole database application. From the data-flow diagram, object
operations are extracted. Like [Rumb91], we use Harel state diagrams with data-flow
diagrams. The difference is that instead of representing the data flow diagram for the
whole system, we create a data-flow diagram for each operation and its activities.

The interaction of the objects in a system defines a transaction. Moreover, the ac-
tive behavior of the systems (i.e. rules) is only executed within the context of a trans-
action. Although current object oriented methods (e.g. [Rumb91, Jaco92, Booc94,
Cole94]) model the interaction of objects in a system, they do not model database
transactions. Missing from their representation are the database commands(e.g.
transaction begin, abort, commit) used to define transactions and subtransactions.
Our approach is to extend the modeling of object interactions with database transac-
tion commands.

Existing visual approaches to rule specification include [Bich94, Mart95,
Tsal91, Shen92, Grah94, Pras94]. All of these approaches support event /condition
/action (ECA) rules. [Shen92], [Grah94], [Pras94], and [Mart95] specify production
rules, pre/ post condition of operations. However, only a few approaches (e.g.,
[Tsal91, Pras94]), support exception, and contingency rules. Only [Grah94]
provides support for grouping rules, by allowing a rule to be defined as the
disjunction of simple rules. But, none of the approaches support the grouping of ex-
clusive rules representing one abstract rule. None of the approaches define the se-
mantics for rule overriding. Only petri-net like approaches [Tsal91, Pras94] show
the interconnection of rules in "flat diagrams", which can lead to highly connected
diagrams that are almost impossible to comprehend. Our approach is to integrate
previous approaches and extend them by visually representing a comprehensive set of
rules and their interactions including composite rules in a multi-level model, called
the nested rule model. We also provide the semantics for overriding rules and sup-
port a wealth of coupling modes for rule execution [Bran93].

The modeling of events is crucial to active object-oriented database systems, since
they determine when rules will be evaluated. Existing active object-oriented data-
base systems model events textually, which is not an appropriate level for designing
applications. Moreover, existing visual approaches (e.g. [Mart95, Bich94, Gatz94])
do not support a comprehensive set of both simple and composite events. Further,
existing approaches do not represent events at multiple levels of abstraction using
multi-level diagramming techniques. Our approach deals with these problems by
supporting a comprehensive set of events and by providing a high-level graphical
representation of events in multi-level diagrams.

3 Active Database Conceptual Design using A/OODBMT Models

In this section, we give the steps followed during conceptual design for the modeling
of an active database application. We illustrate the application of these steps by
modeling a library database system. The requirements of the library database system
are described in Figure 2. From these requirements, we build the A/OODBMT mod-
els and show their integration. Only the essential points of the A/OODBMT models

370

will be discussed in the forthcoming subsections. The detailed description of the ap-
plication of A/OODBMT can be found in [Silv95a].

The steps defined for conceptual database design in A/OODBMT are:
(i) Design the static structure of object/classes using the nested object model.

(1) Design the passive behavior (methods) of object/classes and the database
transactions using the behavior model.

(iii) Design the active behavior (rules) of object/classes using the nested rule model.
(iv) Design the events that appear in rules using the nested event model.

Note that, although we describe the steps above in a sequential order, the actual
process of modeling an application is iterative. For instance, after building the be-
havioral model and identifying the operations of a class, we may have to go back and
add them to the nested object model. Further, rules identified in the nested rule
model for a specific object/class, have their name added to the rule part of the corre-
sponding object/class in the nested object model.

In the following subsections we describe the nested object model, the behavioral
model, the nested rule model, and the nested event model in turn.

3.1 Nested Object Modeling

The nested object model (NOM) is used to represent the static aspects of applications
and is based on the object model [Rumb91] enhanced with nesting capabilities
[Carl89] and rules. The major concepts found in NOM include class, object, relation-
ships, attributes, operations, rules, and complex objects. A detailed description of
NOM can be found in [Silv95a].

NOM enhances the object model by allowing objects/classes and associations to
be abstracted as either simple or complex. Complex classes and associations can be
expanded into sub-diagrams, where a more detailed specification is provided. This
allows one to describe the static aspects of the application in multi-level diagrams,
which facilitate the comprehension of the model. Without nesting the diagrams, very
large object models resemble circuit diagrams rather than comprehensible structures
[Carl89]. Further, NOM adds rules to the definition of a class and its instances
(objects) to specify their declarative behavior. Only the names of the rules are placed
inside an object/class as the actual definition of the rule is shown in the nested rule
model.

The nested object model is built in several steps described below. We illustrate
each step by applying it to the library database system example. The complete nested
object model of the library database example is described in Figure 3. Note that in

371

Figure 3, we have also included the method and the rule part of the classes which
will be discussed later in this article.

(1) The library system is composed of books and members.

(2) The library is opened from 10 a.m. - 10 p.m. (Mondays to Fridays) and from 10 a.m. - 6p.m. in the

weekends.

(3) A member is a person and is characterized by a name, a ss# and an address. There are two types of
members: students, and faculty.

(4) Abook is characterized by a title, an author, a date of publishing and a publisher.

(5) A person may check out books only if he/she is a member of the library, otherwise an invalid
checkout request message is sent to the person. Only available books can be checked out.

(6) All members may check out books for 2 weeks.
(7) When a person checks out a book, he/she must provide the title of the book and his/her ss#.
(8) When a book is checked out, a due date for returning the book is set.

(9) Books are expected to be returned by the due date. If the book is returned after the due date, it is

considered to be overdue.

(10) When a person returns a book , if it is overdue a fine of 10 cents per day is charged to the member
for each book not returned on time. A faculty member will receive only wamings for the first 5
overdue books. Afier that, the faculty member will start paying fines for overdue books.

(11)A notice is mailed to a member if he/she has a book that has been overdue for seven consecutive
days .

Fig. 2. Library Database System Example
(i) Identifying the Classes and Attributes in the System

A class is a description of a group of related objects with similar behavior, semantics,
and relationships [Rumb91]. In NOM, a class is composed of three parts: attributes,
operations, and rules. It is depicted as a four part box, with the name of the class on
the top part, a list of attributes with optional types on the second part, a list of opera-
tions with optional arguments and return value types on the third part, and a list of
rule names on the fourth part. The attribute, operation, and rule sections of the class
box can be omitted to reduce the detail of a visual specification.

From the library database requirements, we identify six major classes: Person,
Member, Student Member, Faculty Member, Library, and Book. From line (3) we

372

define a class Person with attributes name, ss# and address. From (10), we define a
class Member with an attribute fine. From line (4) and (9) we define a class Book
with attributes title, author, type, date of publishing, publisher, duedate, and status.

[Top level diagram of the Library Database System
L uses <A>
Person Library
Dlagram for Complex Generalized
Class Person Diagram for Complex Aggregate Class Library
Person Library]
name °f'e"
SS# close
checkoul-book-req
address retun-book-req
apply-fine
mail-notice
di -error |
ﬁen
rCheckoutBook
N | . rCheckoutBool
Member S — -
Book
Member E'i‘L‘I'Z\fg
ublishing-date
puhlsz}erB
uedate
status
checkout
return
get-status
update-status
- sel—d&ledate
Dlagram for Complex Generalized Class Member poyerdne
rOverdue
1ExtremelyOverdue
— rStatus
Member 1SetDueDate
(fine | e
checkout-book
retnmgl-hook S
veniy:) b Dlagram for Complex regate Assoclation uses
rCheckoutPeriod € plex Agereg
rCheckoutBook
wFine
rApplyFine Person Library

Laculty Member| o G
Student iCheckoutPeriod checkout
Member irApplyFine Member Book
rControl ApplyFine

Fig. 3. Nested Object Model of the Library System
(ii) Identifying the Relationships in the System
A relationship is a characteristic that specifies a mapping from one object to another

[Hutt94]. In NOM, there are three types of relationships, namely association, aggre-
gation and generalization [Rumb91].

373

From line (1) of the library database example, we identify that class Library is an
aggregation of classes Member and Book. From line (3), we identify that class
Person is a generalization of class Member and that class Member is a generalization
of classes Student Member, and Faculty Member. From line (5), we identify a check-
out association from class Member and Book. From line (10), we identify an associa-
tion return from class Person to class Book.

(iii) Identifying Complex Classes

A complex class is a virtual class. It is used to visually improve the understanding of
NOM. Expanding a complex class yields a lower level diagram, which defines the
elements of the complex class.

There are two types of complex classes, namely complex aggregate classes and
complex generalized classes. A complex aggregate class is always related to a class,
which has an aggregate relationship (e.g. class Library in Figure 3). A complex ag-
gregate class represents a higher abstraction of the related aggregate class. It has
the same name as the related aggregate class and is depicted as a bold class box with
a diamond with the letter A (aggregation) inside, placed on the upper left corner of
the box. Expanding a complex aggregate class yields a subdiagram showing the ag-
gregation relationship of the related aggregate class and its components. A complex
generalized class is always related to a class which has a generalization relationship
referred to as a general class (e.g. class Person in Figure 3). A complex generalized
class represents a higher abstraction of the general class. It has the same name as
the related general class and is depicted as a bold class box with a triangle with the
letter G (generalization) inside, placed on the upper left corner of the box.
Expanding a complex generalized class yields a lower level diagram, showing the
generalization relationship of the related general class and its components.

By using the aggregation and generalization relationships derived from step (ii),
we identify that class Person and Member are complex generalized classes and that
class Library is a complex aggregate class.

(iv) Identifying Complex Associations

A complex association is a visual construct to improve the understanding of NOM.
The purpose of a complex association is to consolidate all the associations related to
the pairs of classes or their subclasses and/or subcomponents. Expanding a complex
association between two classes yields a lower level diagram, defining all the associa-
tions between the classes and their subcomponents .

There are two types of complex associations in NOM, namely complex aggregate
associations and complex generalized associations. A complex aggregate association
is formed from a "serial” path between the participating classes. It is depicted by a
bold line connecting the related classes with the name of the association followed by
a diamond with the letter A (aggregation) inside. A complex generalized association
1s formed from a set of "parallel” associations between two classes. It is depicted by

374

a bold line connecting the related classes with a name of the association followed by
a triangle with the letter G (generalization) inside.

By using the associations derived from step (ii), we identify a complex aggregate
association uses from class Person to class Library. The complex aggregate associa-
tion uses is composed of the associations checkout and return.

3.2 Behavioral Modeling

The behavioral model represents the temporal and transformational aspects of a sys-
tem. It combines and integrates the dynamic (state diagrams) and functional model
(data-flow diagrams) originally proposed in [Rumb91], adding database transaction
capabilities. Thus, the behavioral model is composed of three diagrams: state dia-
grams, data-flow diagrams and transaction diagrams.

State diagrams are used to describe the life history of objects of a particular class.
It specifies and implements the control of objects, identifying object operations and
activities. Data-flow diagrams are used to describe the operations of an object/class.
Transaction diagrams define the database transactions of the system, describing the
sequence of communications between objects.

The behavioral model is built in several steps described below. We analyze the li-
brary database requirements and build the state diagram, data-flow diagram and
transaction diagram for some of the classes identified in the nested object model.

(Library Opened \

chekout-book-req

do:process
request 4 close

Library

open Closed

hekout-book
cheko chekout

do :updz:\
status
do:Library mail-notice
fem 4o ypdate-status

() ()

Initial

verifyneml|

Fig. 4. State Diagrams for the Library System

375

(i) Building State Diagrams

In the behavioral model, each class will have a state diagram. A state diagram repre-
sents the life history of objects in a class and shows the sequence of operations that
takes objects into several different states. It is a graph whose nodes are states of an
object and whose arcs are transitions between states caused by events applicable to
that object. The graphical notation used for a state diagram is the Harel statecharts
[Hare88].

The state diagrams derived from the library system are described in Figure 4. We
define state diagrams only for the main classes of the library system, namely
Library, Member, and Book. Class Library will have the following operations: open,
close, checkout-book-req, return-book-req, apply-fine, mail-notice, and display-
error (see Figure 4(a)). Class Member will have the following operation: checkout-
book, return-book, and verify-member (see Figure 4(b)). Class Book will have the
following operations: checkout, return, overdue, set-duedate, get-status, and update-
status (see Figure 4(c)).

Top level diagram

TN
Member_\‘
retum
book

Library i
_ . fine

Subdlagram for return book operation

Library E Book '—
|
title Lhedate
. s BN
titke /" check \ check aoply- N
_’(book book = ;(J'py)
_ title overdue e /
NS AN

N

Member

fine

Fig. 5. Data-flow Diagram for return-book Operation
(ii) Building Data-flow Diagrams

In the behavioral model, a data-flow diagram (DFD) is used to describe the operation
of an object/class identified in the state diagram. It is represented as a graph whose
nodes are processes (transform data), actors (produce and consume data) and datas-
tores (store data), and whose arcs are data-flows (move data) and control-flows
(control process evaluation). The graphical notation used for a DFD is based on the
notation proposed by [Dema79].

376

The level 0 of a DFD represents the operation of a class as a single process. Each
operation has a set of activities described in a lower level diagram and are also repre-
sented as a process. Some activities may need to access the state of the class, which
is represented as a dataflow from the datastore with the name of the class to the ac-
tivity process. Moreover, some activities may use operations defined in other classes.
In this case, these other classes are represented as actors with a dataflow connecting
the activity process.

Since the operations derived from the state diagram of the library database exam-
ple are very simple, we only show for illustrative purposes the data-flow diagram for
the return-book operation in class Member (see Figure 5).

Person Library System Member Book

TBEGIN TXA
Request for book
check out

gets sst# and getss#
book title gettitle
verify if valid
member

if member is OK
and book is
available then
checkout-book
TCOMMIT TXA
else

TABORT TXA
TEND TXA

checkout-book-re

>
»

checkout-book

set-duedate

update-status

Tl

(a)

Person Library System Member Book
|

i
TBEGIN TXB return-book
Request for book |—Iequest 5,

return getss#

gets sst# and
book title gettitle
if book is valid then retum-book
return-book > -
else T g apply-fine
TABORT TXB -
if book 13 overdue update-status
then
apply fine.
TCOMMIT TXB
TEND TXB

return

®

Fig. 6. Describing the Checkout and Return Book Transactions

377

(iii) Building Database Transactions

In the behavioral model, database transactions are described by transaction diagrams.
Transaction diagrams extend interaction diagrams [Jaco92], with transaction com-
mands, i.e. TBEGIN, TEND, TABORT, TCOMMIT. Each transaction defined has a
name and represents a unit of work describing the interaction between the objects in
the system.

In the transaction diagram, each object/class participating in the transaction is
represented by a column drawn as a vertical line. The interactions between the ob-
jects are shown as operation invocations. Each operation of a class involved in the
transaction is shown as a rectangle in its class column. The object originating the
transaction is represented as the left most column and is called an "external object”
to the system. To the left of the external object column we describe the transaction in
natural language (pseudocode). The pseudocode describes what is happening in a
particular part of the transaction (class operations).

From the library database example, we identify two major transactions in the sys-
tem. The first one checks out books from the library and is described in Figure 6(a).
The second returns books to the library and is described in Figure 6(b).

3.3 Nested Rule Modeling

The nested rule model (NRM) is a high-level graphical approach for conceptually
designing rules in active object-oriented databases. NRM models a comprehensive
set of rules, using two types of diagrams - nested rule diagrams (NRDs) and rule in-
teraction diagrams (RIDs).

In NRD, a rule is depicted by an ellipse and has a name and a type (simple or
composite), which is represented inside the rule icon separated by a line (see Figure
7). NRDs visually represent both simple and composite rules by using two types of
abstraction techniques, embedding and nesting. Simple rules may be used to con-
strain the structure of objects and may also govern the object's behavior through dy-
namic rules, such as event-condition action or exception rules. Composite rules en-
able the designer to express complex object behavior by applying a set of constructors
to simple rules and previously defined composite rules. Further, NRDs define the
semantics of rule inheritance and overriding, and describe how the coupling mode of
rules can be specified.

RIDs visually represent the interactions between rules, using multi-level dia-
grams. Multi-level diagrams are used to avoid the complexity of flat diagrams, where
complex interconnection of rules may become impossible to comprehend because of
the number of connecting lines. Both diagrams (NRD and RID) may be used to-
gether, so that the database designer can have a multi-level view of the rules defined
for an object and at the same time visualize their interactions.

Below, we describe the steps used to build the NRM of an application. We use the
library database example to illustrate the application of each step.

378

(i) Identifying Static Simple Rules

Static rules define constraints on the structure of a class that must always hold. These
constraints are specified in terms of classes, objects, attributes and associations.
Since static rules are always true and are defined in the context of an object/class,
they are represented by placing an invariant condition within the context object/class
all embedded within the rule icon (see Figure 7).

In NRD, static rules can be classified into the following constraint rules: attribute
constraints, attribute domain constraints, mandatory/optional attribute constraints,
attribute cardinality constraints, population type constraints, association cardinality
constraints, existence dependence constraints, relational constraints, and uniqueness
constraints. Below we describe each of the static rule types. Examples of constraint
rules not illustrated in this paper can be found in [Silv95a].

/4: rFine ™~
Member ™~
(fine: integer AN

Ny
fine = 10¢ *

AN now-duedat //
\ \ /

Fig. 7. Attribute Constraint for Class Member

a) Attribute Constraint: It is a constraint imposed on the attributes of a class or an
object. An attribute constraint can also represent constraints that span multiple
classes/objects. In this case, we attach the attribute constraint to a control ob-
ject/class.

From the library example line (10) - "When a person returns a book , if it is over-
due a fine of 10 cents per day is charged to the member for each book not returned on
time.", we derive an invariant attribute constraint rule rFine in class Member (see
Figure 7) .

Fig. 8. Domain Constraint for Class Book

b) Attribute Domain Constraint: It is a constraint imposed on the domain of
object/classes attributes. It is described by an enumeration if the domain is restricted
to a list of discrete elements, or it is described by an interval in the case of well
ordered domains. In NRD, domain constraints are represented in a textual form
placed inside an invariant condition icon. The internal BNF syntax for the definition

379

of a domain constraint is: [(<class_name>|<object name>).]<attribute_name> in
[<list_of elements>| <interval>]

Based on the library example, a book can be in states available, checkedout or
overdue. To model these different states, we define a domain constraint rule rStatus
in class Book (see Figure 8) . rStatus is specified with attribute sfatus restricted to a
list of elements (available, checkedout, and overdue).

¢) Mandatory/Optional Attribute Constraint: It is a constraint that specifies that the
attributes of a class or object must always have a value (mandatory) or may not have
a value (optional).

d) Attribute Cardinality Constraint: It is a constraint that specifies the minimum
and maximum occurrences of a multivalued attribute.

e) Population Type Constraint: It is a constraint that limits the number of objects in
a class.

) Association Cardinality Constraint: 1t is a constraint that limits the number of as-
sociations between two objects/classes.

g) Existence Dependent Constraint: 1t is a constraint that an object cannot exist
without being associated with another object.

h) Relational Constraint: Tt is a constraint that an object must maintain correspon-
dence (inverse) with another object. That is, if an object is updated, the related in-
verse object must also be updated.

i} Uniqueness Constraint: It is a constraint that determines that every object of a
class has a unique value for an attribute.

(ii) Identifying Dynamic Simple Rules in NRD

Dynamic rules monitor the way an object's processes may execute and relate to one
another and how objects respond to specific events and exceptions. In NRD, dynamic
rules include event-condition-action rules, exception rules, contingency rules, pre-
condition rules, postcondition rules, and production rules. In this article, only the
dynamic rules related to the library database example will be illustrated. Examples of
the dynamic rules not illustrated in this paper can be found in [Silv95a].

a) Event-Condition-Action Rule: The Event-Condition-Action (ECA) rule defined
by [Daya88] was originally used by [Carl83] to extend relational databases with ac-
tive capabilities. The ECA rule enables the database to monitor a situation repre-
sented by an event and one or more conditions and execute the corresponding actions
when the event occurs and the conditions are evaluated to true. In NRD, a named
event is only referenced in the rule using an event icon (a parallelogram). The actual

380

description of the event is represented using the nested event diagram, which is de-
scribed in the next section. A condition determines if an action can be executed and
is represented by a condition icon (a hexagon). A condition that is always "true", can
be omitted. An action is always represented as a process which is applicable to a spe-
cific object. An action is implemented as a method in the object and can actually
trigger the execution of other rules. In addition, the action part can be used to control
the reasoning of production rules. The complete ECA rule is depicted by an event
icon connected with an arrow to the condition icon and which in turn is connected to
the action icon with an arrow. Below we show examples of ECA rules for the classes
Library, Member, and Book. ECA rules of class Member that are overridden by class
Faculty Member are described later in this article.

rQOpen

e Library N
< u'me-to-openL@ />
L -/ |
e (@) PSS e
rClose rCheckoutBook ..

Library Member \
{ ﬂ eckingo Book
\ time-to-close, close -book Bfmk Cheoc(;;c;u\ / /
o \ available)) P\ %

\\ ,‘—/ — - ———
(b) ()
— e
T rOverdue — rExtremelyOverdue —-..
/ Book Book ~
book- f book- ﬁb 2
\ overdue 'Q/ﬂd% g)vd.\'ue“flnueel)’- '@
. —
e //7/ —\;;\ S
(d) (e)

Fig. 9. ECA Rules for the Library System

e ECA rules for class Library: From line(2) we identify rules »Open and rClose
for opening and closing the library. ¥Open has an event time-to-open and an action
which is the operation open (see Figure 9(a)). ¥Close has an event time-to-close and
an action which is the operation close (see Figure 9(b)).

e ECA rules for class Member: From line(5) we identify a rule »CheckoutBook for
checking out a book. rCheckoutBook has an event checkingout-book, a condition
testing if the book is in state available, and an action checkout applied to the book
(see Figure 9(c)).

e ECA rules for class Book: From line(9) we identify a rule rOverdue for return-
ing an overdue book. rOverdue has an event book-overdue, which determines when
the operation overdue is executed (see Figure 9(d)). From line (11), we identify a
rule rExtremelyOverdue for a person who keeps an overdue book more than seven

381

consecutive days. rExtremelyOverdue has an event book-extremely-overdue, and an
action which is the operation mail-notice in class Library (see Figure 9(¢)).

b) Exception Rule: An exception rule is a special case of an ECA rule. It specifies an
event, a condition, a main action and a series of exception actions. However, only
one action will be executed when the event occurs and the condition is evaluated.
Each action will have a triggering value attached to the end of the incoming arrow
from the condition. An action is executed if its triggering value matches the value re-
turned by the condition evaluation. If no match is found, the main action is executed.
The main action is defined by a straight arrow from the condition. Each exception
action is represented as a branch of the straight arrow. Below we show an example of
an exception action in which a condition returns two values: TRUE (T) or FALSE
).

From the library example line (5) - "A person may check out books only if it is a
member of the library, otherwise an invalid checkout request message is sent to the
person.", we define an exception rule rCheckoutBook in the context of the class
Library (see Figure 10). rCheckoutBook has an event checkout-book-requested, a
condition using the verify-member method to check if the person is a member, a
main action which is an operation checkout-book in class Member with a triggering
value 7 (TRUE), and an exception action display-error with a triggering value F
(FALSE).

" rCheckoutBook

= .
= ~
// Library \\\
e .
s i . N
checkout-book venf};’ hemk "i \\
mem! checkout|
requested \book ‘
\, isplay /
A -
S
= o)

Fig. 10. Exception Rule for class Library

¢) Contingency Rule: Contingency rules are specified for actions that are time-
constrained. If these actions cannot be carried out within a pre-specified time, alter-
native actions need to be executed. In NRD, contingency rules are represented by
modifying an ECA rule by defining an action to be constrained by a condition that
specifies its timing constraints.

d) Operation Precondition Rule: An operation precondition rule expresses those con-
straints under which an operation will be allowed to be performed.

e) Operation Postcondition Rule: Operation Postcondition rules are constraints that
guarantee the results of an operation. From the library database example, we define

382

a postcondition rule named rSetDueDate (duedate = now + 2 weeks) in class Book,
which must hold after executing the operation set-duedate (see Figure 11).

rSetDueDate

Book

Fig. 11. Postcondition rule rSetDueDate

J) Production Rule: A production rule specifies the policies or conditions for infer-
ring or computing facts from other facts. It is composed of a condition and an action
and can be used for representing heuristic knowledge. Production rules are controlled
by ECA rules, i.e. production rules will only be evaluated when triggered by an ECA
rule.

(iii) Identifying Composite Rules in NRD

Composite rules enable the database designer to structurally abstract rules. They are
particularly useful when the number of rules becomes very large and very difficult to
comprehend. In this case, the rules are divided and grouped into related rules
(components) represented by a composite rule.

There are two possible ways to represent a composite rule. The first approach,
called nesting, is to define the composite rule and its components at different levels
of abstraction through multi-level rule diagrams. The composite rule is represented
in a diagram at level i, and can be expanded to a subdiagram at level i + 1, where its
components are represented. At the higher level diagram, a composite rule is drawn
as a bold cllipse with the composite rule name and a keyword representing the com-
posite rule type within an upside down triangle (see Figure 12(a)). The keyword is
used to inform the type of subdiagram that will be shown to the designer, once the
composite rule is expanded. The second approach, called embedding, is to define all
the component rules at the same level of abstraction, by enclosing all the component
rules inside the rule icon (see Figure 12(b)). By placing component rules within the
composite rule, we avoid using edges to describe the composite rule, which reduces
the complexity of the diagram.

Both approaches may be used by the designer to represent different composite
rules. When there are too many subdiagrams for a composite rule one should use the
second approach (embedding), and when there are too many levels of embedded
icons one should use the first approach (nesting). It is up to the designer to decide
how to combine the two approaches.

In NRD, composite rules are classified into the following rules: disjunction rules
and exclusive rules. A disjunction rule represents a set of rules, called member rules,
which may be applicable to an object/class. A disjunction rule is successfully applied

383

to an object, when one of its member rules has been successfully executed (i.e. com-
mitted). An exclusive rule R represents a set of rules, which cannot be applicable to
an object/class at the same time. An exclusive rule is successfully applied to an ob-
ject, when only one of its rules has successfully executed (i.e. committed), but the
other rules have failed (i.e. aborted or deactivated).

For example, let us consider that we change the requirements of the library sys-
tem to allow a faculty member to checkout books for a period of one month if he/she
has no books overdue, but reduce the checkout period to three weeks after the fifth
overdue book.

To model this example, we assume that rules rCheckoutIMonth (representing a
checkout period of one month), and »Checkout3Weeks (representing a checkout pe-
riod of three weeks) have already been defined. Then, we define a more general rule
rCheckoutPeriod in class Faculty Member as a composite exclusive rule of
rCheckoutMonth and rCheckout3Weeks (see Figure 12).

level

rCheckoutPeriod

0

M l level |
level 1 + 1 -
rCheckout
onth

rCheckout

O
3IWeeks

%@

rCheckuuchﬂo

Checkoul
lMomh

/ TCheckeut
JWecks

_//

ﬁﬁ%

XOR /

@ ®
Fig. 12. Composite Exclusive Rule rCheckoutPeriod
(iv) Identifying the Coupling Mode of Rules in NRD

In AOODBSs, rules are triggered within a database transaction (i.c., triggering
transaction) and are executed according to their coupling modes to the transaction.
The coupling modes of a rule determine at what point in the triggering transaction
the rule will be evaluated and determine whether the rule will be executed as a sepa-
rate top level transaction or will be executed as a subtransaction of the triggering
transaction.

In NRD, we support the comprehensive collection of coupling modes defined in
[Bran93]. These coupling modes include immediate, deferred, separate, parallel
causally dependent, sequential causally dependent, and exclusive causally dependent.
Coupling modes are represented by keywords identifying the coupling mode type
and are depicted by attaching the keyword to the connections between an event and a
condition as well as a condition and an action. ECA rules without an explicit repre-
sentation of their coupling modes are assumed to have an immediate mode. Below,

384

for each coupling we list its name, its keyword name within parenthesis, and give a
full description of its meaning.

e Immediate (imm): The rule is evaluated immediately after its event is detected
and is executed as a subtransaction of the triggering transaction.

¢ Deferred (def): The rule is evaluated immediately before the triggering transac-
tion commits and is executed as a subtransaction of the triggering transaction.

e Separated (sep): The rule is evaluated immediately after its event is detected and
is executed as a separate top level transaction independent of the triggering
transaction.

» Parallel Causally Dependent (pcd): The rule is evaluated immediately after its
event is detected and is executed as a separate top level transaction with commit
and abort dependency with the triggering transaction. That is, the rule may exe-
cute in parallel to the triggering transaction as a top level transaction, but may
not commit until the triggering transaction commits and must abort if the trig-
gering transaction aborts.

¢ Sequential Causally Dependent (scd): The rule is evaluated immediately after its
event is detected and is executed as a separate top level transaction only after the
triggering transaction has committed.

e Exclusive Causally Dependent (ecd): The rule is evaluated immediately after its
event is detected and is executed as a separate top level transaction in parallel
with the triggering transaction, but it only commits if the triggering transaction
has aborted. This type of coupling mode is used for contingency rules.

Figure 13 shows a rule rExtremelyOverdue in class Book, where the rule is evalu-
ated immediately, but the action of mailing a notice is executed as a separate trans-
action.

Book \

AN
book- . Library.
e)(()get ely /MM @ SEp mail-)
-overdue notice)

Fig. 13. Rule with an Immediate/Detached Coupling Mode

385

(v) Identifying the Inheritance and Overriding of Rules in NRD

Rules attached to a class are automatically inherited by each subclass. Like methods,
rules can be overridden. Overriding a rule means that the subclass has attached to it
a modification or a refinement of the rule. There are two main reasons the designer
may want to override a rule: to specify a rule that is the same as the inherited rule,
except it adds some behavior usually affecting new attributes of the subclass, or to
tighten the specification of a rule by tightening the type of the arguments used in the
eXpressions.

In NRD, a rule can only be overridden by another rule of the same type and the
same name. Below we give the definition of the semantics for overriding rules in the
context of a class A and a subclass B.

Static Rules:

A static rule R1 with an invariant condition C1 in class A is overridden by a rule in
subclass B, if and only if the rule has the same name R1, but a different invariant
condition.

Dynamic Rules:

a) ECA Rule Overriding: An ECA rule R1 with an event E1, a condition C1, and ac-
tion Al in class A is overridden by a rule in subclass B, if and only if the rule has the
same name R1, the same event E1 but either a different condition or action.

b) Exception Rule Overriding: An exception rule R1 with an event E1, a condition
C1, an action Al and an exception action A2 is overridden by a rule in subclass B, if
and only if the rule has the same name R1, the same event E1 but with either a dif-
ferent condition, action, or exception action.

¢) Contingency Rule Overriding: A contingency rule R1 with an event E1, a condi-
tion C1, an action Al, a pre-specified execution time T1 and an alternate action A2
is overridden by a rule in subclass B, if and only if the rule has the same name R1,
the same event E1 but either a different condition, action, pre-specified time, or al-
ternate action.

d) Operation Precondition Rule Overriding: An operation precondition rule R1 with
precondition P1 and action Al is overridden by a rule in subclass B, if and only if the
rule has the same name R1 with a different precondition, but the same action Al.

e) Operation Postcondition Rule Overriding: An operation postcondition rule Rl
with an action Al and postcondition P1 is overridden by a rule in subclass B, if and
only if the rule has the same name R1 with the same action Al, but different post-
condition.

386

J) Production Rule Overriding: A production rule R1 with condition C1 and action
Al is overridden by a rule in subclass B, if and only if the rule has the same name R1
with the same condition C1 but different action.

rAppiyFine
Member
book- ibrary)
returned 0) apply:
‘ overdue fine
\h——i’//
- (@) .
_— rApplyFine T~ rControlApplyFine ‘>\
Faculty Member Faculty Member \
book- time-to
Book X deactivat
returned) i -pay-fine APPR% /
~__ P

® ©
Fig 14. Rule Inheritance and Overriding for classes Member and Faculty Member

Not all inherited rules may be suitable for a subclass [Dill93, Kapp94]. To model
this case in NRD, we override a rule that is not suitable for the subclass and falsify
its condition and nullify its actions. Thus, a rule will still be propagated to the sub-
classes, but it will never be executed, unless it is overridden again.

Moreover, there are situations where the database designer wants to deactivate a
rule, stopping the inheritance of a rule. This is particularly useful for experimenting
with "what-if" scenarios, analyzing the impact of different rules on the system behav-
ior [Buch95, Kapp94, Dill93]. In NRD, the activation/ deactivation of a rule is repre-
sented by an action using the keywords activate/deactivate followed by the name of
the rule. A deactivated rule is represented with a gray background. Below we illus-
trate the overriding of rules in the library database system.

e Example of Rule Overriding: From the library example line(10) - "When a person
returns a book , if it is overdue a fine of 10 cents per day is charged to the member
for each book not returned on time. A faculty member will receive only warnings for
the first 5 overdue books. After that, the faculty member will start paying fines for
overdue books.", we define a rule »4ApplyFine, which is first defined in class Member,
and then redefined in class Faculty Member. In class Member, rApplyFine is defined
with an event book-returned, a condition that the book is overdue, and an action
which is the operation apply-fine in class Library (see Figure 14(a)). In class Faculty
Member, tApplyFine overrides the rule in class Member with a different action,
which is an operation warning (see Figure 14(b)). Also, in order to deactivate the
overriding of rule rApplyFine, we define another rule »ControlApplyFine, which is
executed after the Faculty Member has received five warnings. rControlApplyFine
has an event ftime-to-pay-fine, and an action deactivate rApplyFine (see Figure

14(c)).

387

(vi) Identifying the Interconnection of Rules in RID

Rule interaction diagrams (RIDs) visually show the interdependence between rules. It
is a very useful diagram to show the database designer, the cascading of rules, and
how they relate to each other. The interdependence between rules is based on the ac-
tion of each rule. If the action of a rule R1, causes an event which triggers the evalu-
ation of another rule R2, then R1 is a triggering rule for R2.

In a tightly coupled environment where rules are highly interdependent, any flat
diagram representing the interconnection of these rules is likely to be highly con-
nected. In the case of many connected rules, a flat diagram can become almost im-
possible to comprehend. An effective solution to this problem is to use multi-level
diagrams [Carl89] to represent the interconnection of rules.

RID uses multi-level diagrams to show the interdependence of rules. To support
the definition of multi-level diagrams, RID defines a new type of rule object, called a
rule connector. A rule connector is an object in the RID which contains the same
name of a rule defined in the NRD. It is depicted by a dotted ellipse with the related
rule name inside (see Figure 15) and it is used to depict the triggering rules of a rule.

main level

p “Extremely . tControl Apply -
.Overdue .. Fine -
T~
RID for RID for
‘rExtreme]yOvemue \ RID for rOverdue rControlApplyFine Facﬁlty Mexﬁber 1‘
Py . ~"Book . SR “._ rApplyFine
- -!OVef‘;lE“? @2@1 ~*_tCheckout- @ont@mm
Cﬁitrema G . Fine

l Overdue / |

[RIDf
Denote§ RID for rCheckout rCheciZ)utBook
expanding . Men{ﬁér“ N : ut
= to the next . rCheckout: —————————— i rGheckout
.Book .- Book .-

diagram R —
Book ™. r%jﬁm]ge

. -

{Checkons o

I
i
|
|

Fig. 15. Rule Interaction Diagrams for the Library System

RIDs are organized hierarchically. At the main level (diagram level zero) all the
rules that do not trigger the execution of another rule are represented as rule connec-
tor objects. Moreover, each rule will have a diagram and will be referred to as the
"main rule”. The main rule will be represented with an ellipse, if simple, and a bold
ellipse, if composite, with its name inside. All the triggering rules of the main rule
will be represented in the diagram as rule connector objects and will be linked to the
main rule with dotted arrows. The navigation between rule interaction diagrams is
done by expanding a rule connector.

388

In NRM, RIDs and NRDs are used in an integrated way. The integration between
these diagrams is achieved by allowing the main rules in RID to be expanded into
NRDs. This allows a multi-level view of the rules defined for an object, showing at
different levels of abstraction the visual definition and interaction of rules.

From selected rules defined in the library database system, we derive the follow-
ing interactions described in Figure 15. Rule rExtremelyOverdue in class Book is
triggered by rule rOverdue, which is in turn triggered by rule »Checkout. Rule
rCheckout is triggered by rule »CheckoutBook in class Member, which is in turn
triggered by rule rCheckoutBook in class Library. Rule rControlApplyFine is trig-
gered by rule rdpplyFine in class Faculty Member.

3.4 Nested Event Modeling

The Nested Event Model (NEM) visually models the events referenced in rules using
a multi-level diagram, called the Nested Event Diagram (NED). NED models a com-
prehensive set of events, integrating the event types present in existing active object-
oriented database systems. NED is composed of primitive (simple) and composite
(complex) events. Primitive events correspond to elementary occurrences, and com-
posite events correspond to events that are formed by applying a set of constructors to
primitive and composite events. Below we use the nested event model to describe the
events used in the rules defined for classes Library, Member, Faculty Member and
Book. Event types not illustrated in this article can be found in [Silv95a].

(i) Identifying Primitive Events

A primitive event describes a point in time specified by an occurrence in the database
(method execution events, and transaction events), temporal events, and explicit
events.

a) Method Execution Event: In AOODBs, methods implement an operation for a
specific class. The method executes when an object receives a message with the name
of the method. The execution of a method gives rise to two events: an event which
occurs immediately before the method is executed and an event immediately after it
has executed [Geha92). The parameters of a method can be later used in conditions
specified in rules.

In NED, a method execution event is related to a particular class or to a particular
object, only if a particular class name or object name is given. The BNF syntax for a
method event is: (before|after) [(<class_name>|<object_name=>).]<method name>

Note that the class name can be omitted when specifying a method execution
event. Below we represent the method execution events used by the rules in the li-
brary database example.

» Events for class Library: The event checkout-book-requested was referenced in
rule rCheckoutBook (see Figure 10) and occurs after a request for checking out a

389

book is made. It is modeled as a method execution event which occurs affer opera-
tion checkout-book-req is executed (see Figure 16(a)).

e Events for class Member: The event book-returned was referenced in rule
rApplyFine (see Figure 14(a)) and occurs after a book is returned. It is modeled as a
method execution event which occurs affer the operation return-book is executed (see
Figure 16(b)). The event checkingout-book was referenced in rule »CheckoutBook
(see Figure 9(c)) and occurs before a book is checked out. It is modeled as a method
execution event which occurs before the operation checkout-book is executed (see
Figure 16(c)).

/" checkout-book-requested book returned /" checkingout-book
f—————————— %-—“g—-—/
/ after after / before /
/ Library checkout-book-req // Member.return-book // Z Member checkout-book
VAR . — v

(@) (b) (©)

Fig. 16. Method Execution Events for classes Library and Member

b) Transaction Event: We treat transaction events as a special case of a method exe-
cution event. Transaction events are defined after or before transaction operations are
executed (e.g. after tCommit). A transaction operation can be considered as a method
applied to each object involved in the transaction.

¢) Temporal Fvent: Temporal events are defined as an explicit point in time. They
can be divided into two categories: absolute temporal events, and periodic temporal
events.

Absolute Temporal Event: An absolute temporal event is specified with an absolute

value of time [Daya88]. It is depicted by showing the year, month, week, day and
time within a box inside an event icon.

time-to-open
Day: every ;

Tmme: 10 p.m.

Fig. 17. Representation of Event "time-to-open"

Periodic Temporal Event: A periodic temporal event is an event that periodically re-
appear in time [Daya88]. Periodic temporal events are defined like absolute temporal
events where some of the data fields can be omitted, meaning that the omitted data
field matches any valid value for that field. In addition, the data field which repre-
sents the periodicity has the keyword every attached to it. The temporal event occurs
periodically at every point in time that matches the partial specification. From the li-
brary database example, we represent the event fime-to-open, referenced in rule

390

rOpen (see Figure 9(a)) as a periodic event which occurs every day at 10 a.m. (see
Figure 17).

d) Explicit Event: An explicit (also called external or abstract) event is defined by
the database designer and is explicitly signaled inside applications of the database
system [Chak93]. This event may have parameters which are supplied at the time it
is signaled to the AOODBS. An explicit event is depicted inside of an event icon
with the following BNF syntax: EXPLICIT <event name> [(<parameters>)]

(ii) Identifying Composite Events

The primitive events defined above are only able to represent elementary events.
However, there are many applications that need to model composite (complex)
events, which are composed of primitive and also previously defined complex
events. Composite events are defined by applying event constructors to previously de-
fined events, called component events, and occurs at the point of occurrence of the
last event that was needed to make it happen [Geha92]. Like NRM, NEM uses two
types of abstraction techniques, nesting (see Figure 20(a)) and embedding (sec Figure
20(b)), to visually represent composite events. It is up to the designer to decide how
to combine the two approaches.

In NED, composite events are classified into the following events: conjunction
event, disjunction event, monitoring interval event, relative temporal event, closure
event, history event, every-nth event, negative event, and sequence event.

a) Conjunction Event: The conjunction of events El and E2 occurs when both E1
and E2 have occurred, regardless of order[Gatz92].

b) Disjunction Event: The disjunction of two events E1 and E2, occurs when E1 oc-
curs or E2 occurs [Gatz92]. Figure 18 represents the disjunction of two monitoring
events close-weekdays and close-weekends.

¢) Monitoring Interval Event: A monitoring interval event occurs when an event E
happens anytime in an interval I and some condition C holds during the interval
[Gatz92].

An interval I is specified by a starting and ending point in time and is depicted by
a bar. The starting point and ending point of an interval can be defined by the occur-
rences of two events. A condition C is always associated with an interval. It is de-
picted within the bar interval. If there are no conditions related to the interval we do
not represent the condition icon. An arrow with a flash below the time interval de-
notes the point in time of the occurrence of the monitoring interval event.

If an interval has a starting or ending point defined by an absolute or periodic
temporal event, the interval is represented with the textual description of the date
and time of the temporal event placed below its left and right end. Below we show a
monitoring interval events in the library database example.

391

time-to-close

close-weekdays /
/ /
/ /
/
) /
Day: Mon Day: Fri //
Time: 0 am- ime:10p.m, /
AEEEEN {
Pl
/ /
/ / /

Fig. 18. Representation of Event "time-to-close"

e Events for class Library: The event time-to-close was referenced in rule rClose
(see Figure 9(b)) and occurs every weekday at 10 p.m., or Saturdays and Sundays at
6 p.m. It is modeled as a composite event, which represents the disjunction of two
monitoring events, called close-weekdays and close-weekends (see Figure 18). The
monitoring temporal event close-weekdays occurs only if a periodic event evr-
weekday occurs at 10 p.m. between Monday and Friday. The monitoring temporal
event close-weekend occurs only if a periodic event evr-weekend occurs at 6 p.m. be-
tween Saturday and Sunday.

d) Relative Temporal Event: A relative temporal event [Daya88] is a special case of a
monitoring interval event. It corresponds to a specific point in time in relation to a
triggering event E. A relative temporal event occurs after a triggering event E has
occurred and a time interval I has elapsed. The triggering event E can be any event
specified in NED.

e Events for Class Book: The event book-overdue was referenced in rule »rOverdue
(sce Figure 9(d)) and occurs at the book's duedate after it had been checked out. It is
modeled as a relative temporal event caused after the execution of the operation
checkout, with an interval defined by the book's duedate (see Figure 19(a)). The
event book-extremely-overdue was referenced in rule rExtremelyOverdue (see Figure
9(e)) and occurs when a book has been overdue for seven days. It is modeled as a
relative temporal event caused after the execution of the operation overdue, with an
interval of seven days, subject to a constraint that the book is in state overdue(see

Figure 19(b)).

392

bnuk{xtremelyovadue

book-averdue //
/
after
ova'cilc ——é]
(Book
/ <l \ overdue)
A

U] ®

N

Fig. 19. Representation of Events "book-overdue" and "book-extremely-overdue"

e) Closure Event: A closure event signals only the first occurrence of an event E,
even if the event E continues to occur [Gatz92]. The closure event is denoted by plac-
ing an '*' to the "out arrow" of the event (e.g. see event checked-out in Figure 20).

J) History Event: In some applications an event may repeatedly occur. In such a case,
a history event designates a specific occurrence as the triggering event [Gatz92]. The
history event is denoted by placing an occurrence identifier to the "out arrow" of the
event (e.g. see event warning in Figure 20).

g Every-nth Event: A Every-nth event is used to describe events that occur periodi-
cally [Geha92]. It is defined similarly to a history event by placing the keyword
every before the occurrence number.

h) Negative Event: A negative event is specified by applying an negative constructor
to an event. A negative constructor applied to an event E occurs only if event E did
not occur [Gatz92]. The non-occurrence of an event is depicted by a cross over the

event icon.
level i
(seg 7
time-to-pay-fine,
|
’ level i
leveli+i

time-to-pay-fine
checked- warning dlecked—o warning :
c?\eg‘]-mut- - sﬂﬁ /3 > checkom after
book warnng wanung /

(@)

Fig. 20. Sequence Event "time-to-pay-fine" in class Faculty Member

393

i) Sequence Event: A sequence of two events E1 and E2, occurs when E2 occurs,
provided E1 has already occurred [Geha92]. The time of occurrence of El is guaran-
teed to be less than E2.

o Events for class Faculty Member: The event fime-to-pay-fine was referenced in
rule »ControlApplyFine (see Figure 14(c)). It is modeled as a sequence event which
occurs after the method warning has been executed five times, since the first time a
book had been checked-out. In Figure 20, we show the two possible ways (nesting,
and embedding) to depict the sequence event time-to-pay-fine.

4 Conclusion

In this paper we proposed an integrated approach to active object-oricnted database
conceptual design, called A/OODBMT, based on several modeling techniques
namely, the nested object model (NOM), the behavioral model (BM), the nested rule
model (NRM), and the nested event model (NEM).

The nested object model is based on the object model originally defined in
[Rumb91]. It extends the object model with nesting capabilities[Carl89], and pro-
vides abstraction mechanisms for developing database applications using multi-level
diagrams. Moreover, it extends the object model to include rules to the definition of
objects to specify the active behavior of objects. The behavioral model is based on the
dynamic and functional models proposed in [Rumb9l]. It integrates and extends
these models to define the operations of objects. Moreover, the behavioral model en-
hances intcraction diagrams [Jaco92] to describe the database transactions of the sys-
tem. The nested rule model is based on a comprehensive survey [Silv35a] of rule
specification approaches. It integrates and extends these approaches by supporting a
comprehensive set of rules and by visually representing the rules and their interac-
tions using multi-level diagrams. The nested event model is based on a comprehen-
sive survey [Silv95a] of event specification approaches. It integrates and extends
these approaches by supporting a comprehensive set of events and by visually repre-
senting events using multi-level diagrams in the context of rules.

The conceptual design of active object-oriented database applications is defined
by integrating all the A/OODBMT models. Therefore, the significance of
A/OODBMT is that:

(1) It provides a multi-level representation approach to the definition of the objects
in a system, including their attributes, operations and rules, based on a new ob-
ject model, called nested object model.

(2) It describes rules to be encapsulated within objects, localizing the modification
of rules.

(3) It provides the modeling of database transactions in a conceptual level, so that
the context of rule evaluation is understood.

394

(4) It provides a high-level graphical representation of active behavior through the
specification of rules using multi-level diagrams. A very comprehensive set of
rules is supported, and the modeling of the their coupling modes, inheritance,
overriding and interactions is described.

(5) It provides a high-level graphical representation of active behavior through the
modeling of events using multi-level diagrams. A very comprehensive set of
events is supported and events arc defined in the context of rules .

(6) It provides a complete description of how the different models used to repre-
sent the database application are integrated at higher-levels of abstraction in
multi-level diagrams.

Therefore, we believe the presented approach is well suited for the design of ac-
tive object-oriented database application, because of its semantic richness and the
ability to deal with the complexity of many object/classes, rules and their interaction,
and events. We are currently developing a CASE tool that will, not only support the
graphical notation proposed in this paper, but also support the automatic code gen-
eration of the active object-oriented database schema.

References

[Anwa93] Anwar, E., Mangis, L., and Chakravarthy, S., "A New Perspective On

[Bich94]

[Booc94]

[Bran93]

[Buch92]

Rule Support For Object-Oriented Databases" In Proc. of the 1993 ACM
SIGMOD Int'l Conference on Management of Data, June 1993, pp. 99-
108.

Bichler, P., and Schrefl, M., "Active Object-Oriented Database Design
Using Active Object/Behavior Diagrams," In Proceedings of the Fourth
International Workshop on Research Issues in Data Engineering, 1EEE
Comp. Soc. Press, Los Alamitos, CA, USA, 1994.

Booch, G., Object-Oriented Analysis and Design with Applications,
Benjamin/Cummings, 1994.

Branding, H., Buchmann, A. P., Kudrass, T., and Zimmermann, J.,
"Rules in an Open System: The REACH rule system," In Paton, N., and
Williams, M. (eds.), Rules in Database Systems, Workshops in
Computing, Springer-Verlag, 1993, pp. 111-126.

Buchmann, A. P., Branding, H., Kudrass, T., and Zimmermann, J.
"REACH: a REal-time, ACtive and Heterogeneous mediator systems,” In
IEEE Bulletin of the Technical Committee on Data Engineering, Vol. 15,
No. (1-4), December 1992.

[Buch95]

[Carl83]

[Carl89]

[Chak93]

[Cole94]

[Daya88]

[Dema79]

[Dil193]

[Gatz92]

[Gatz94]

[Geha91]

395

Buchmann, A. P., A., Zimmermann, Blakeley, J. A., and Wells, D. L.,
"Building an Integrated Active OODBMS: Requirements, Architecture,
and Design Decisions," In Proceedings of the 1lth International
Conference on Data Engineering, 1995.

Carlson, C. R. and Arora, A. K., "UPM: A Formal Tool for Expressing
Database Update Semantics", In Proceedings of the Third International
Conference on Entity-Relationship, North Holland, NY, 1983, 517-526.
Carlson, C. R, and Ji, W., " The Nested Entity-Relationship Model," In
the 8th International Conference on Entity-Relationship Approach,
October 1989.

Chakravarthy, S. and Mishra, D., "Snoop: An expressive event specifica-
tion language for active databases," Technical-Report UF-CIS-TR-93-
007, University of Florida, March 1993.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.,
Jeremaes, P., Object-Oriented Development: the Fusion Method, Prentice
Hall, 1994.

Dayal, U., "Active Database Management Systems," In Proceedings 3rd
International Conference on Data Knowledge Bases, Jerusalem, Israel,
June 1988.

DeMarco, T., Structured Analysis and System Specification, Prentice
Hall, 1979.

Dillon, T., and Tan, P. L., Object-Oriented Conceptual Modeling,
Prentice Hall, 1993.

Gatziu, S., and Dittrich, K., "SAMOS: An active object-oriented database
system," In [EEE Bulletin of the Technical Committee on Data
Engineering, Vol. 15, No. (1-4), December 1992.

Gatziu, S. and Dittrich, K., "Detecting composite events in active data-
base systems using Petri nets," In Proceedings of the Fourth International
Workshop on Research Issues in Data Engineering, IEEE Comp. Soc.
Press, Los Alamitos, CA, USA, 1994,

Gehani, N. H., and Jagadish, H. V., "Ode as an Active Database:
Constraints and Triggers," In Proceedings of the 17th International
Conference on Very Large Databases, Barcelona, September 1991.

[Geha92]

[Grah94]

[Hare88]

[Hutt94]

[Jaco92]

[Kapp94]

[Kapp95]

[Mart95]

[Mona92]

[Pras94]

[Rasm95]

[Rumb91]

[Shla92]

396

Gehani, N. H., Jagadish, H. V., and Shmueli, O., "Event Specification in
an Active Object-Oriented Database," In Proc. of the 1992 ACM
SIGMOD Int'l Conf. on Management of Data, CA, June 1992, pp. 81-90.

Graham, 1., Migrating to Object Technology, Addison-Wesley, 1994.

Harel, D., "On Visual Formalisms," Communications of the ACM, Vol.
31, No. 5, May 1988, pp. 514-530.

Hutt, Andrew. T. F., "Object Analysis and Design: comparison of meth-
ods," John Wiley & Sons Inc., 1994.

Jacobson, 1., Christerson, M., Jonsson, P., and Overgaard, G., Object-
Oriented Software Engineering: A Use Case Driven Approach, Addison-
Wesley, 1992.

Kappel, G., Rausch-Schott, S., Retschitzegger, W., and Vieweg, S.,
"TriGS: Making a passive object-oriented database system active,"
Journal of Object-Oriented Programming, June/July 1994, pp. 40-51.

Kappel, G., Rausch-Schott, S., Retschitzegger, W., Tjoa, A., Vieweg, S.,
and Wagner, R., "Active Object-Oriented Database Systems for CIM
Applications," In Marik, V. (ed.), CIM-Textbook (TEMPUS-Project),
Springer LNCS, (in print), 1995.

Martin, J., and Odell, J., Object-Oriented Methods: a foundation,
Prentice Hall, Englewood Cliffs, NJ, 1995.

Monarchi, D. E., and Puhr, G. 1., "A Research Typology for Object-
Oriented Analysis and Design," Communications of the ACM, Vol. 35,
No. 9, September 1992, pp. 35-47.

Prasad, B., Perraju, T., Uma, G., and Umarani, P., "An Expert System
Shell for Aerospace Applications," IEEFE Expert, August 1994, pp. 56-64.

Rasmus, D. W., "Ruling classes: The heart of knowledge-based systems."
In Journal of Object-Oriented Programming, Vol. 5, No. 4, July/August
1995, pp. 41-43.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W,
Object-oriented modeling and design, Prentice Hall, EngleWood Cliffs,
1991.

Shlaer, S. and Mellor, S. J., Object Lifecycles : modeling the World in
States, Prentice Hall, 1992.

[Shen92]

[Silv95a]

[Silv95b]

[Thur94]

[Tsal91]

397

Sheng, O. R. L., and Wei, C., "Object-Oriented Modeling and Design of
Coupled Knowledge-base/ Database Systems," JEEE 8th International
Conference on Data Engineering, 1992, pp. 98-105.

Silva, M. J. V., A/OODBMT, an Active Object-Oriented Database
Modeling Technique, Ph.D. Thesis, Illinois Institute of Technology, 1995.

Silva, M. J. V., and Carlson, C. R., "MOODD, a Method for Object-
Oriented Database Design," Data & Knowledge Engineering Journal,
Elsevier Science Publishers, Vol. 17, No. 2, November 1995.

Thuraisingham, B. and Schafer, A., "RT-OMT: A Real-Time Object-
Modeling Technique for Designing Real-Time Database Applications," In
Proceedings of the IEEE Workshop on Real-Time Applications, IEEE
Comp. Soc. Press, Los Alamitos, CA, USA, 1994.

Tsalgatidou, A., and Loucopoulos, P., "An Object-Oriented Rule-Based
Approach to the Dynamic Modelling of Information Systems." In Sol, H.
G., and Van , K. M. H. (eds.), Dynamic Modelling of Information
Systems, North-Holland, Elsevier-Publications, 1991, pp. 165-188.

