Bridging the Gap between C++ and Relational
Databases

Uwe Hohenstein

Corporate Research and Development, Siemens AG, ZFE T SE 4, D-81730 Miinchen
(GERMANY)
E-mail: Uwe.Hohenstein@zfe.siemens.de

Abstract. This work presents a new approach to access existing rela-
tional databases from C++ programs in an easy and natural way. The
coupling of both worlds makes use of data reverse engineering techniques.
Semantics that is inherent to relational data is made explicit by using
object-oriented concepts extensively. Relationships and subtypes are ex-
pressed directly in order to take great benefit of them. C++ application
programs are thus given the ability to handle relational data as if they
were C++4 objects.

The key to our approach is a powerful specification language that al-
lows for defining object-oriented views, i.e., describing how object types,
relationships between them, and subtype hierarchies are derived from
relational tables. Even complex relational situations can be remodelled
in an intuitive and concise manner.

Given a concrete specification, a C++ database interface is generated
preserving the object-oriented view for accessing relational data. Access
methods are automatically implemented on top of the relational system.

1 Introduction

Nowadays, it is widely accepted that the object-oriented paradigm reduces the
difficulty of developing and evolving complex software systems. Object-oriented
programming languages encompass useful constructs such as inheritance and
encapsulation that can be used to define complex objects and behavioural pro-
perties of objects. These pleasant characteristics make them more desirable for
handling many kinds of new applications than conventional programming lan-
guages.

Applications written in object-oriented programming languages naturally
want to store objects in a database and retrieve them. In fact, object-oriented
DBSs (database systems) pick up this point and enhance object-oriented langua-
ges to support database capabilities like persistence, transactions, and querics
in a homogeneous manner so that the programmer gets the illusion of just one
language.

But on the other hand, enterprises are just advanced to gain confidence in
relational DBSs since robustness and reliablity are gradually accepted. Storing
data in relational databases, lots of applications have been developed on top of
such systems recently. This data is a necessary input to many decision making

399

processes. New emerging applications will still need to access this relational

data. Consequently, many companies will not replace their legacy system with
object-oriented ones for the forseeable future [IEEE95, PeH95].

In fact, there is no principle problem to make relational data accessible from
object-oriented programming languages. Database applications can be written
using embedded SQL statements. But this approach suffers from the need to ma-
nage two languages with absolutely different paradigms and to interface them
with extra programming effort (“impedance mismaich”). Furthermore, the “se-
mantic gap” is coming to light: The application maintains complexly structured
objects, while the relational DBS provides simple tuples. Retrieved tuples must
be converted to objects, and objects must be broken down to tuples. The hand-
ling is cumbersome and makes application programs difficult to write and hard
to read.

In this paper, we accomodate ourselves to the significance of legacy data
existing in relational DBSs and the programming language C++ [Str91]. The
main contribution consists of proposing a flexible and homogeneous coupling
of both worlds, solving the problems of impedance mismatch and semantic gap
in an elegant way. The impedance mismatch is avoided by staying completely
in C++. Database features are encapsulated in predefined C++ classes and
methods, thus hiding the specific coupling mechanisms of relational systems.

We bridge the gap between C++ and relational databases by translating
the relational definitions of data to equivalent object-oriented class definitions.
Principally, tables can be represented by C++ classes that get the same attri-
butes. In spite of being able to conceal the cursor concept by means of methods,
the application still handles tuples instead of objects. Tuples can be manipula-
ted in a C++ way, but tuples are isolated, as there are no relationships. Our
solution to the semantic gap is semantic enrichment. The semantics of tables,
being hidden in foreign keys etc., is made explicit. Relationships, subtypes, and
embedded structures are expressed explicitly in object-oriented terms. By using
the C++ type system extensively, applications are able to benefit directly from
the support for inheritance and polymorphism already available in C++.

In sum, C++ application developers see an object-oriented representation
of relational data. Passing on the modelling power of C++ to the operational
level retains the higher degree of abstraction. Manipulating and accessing data
is completely done on a more abstract level in terms of object-oriented con-
cepts, handling objects and relationships. In addition to features for navigating
through the database, powerful associative queries are supported in an object-
oriented way. Software development productivity is increased by eliminating the
need for programmers to code the mapping between the data structures of the
programming language and the database.

There are some commercial C++ class libraries such as Rogue Wave’s DBtools
that attempt to ease the access of relational databases for C++ applications.
They only encapsulate database functionality and essentially hide the embedding
of SQL in a programming language. The handling of relational databases gets a
C'++-like appearing, but the real concepts of object-orientation like inheritance

400

are not applicable. Other work such as [HoO93] addressed some but not all of the
SQL/C++ issues. They proceed in a bottom-up manner and store C++ classes
in relational databases by breaking down objects into tuples. To use existing
relational databases, this implicit mapping must be inverted in order to find a
schema that maps onto the existing tables. Some other tools such as Persistence
and UniSQL [Kim92] behave similarly. Closer to our work comes the approach of
O-R-Gateway [AIT92]. Generating a C++ view of relational data automatically,
their approach suffers from not treating all relational situations correctly. The
interface provides only a rudimentary object-oriented view. Other proposals like
[ABV92]) make things easier as they do not rely on C++ and existing databases,
but design an object-oriented database programming language from scratch.

In the following, we present our approach. Section 2 is concerned with the
database interface for C++4-. The interface we provide is that defined by ODMG-
93 [Cat94], the future standard for object-oriented DBSs. ODMG-93 proposes
an object-oriented data manipulation facility that corresponds to the C++ type
system and provides a C++ conforming way to handle data. Most vendors of
object-oriented DBSs are committed to support this standard soon.

Afterwards, we present the basis for semantic enrichment, a logic-based spe-
cification language (Section 3). This language allows for remodelling tables in
the ODMG-93 object model. Object-oriented views are specified in an intutive
and easy to understand way. The.semantics of tables 1s made explicit, it is “re-
engineered” in object-oriented terms in the sense of data reverse engineering

[HTJC93, CACM94, CBS9%4, PrB94, PeH95].

The specification of semantic enrichment must be done manually, but the
C++ database interface is provided automatically due to a generalive approach.
Given a specification, a generator produces the C++ interface. This interface
implements an ODMG-compliant access to the relational database. Section 4
presents the overall architecture of the generative approach and elucidates the
most important parts of the implementation.

The work we present here is part of a project called “Flexible Integration
of Heterogeneous Database Systems” (FIHD) which is concerned with database
interoperability. Section 5 outlines some further aspects of FIHD. The overall
goal is to provide applications with one single ODMG-compliant interface to
operate on several database systems. The generative approach builds the first
step to incorporate relational systems in such an interoperability approach.

2 The ODMG-93 Database Standard
2.1 Object Model and Object Definition Language

The database standard ODMG-93 is principally independent of programming
languages. An object model provides concepts to define objects in a neutral
form. We briefly summarize the essential terms and concepts used throughout
the paper. Figure 1 presents a simple example modelling a company database.

401

(Address)}— PERSON - Pld) (_Dd)

(Wages}—lWORKERﬂ (Salary }— EMP

WorksIn Staff

Branches

(Speed }—{ SECR | [MGR | Rank)

Fig. 1. Sample ODMG Schema

There are object types (in the sense of C++ classes) like PERSON and DEPT
(department) that possess attributes. Every person (of type PERSON) has a num-
ber (PId), a Name, and an Address. Attributes are associated with a domain, which
may be primitive like Long and Float or predefined like Date, Time and String.
Object types are also valid domains. For instance, attribute Address may be of
domain ADDRESS, which is an object type structured as ZIP code, City, Street,
and Houseno. However, this does not represent a relationship between PERSON
and ADDRESS; a person’s address 1s embedded in PERSON, it is not an objecs
and cannot be referenced from other objects. Furthermore, there are predetined
templates for Set’s, Bag’s, List’s, and Varray’s which can be applied to domains,
e.g., Set<String>. Bags are multisets, which retain duplicates. Lists possess an
order so that the 1-th element can directly be accessed by its position number.

ODMG-93 provides an explicit relationship concept. Worksln is a single-valued
relationship, it points to exactly one object of type DEPT. In contrast, Staff is
multi-valued (denoted as a double-headed arrow), referring to a collection (set or
list) of objects. WorksIn and Staff specify different directions of the same semantic
relationship. Such a relationship is called bidirectional. Referential integrity is
automatically guaranteed, there is no danger of ‘dangling pointers’. Furthermore,
both directions are kept consistent in contrast to simple pointers. If a relationship
between two objects is newly established, then it is visible from both sides.
Relationships can be unidirectional, too: The relationship Head is directed, from
one object type to another. The direction is important for access. Referential
integrity is not controlled and must be maintained manually.

Object types can be organized in subtype hierarchies. Object type PERSON
has two subtypes, (blue-collar) WORKER and EMPloyee, and EMP in turn has
subtypes SECRetary and MGR (manager), graphically indicated by broad arrows.
As in C++, each subtype inherits all the properties of its supertype(s), attri-
butes as well as methods and relationships. Multiple inheritance is possible and
especially useful to express non-disjoint subtypes.

As usual, methods can be defined and attached to object types in order to
define the behaviour of objects.

An Object Definition Language (ODL) reflects the concepts of the object
model and allows for the specification of types and relationships among them in
a syntactic form. The ODL is still independent of language-specific concerns.

402

2.2 Object Manipulation and Querying in the C+4++ Binding

ODL specifications can be transformed into C++ and Smalltalk, obtaining equi-
valent class representations. Corresponding C++ and Smalltalk binding define
their appearings. In case of C++, every object type is transformed into a C++
class. Attributes and relationships are mapped to data members of corresponding
C++ domains or predefined classes. Indeed, relationships result in pointer-like
shapes. All those C++ classes are used by programs to invoke database functio-
nality. They do not reflect only the structure of object types, but also provide
generic methods for manipulating data in C++ by means of an Object Mani-
pulation Language (OML). Each object type possesses predefined methods like
a new operator to create new objects, a delete_object method to delete an object,
methods for navigating along relationships, for transaction management, query-
ing, etc. These C++4 methods enable application programs to access databases.
The following piece of code presents a short C++ application program.

Database db; db.open(“myDB");

Transaction t; t.start();

Ref<EMP> e = new(db) EMP (3, “Lucky Luke", 3000);
Ref<DEPT> d = new(db) DEPT (10, “Cowboys");
e->Worksln = d; cout << e->Worksln->Name << end!;

d->Staff.delete_element(e);

Set <Ref <EMP>> empSet = d->Staff;
t.commit();

db.close();

Database and Transaction are predefined classes that manage database and
transaction handling. After opening a database “myDB”, a transaction is started.
The basis for handling objects are so-called references given by a Ref template.
They behave like C++ pointers in a certain sense, however, they are able to refer
to transient and persistent objects. Particularly, attribute access and method
invocation is done via ‘->’. Here, an object of type EMP with a Pid 3, a name
“Lucky Luke” and a salary of 3000 is created by applying operator new (provided
a corresponding constructor exists for EMP). The operator new is overloaded as
it requires a parameter db, the database the object is to be stored in. Similarly, a
department “Cowboys” is created. The employee e is hired by this department:
d is assigned to the Worksln relationship. Since the Worksln/Staff relationship is
bidirectional, the employee is implicitly inserted into the staff of department d.
This can explicitly be done by d->Staff.insert_element(e), too. The employee is fired
by d->Staff delete_element(e). Additional methods are available to process the staff
as a set of employees (Set<REF<EMP>>), e.g., iterators can be created to handle
a collection element by element. All modifications to data are temporary, until
a commit is made to the transaction. Any changes to objects and relationships
are then stored persistently in the database.

All these methods are predefined for performing database operations. It is
important to note that user-defined methods can be defined in C++ and at-
tached to classes in order to provide object behaviour. These methods can of
course invoke database functionality by using those predefined functions.

403

A special method oql(result, predicate) allows invoking associative queries. The
parameter predicate of type char* contains a string that defines the query specified
in an Object Query Language (OQL); result obtains the query result. For ex-
ample, the query "select d.Name from d in Depts where d.Head Name = 'Lucky Luke' "
computes the names of those departments d (in the extent Depts) that are headed
by ‘Lucky Luke’. OQL is an object-oriented extension of SQL designed to work
on the constructs of the object model. It enhances SQL in an orthogonal manner
with object-oriented features like inheritance and traversal along relationships.
Due to space limitations, the reader is referred to [Cat94] for further details
about the OQL.

3 Specification Language

In order to bridge the semantic gap between C++ and relational databases,
the basic principle of our approach consists of remodelling relational schemas in
the ODMG model in a semantic enrichment process {CaS91, MaM90, NNJ93,
HoK95]. Applications are given “real” object-oriented views of the relational data
icluding relationships and subtype hierarchies. It is just now that applications
reap the full benefits of object-orientation, as they are no longer responsible for
managing relationships and inheritance by their own.

It is very important that semantic enrichment is obliged to make explicit
the correct and precise semantics because object-oriented operations will get
a wrong semantics otherwise. There is the necessity of expressing any kind of
semantics in relational data. Hence, our approach stresses expressiveness. The
price we pay for comprehensive remodelling capabilities is a manual specification
of enrichment. We consider this matter not so bad due to the following reasons:

e The information in demand is often available in form of (object-oriented)
design documents, which provide a good basis for semantic enrichment.

® There has been a flurry of activities in the field of data reverse engineering to
propose algorithms, methodologies, and heuristics [HTJC93, CBS94, PrB94].
This work as well as knowledge acquisition approaches [CaS91, MaM90], which
analyze the contents of databases in order to detect semantics, do a valuable
job. Hence, our approach is complementary and can benefit from this work
already done.

* Automatic types of reverse engineering and knowledge detection do not al-
ways produce satisfactory results. For example, earlier approaches simply do
not attempt to rebuild subtypes, or are only able to rebuild subtypes crea-
ted by just one strategy (e.g., [CaS91, AIT92, YaL92]). Multi-level subtype

hierarchies are rarely managed properly.

We propose an approach that is capable of remodelling any relational si-
tuations in object-oriented terms by extensively using all the concepts of the
ODMG-93 object model. In particular, the general case of of multi-level hier-
archies can be handled. A powerful specification language is used to this end,
taking into account several enrichment concepts in an orthogonal manner. This
language allows one to precisely describe how tables in the relational database
schema can be combined to object types. Nevertheless, we do not want to over-

404

shoot the mark. We do put emphasis on powerful mechanisms to derive object
types form tables in various ways. But we have to avoid problems with view
updates. This is important because we automatically generate object-oriented
operations (see later) the effect of which must be unambiguous when operating
on tables. Hence, no schematic discrepancies [SCG92], which restructure table
and attribute names to attribute values, are expressible. Such aspects are a mat-
ter of taste how to see data, and consequently less necessary to express real
semantics.

The syntax of the specification language bridles the horse from the back.
It is specified what object types are the outcome and how they correspond to
tables. This is advantageous because an object type is generally made up of
several tables. The syntax remains intuitive and easily understandable, and the
object types are immediately visible. The language adopts the ODL of ODMG-
93 and introduces some amendments in order to express connections between
object-oriented and relational schemas.

We are now discussing the specification language in more detail. The discus-
sion is based on some relational representations of the schema in Figure 1. The
examples will give a feeli.g about the underlying principles, i.e., how to cluster
several tables into one object type, how to rebuild relationships, and how to
regain complete subtype hierarchies.

3.1 Deriving Object Types and Relationships from Tables

We consider the relational schema given in Figure 2. Table M represents managers
(MGR), while table D contains departments (DEPT). The branches of departments
are stored in table B (DId, Loc, No) the tuples of which contain the branches for
each department DId value by value; each branch receives a number enumerating
the branches of a department. The headquarter is located in AA (No=1), BB is
the second place, and so on. The Mgr column in table D is a foreign key, it refers
to the manager in M who is the Head of that department.

The enrichment specification in Figure 2 combines the tables D and B to
one object type DEPT with a multi-valued attribute Branches. Object types are
defined as interface declarations as in ODL. The extent clause defines a variable
to access the objects of a type: Depts is necessary to constitute an entry point
in DEPT for querying data; only then can objects of a type be queried in an
associative manner. The key-clause contains (object-oriented) key attributes that
care for uniqueness. For example, the Dld-values of departments are requested
to be unique. The part in curly brackets specifies attributes and relationships.
This is the usual way to define object types in the ODL.

Those interface declarations form the basis for logic-based extensions that
express connections between object-oriented and relational schemas. The clause
from relation relates the specified object type to a table. It specifies in what table
the objects of a type are found. DEPT from relation D[Did] means that type DEPT
1s directly built from table D. DId is the relational key of D. Each tuple, which is
uniquely identified by its key value, refers to one object. We presuppose a key for
each table, because it is necessary to constitute object identifiers in the runtime
system (see later on). Composite keys are possible and denoted as (21.a2,23,...) .

405

D|DId Name Mgr ~ B|D.DId Loc No
Branch Mid
GAN 4 o a1 (e
20 BB 4 10 BB 2 Did (_ Name

10 CC 3
20 BB 1 (Mame]
MIMld Name ... Dept Rank ~S> DEPT Head MGR

|4 D 10 1

interface DEPT

from relation D[DId]
(extent Depts
key DId
{attribute Long DId = D.DId;
attribute String Name = D.Name;
attribute List<<String> Branches = < B.Loc:B.No l B.D.DId = D.DId >;
relationship MGR Head = (M | M.MId = D.Mgr);

}

Fig. 2. Sample Enrichment

Equations ‘=" occurring behind the attributes relate object type attributes to
relational attributes. The simplest form is Long DId = D.DId and directly connects
an object type attribute DId with domain Long to a relational attribute Did.
Attributes are renamed by specifying different names on the left hand side of
the equations. Renaming is useful to choose intuitive and self-explanatory names.

The list-valued attribute Branches is made explicit in DEPT by using a list
constructor <...> in Branches = < B.Loc:B.No | B.D_DId = D.DId >: Compute the
Loc values for each tuple in B that possesses a D_DId equal to the DId of the
department. In this case, the attribute No is used to determine the order in
the list. Similarly, a set constructor could have been applied to build a set of
branches: Branches = { B.loc | ... }. In the same way, the effect of normalization
can be inverted. It is possible to ‘cluster’ any tables related by attributes to one
object type [Yal.92].

Similarly, relationships can be expressed. The Head of a department (repre-
sented by a foreign key Mgr) is made explicit in a specification by relationship
MGR Head = (M | M.MId = D Mgr): The head consists of that tuple in M (identi-
fied by the respective key) that possesses an MId equal to the Mgr-value of the
department. Round brackets convert a tuple in M into a corresponding object of
type MGR.

If the relationship Head were represented by a table H(DId,MId), containing the
Id’s of the participating tables, then the specification would look like relationship
MGR Head = (M | M.Mid = H.Mid, H.DId = D.DId) .

In both cases, composite attributes for expressing the relationships can also
be handled and specified.

406

3.2 Subtype Hierarchies

Remodelling subtype hierarchies requires advanced concepts, since several rela-
tional representations exist. Some approaches to semantic enrichment [MaM90,
CaS91, YaL92] are able to make subtype relationships explicit. However, they
generally take into account only one strategy (the vertical one below) and lack
the handling of multi-level subtype hierarchies. But it is just the “implementa-
tion” of subtypes offers a wide spectrum of possibilities. It is important to detect
them correctly, even if they have been applied in a mixed manner.

We refer to the subtype hierarchy given in Figure 1, however, we disregard
relationships for a moment. Let us assume in the following that Pld 1 is a real
person, 2 an employee, 3 a secretary, 4 a manager, and 5 and 6 are workers.

Vertical Partitioning. Possibly the most common way of representing subtype
hierarchies is a wvertical partitioning. Let us organize the tables P, E, M, S, and
W in Figure 3 into a subtype hierarchy. Each table refers to one object type in
the hierarchy, as usual, and contains all the elements of the corresponding type,
ie., the instances of the type and all its subtypes. Only the specific attributes
of the type are found in the table; attributes inherited from supertypes are
available in the tables associated with that supertype. The following inclusions
then hold between supertype and subtype tables: P.ld D W.wid, P.Id D E.Eld,
E.Eld D S.SId, and E.Eld O M.MId. To access the attributes of supertypes, tables
must be joined over the Id attributes: Take the Mld-value of a manager and look
in E and P for tuples that have the same value as FId and Id, resp., to get the
properties inherited from PERSON and EMP. Please note that those Id attributes
do not need to be keys, but they must guarantee uniqueness of attribute values.

Plld Name Addr EIEId Salary S[Sld Speed M|MId Rank
1 A Atown 2 2000 [3 133 4 1
2 B B_aity 3 3000
3 C Cuillage 4 4000 W|WId Wages
4 D D.village

. 5 555
5 E E_cty 6 666
6 F F_town
interface PERSON from relation P{id]
{ attribute Pld = P.Id;
attribute Name = P.Name;
interface EMP : PERSON from relation E [Fld =P.1d]

interface WORKER : PERSON from relation WWId=P.Id] ...
interface SECR : EMP from relation S [Sld =E Eld] ...
interface MGR : EMP from relation M[MId=E .Eld] ...

Fig. 3. Vertical Partitioning of Subtypes

The enrichment specification in Figure 3 should be understood as follows.

407

The elements of PERSON are found in table P, as usual (from relation), elements
of subtype EMP in E, and so on. Since each table contains only the specific
attributes of that object type, the connection to the supertype table must be
established. This is done by EMP : PERSON from relation E[Eld = P.Id]: Tables E and
P are related by attributes Fld (of relation E) and Id (of P): A person is an
employee if its I1d occurs in E as Eld. Composite attributes are again possible.

Horizontal Partitioning. Horizontal partitioning of types into tables is ano-
ther subtype representation. As shown in Figure 4, one table again holds the
information of one object type in the hierarchy. The structure of each table
comprises the specific information of its corresponding type and, unlike vertical
partitioning, the attributes of supertypes, too. Hence, the attributes inherited
from supertypes are directly available in each table. But each table contains only
the instances of the type itself. Hence, a manager is stored in M only, however,
including the EMP and PERSON information. On instance level, exclusion con-
ditions are fulfilled between super-and subtype tables: Pld N E.Eld =), P.ld N
WWId =@, EEIdNSSId= @, and EEldN MMId = @.

P|ld Name Addr E|Eld Name Addr Salary W|WId Name Addr Wages
1 A A_town] 2 B B_cty 2000 5 E E_city 555
6 F F_town 666
S|Sld Name Addr Salary Speed M]Mld Name Addr Salary Rank
3 C C.village 3000 133 [4 D D.village 4000 1

interface PERSON from relation P[Id] + W[WId] + E[EId] + S[SId] + M[MId]
{ attribute Long Pld = P.1d + W.WId + E.Eld + S.Sld + M.Mid;
attribute String Name = P.Name + W.Name + E.Name + S.Name + M.Name; ... }
interface EMP : PERSON from relation E[Eld] + S[Sld] + M[MId]
{ attribute Float Salary = E.Salary + S.Salary + M.Salary; }

interface WORKER : PERSON from relation W[WId]
{ attribute Float Wages = W.Wages: }

interface MGR : EMP from relation M[MId] interface SECR : EMP from relation S[SId]
{ attribute Long Rank = M.Rank; } { attribute Long Speed = S Speed; }

Fig. 4. Horizontal Partitioning of Subtypes

Figure 4 demonstrates how to rebuild the subtype hierarchy. Each from relation
clause defines how to compute all the elements of a type. The elements of
PERSON, spread over the tables P, W, E, S and M, are obtained by computing the
union (‘4°) of tuples. As objects are made of tuples of different tables, the key
values of those tuples must be used to build object identifiers. The parts [...] indi-
cate the corresponding key attributes. Attribute correspondences are specified in
the same way: ld = P.1d + WWId + E Eld + S.SId + M.MId identifies semantically
equivalent attributes in tables; the Ids of persons are stored in all of those tables,
however, in differently named columns!

408

Flag Approach. In contrast to the first strategies, one single table can represent
the whole hierarchy as well. One table P contains all the information about all
the object types. Flags like Emp?, etc. determine the specific subtype. Flags
can denote elements or instances. They represent elements in Figure 5: Tuples
having Emp?=true correspond to elements of EMP. Naturally, only sensible flag
combinations must occur. For example, Emp?=false and Secr?=true is not valid,
a secretary must also be an employee. Furthermore, non-applicable attributes
must be NULL so that Emp?=false implies Salary=NULL.

ST A WN =

P|ld Name Addr Emp? Salary Mgr? Rank Secr? Speed Worker? Wages
A A_town false NULL false NULL false NULL false NULL

B Bcity true 2000 false NULL false NULL false NULL

C

D D_village true 4000 true 1 false NULL false NULL

E E_city false NULL false NULL false NULL true 555

F F_town false NULL false NULL false NULL true 666

interface EMP : PERSON from relation P[Emp? = true]

{ attribute Float Salary = P Salary; }
interface WORKER : PERSON from relation P[Worker? = true] ...
interface SECR : EMP from relation P[Secr? = true] ...

C_village true 3000 false NULL true 133 false NULL
interface PERSON from relation P[Id] ...
interface MGR : EMP from relation P[Mgr? = true] ...

Fig.5. Flag Approach

If flags denote instances instead, then Emp?=true holds for real instances of
EMP only. SECR instances still have Secr?=true, but now Emp?=false. Then, at
most one flag can be true for each tuple in P.

Some variants of the flag approach are conceivable. In place of flags, an
enumeration type type of domain { Emp, Secr, Mgr, Worker } can serve the same
purpose. For example, the instances of EMP get a type-value Emp. The subtype
specification can also be done by condition, e.g., Salary!=NULL could detect EMP
instances. Even more general expressions could be used. However, there will be no
possibility to distinguish between “value is unknown” and “value is inapplicable
(no subtype attribute)”, because both are represented by NULL.

Flag approaches can again be handled in the from relation clause. As usual, the
part in {..] defines how to compute elements. The specification given in Figure
5 defines that any tuple in table P with Emp? = true refers to an object of type
EMP. These objects are identified by Pld, as arranged in PERSON.

Other flag approaches are handled by different forms of conditions. For ex-
ample, if flags denote instances, the conditions look like

interface EMP : PERSON from relation P[Emp? = true or Secr? = true or Mgr? = true]
Those tuples of P are elements of EMP which have one of the (exclusive) flags

Emp?, Secr? or Mgr? true. Naturally, this discriminant form allows for arbitrary
conditions like [Salary!=NULL] and [type=Emp], too.

409

Complete Materialization. Another relational representation uses the sche-
mas of horizontal, but the instances of vertical partitioning. For example, type
EMP is represented by a table E(Eld, Name, Addr, Salary) and contains three tuples
with Fids 2, 3 and 4. This leads to redundancy, as the table P(ld, Name. Addr) con-
tains the Name and Addr information for all tuples. Consequently, the name ‘B’
of Id 2 is stored in P and E. Since each table contains the whole information of a
type, all the elements and all the attributes, we call it complete materialization.
Rebuilding the hierarchy from these tables is done in the following way:

interface EMP : PERSON from relation E[Eld =P.1d]
attribute Float Salary = E.Salary = S.Salary = M Salary;

The form of from relation is similar to vertical partitioning, as each table
contains elements. Hence, the correlation to supertype tables is expressed by
Eld=P.1d. But in contrast to vertical partitioning, redundancies must be reflected
for the attributes: Employees’ Salaries are stored in E, M and S.

3.3 Multiple Inheritance

Subtypes are disjoint w.r.t. instances in C++ and the ODMG object model. On
the other hand, this is not true for tables, since they can contain tuples with
the same Id. For instance in Figure 6, an employee with Eld 3 occurs in S and E,
(s)he is a secretary and a manager at the same time.

E|Fid Salary S|SId Speed M|Mid Rank
2 2000 2 122 3 2
3 3000 3 133 4 1
4 4000
interface EMP : PERSON from relation E[Eld = Id] ...
interface SECR : EMP from relation S[SId = Eid] ...
interface MGR : EMP from relation M[MId = EId] ...
interface MGR_SECR : MGR, SECR from relation M,S [M.MId = S SId] ...

Fig. 6. Non-disjoint Subtype Tables

Non-disjoint types can be modelled by means of multiple inheritance. An arti-
ficial subtype MGR_SECR represents the intersection of MGR and SECR. MGR_SECR
is necessary to be able to insert objects like 3 that are both manager and se-
cretary. The attributes inherited from EMP via MGR and SECR are virtual and
occur only once in MGR_SECR. The type EMP enables accessing all the elements,
no matter whether managers, secretaries, or both. Please be conscious of telling
apart elements and instances: 2 and 3 are elements of SECR, however, 2 is the
only instance, as 3 has become an instance of SECR.MGR.

410

Multiple inheritance is denoted as in C++, specifying several supertypes be-
hind a colon: MGR_SECR : MGR, SECR. According to the semantics of from relation,
elements of MGR.SECR are characterized: The set of elements is computed by
intersecting tables M and S by a condition M.MId = S.SId.

3.4 Additional Concepts

Additional forms are available to handle further aspects which are important for
building object-oriented views of tables. We briefly summarize them.

Multivalued attributes like Branches are sometimes available as a constant
number of relational attributes, if the collection has a fixed size or an upper
bound. This is particularly useful for small collections. Hence table D may look
like D (DId, Name, Branchl, Branch2, Branch3), if there will be at most 3 branches in
a department. In order to handle this, constant sets can be built over columns:
Set<String> Branches = { Branchl, Branch?2, Branch3 } .

Several relational attributes may correspond to a predefined ODMG data
type such as Time and Date. For example, three Long-valued attributes Day, Month,
and Year, assume that they occurred in table D, could be combined to form a
date of foundation. A corresponding attribute equation then makes use of a tuple
constructor (...) and looks like Date Foundation = (D.Day, D.Month, D.Year) .

Sometimes it is useful to structure several relational attributes in a similar
manner, even if no predefined domains are applicable. Relational attributes ZIP,
City, Street, and Houseno obviously represent addresses. It is useful to define an
embedded structure Address that contains these components. The address of a
person could be made explicit by defining an embedded type address that is used
as domain for Address. A corresponding equation is similar to above.

New ohject types may be introduced, e.g., to concentrate common attributes
into a generalized object type. Suppose tables A (Ald, a, ¢, d) and B (BId, b, ¢, d)
are given. Both tables can be generalized to a newly defined supertype C that
receives ¢ and d. Supertype C does typically not contain instances of its own.
Indeed, creating instances, it is not clear in which table to put them.

Owing to optimization reasons, tables are often merged after design, in order
to avoid costly join operations. Combined with previously discussed concepts,
the specification language allows for splitting up tables into several object types.

One important point has been neglected so far. Relational DBSs possess mo-
delling constructs such as not null that are provided neither in C++ nor in ODL.
In order to reflect the relational semantics entirely, we introduced corresponding
restrictions. KKeywords like not null can be specified for attributes (in the rela-
tional sense), and relationships can be defined as mandatory: Any object must
participate in a relationship of that type.

3.5 Complex Example

In order to demonstrate the power of the specification language, we are now pre-
senting a complex relational schema that comprehends several of the concepts
discussed previously in combination. Particularly, we use a relational representa-
tion of Figure 1 that incorporates different subtype strategies within one hierar-
chy. Sometimes, it is quite useful to having applied different strategies. Reasons

411

for that might be to speed up access for specific applications, which have diffe-
rent preferences for each level of the hierarchy. We apply a vertical strategy to
PERSON-EMP and EMP-SECR, a horizontal one to EMP-MGR, and a flag approach
to PERSON-WORKER. We obtain the tables given in Figure 7.

P|ld Name Addr Worker? Wages E|Eld Salary Dept S|Sld Speed
1 A Atown false NULL 2 2000 10 [3 133
2 B Bty false NULL 3 3000 20
3 C Cuillage false NULL
5§ E Ecity true 555
6 F F_town true 666 B[D_Dld Loc

DiDid Name Mgr

10 AA 4
20 BB 4

M|MId Name Addr Salary Dept Rank
D D.village 4000 10 1

interface PERSON // no supertype

from relation P[ld] + M[MId]
(extent Persons
key Persld)

{ attribute Long Persid = P.1d+M.MId;

interface EMP : PERSON
from relation E[Eid=P.Id][E!d]+M[MId];
& extent Emps)

relationship DEPT Worksln inverse Staff
= (D | D.DId = F.Dept+M.Dept); }

interface MGR : EMP
from relation M[Mid]
}attribute Long Rank = M.Rank;

attribute String Name = P.Name+M.Name;
attribute String Address = P.Addr+M . Addr;

attribute Float Salary = E.Salary+M Salary;

interface DEPT // no supertype

from relation D[DId}]

(extent Depts
key DId)

{ attribute Long DId = D.Dld;
attribute String Name = D.Name;
attribute String Address = D.Addr;
attribute Set <String> Branches =

{ B.loc | B.D.DId = D.DId }
relationship MGR Head =

(M | Mid = D.DId);
relationship Set<EMP> Staff

inverse Worksln =
{E4+M | E.Dept+M.Dept=D.DId };

}

interface SECR : EMP
from relation S[SId=E Eld}
{ attribute Long Speed = S.Speed; }

interface WORKER : PERSON // flag

// vertical

from relation P[Worker?=true]
{ attribute Float Wages = P.Wages; }

Fig. 7. Complex Specification of Semantic Enrichment

The tables reflect the characteristic inclusions E.Eld C P.Id and S.Sld C E.Eld of
vertical partitioning. According to horizontal partitioning, an exclusion condition
E.Eld "M.MId = @ holds. M contains additional employees who possess different
1ds and have the complete PERSON and EMP attributes. Workers, finally, do not
have a table of their own, but are part of P with a discriminant flag Worker?.

The Worksln and Head relationships are represented by foreign keys Dept and
Mgr, respectively. The Dept column in E refers to the department’s DId, the em-
ployee works in, and similar for Mgr. Please note that horizontal subtypes receive
all the properties of their supertypes. Hence, M also has an attribute Dept, since
EMP’s relationship to DEPT is valid for managers, too. Even the attributes of in-

412

direct supertypes are repeated. M obtains the attributes of P, although it is not
a direct horizontal subtype of P. This is necessary, because M cannot “inherit”
the attributes of PERSON otherwise by means of joins!

Figure 7 presents a specification that regains the schema given in Figure 1.
PERSON from relation P[id] + M[MId] specifies a horizontal strategy. The elements
of PERSON are obtained by computing the union (‘4+’) of tuples in P and M.
Horizontal strategy is reflected in attribute equations: Name = P.Name + M.Name
specifies that people’s names occur in P and M.

The form EMP : PERSON from relation E[Fld = P.Id][Fld] + M[MId] represents a
vertical strategy first of all: E[Eld = P.Id] means that E is a vertical subtype of
P. The tables E and P are related by attributes Eld (of table E) and Id (of P).
E[.. JIEM] + M[MId] specifies that EMP objects are stored in the tables E and M
due to horizontal partitioning. Please note that different attributes could have
been used for vertical and horizontal strategy!

WORKER : PERSON from relation P[Worker? = true] indicates a flag approach: The
type WORKER is subtype of PERSON represented by a flag Worker? in table P.

Set <EMP> Staff = { E + M | E.Dept + M.Dept = D DId } expresses a set-valued
relationship to EMP for interface DEPT. Staff consists of those tuples in E and M
(identified by respective keys) that have the department’s DId as value of Dept.
Keyword inverse marks a relationship as bidirectional, thus relating Worksln of
EMP to Staff of DEPT. The inverse relationship Worksln is analogously computed
by (D | D.DId = E.Dept + M.Dept). Head and Branches are specified as in Figure 2.

4 Generative Approach
4.1 Principle

The specification of object-oriented views is done manually by means of a speci-
fication language. Nevertheless, the database interface is produced automatically
due to a generative principle: Given as input any specification of semantic en-
richment, a generator produces a pile of C++ classes according to the langnage-
specific ODMG C++ binding (cf. Subsection 2.2). The generated output pro-
vides a C4+ database interface implemented on top of the relational system.
Each interface declaration results in exactly one C++ class that defines generic
methods for manipulation and navigation according to the ODMG standard.
User-defined methods are added to these classes. C++ applications that want
to access the relational database need only compile and link these classes into
application programs. Figure 8 illustrates the process of generation. Software
components are represented by boxes and require input data and produce out-
put, both shown as parallelograms. Closed lines denote data flow, while broken
lines define function calls.

Let us discuss the information flow between the basic components. Starting
point is a specification defining semantic enrichment for a relational database.

A Parser first takes the name of a relational database and then reads the
information about the database schema: Table and attribute names are found
in the dictionary of the relational system. This information is stored in a meta

413

database and forms the relational part of meta-information. Parsing the enrich-
ment specification, information about the derived object-oriented schema and
its connection to relational tables is added to the meta information.

Enrichment
Specification Parser || Generator
Meta L ek
information ecker

ODMG-93
C++ Classes:

]
|
|
|
I !
¥ ¥

Relational DBS SQL

Fig. 8. Generative Approach

The implementation of the parser uses a comfortable compiler-compiler. The
syntax of the specification language is defined in a yacc-like format, and semantic
actions such as filling the meta database are implemented in C++. In addition
to that, a lot of context-sensitive syntaz rules are supervised. For example, all
table and attribute names occuring in a specification must exist in the relational
schema, and attributes must belong to the tables. The various constructs to
remodel subtype hierarchies and relationships have additional demands.

A Generator takes the meta information as input and generates the ODMG-
93 conforming classes. The output consists of C++ header files (“.h”), which
contain the C4++4 class definitions including the signatures of methods, and im-
plementation files (“.cc”) implementing those methods. Naturally, the imple-
mentation of methods must call SQL in order to access the database.

As mentioned before, the meta database comprises the information about
the relational schema, the outcoming object-oriented schema, and interrelations
hetween them. Figure 9 gives a simplified view of the meta information. The left
side consists of the relational part: R_-TABLE contains the table names of a given
schema; a table consists of several R.COLUMNs, and each R_.COLUMN possesses
a relational R_-DOMAIN. One or more columns build the key of a table. Ana-
logously, the right side contains the object-oriented counterpart, O_TYPEs with
several O ATTRibutes and associated O_DOMAINs. Relationships between object
types are kept in O_RELSHIP; each relationship has a source type and a desti-
nation. Subtype hierarchies are reflected by subtypes/supertypes relationships.
In the middle, information about semantic enrichment is placed. Each O_TYPE
is related to several tables depending on the subtype strategy. In general, one
table is the base table of an object type. Consequently, each O_TYPE refers to
an ENRICHMENT object (via enriches) that determines the base table and its key
columns. Subtype strategies are reflected by special subtypes of ENRICHMENT.
For instance, HORIZONTAL keeps a list of pairs (R_-TABLE, R_COLUMN) according

414

to the ‘+' (plus) form of from relation. Similarly, attribute and relationship equa-
tions are handled by ATTR.ENRICHMENT and R_ENRICHMENT. This simplified
view illustrates that all the information about a specification is stored.

R DOMAIN corresponds corresponds O DOMAIN
domain olumn enriches domain
[R.COLUMN [+£22 ATTRENRICHMENT 2[5 ATTR
\table i plus '} 1 ltype 1
'co!umns key key atirs | key t;';lbs
byse enriches —) ype
R_TABLE ENRICHMENT o O.TYPE super
uper_key F 3 I i extent] YDEs
VERTICAL refships
super.table
ClHORIZONTAL
plus -] EXTENT
[_BAsIC] Source destin
plus > RENRICHMENT O_RELSHIP [T inverse
from

Fig. 9. Meta-Schema

Specifying semantic enrichment explicitly, obviously, not every enrichment
specification makes sense. In principle, the user supposes that the database com-
prises the semantics specified, but the database does not know what semantics it
has to satisty. An Integrity Checker has the task to prevent users fron specifying
nonsense by checking the relational data against a specification. Subsection 4.3
discusses this point in more detail.

4.2 Architecture of the Runtime System

The output produced by the generator is an object-oriented runtime system
that provides an ODMG-93 conforming access to relational data. C++ classes
represent the relational data, however, in a less simple form than Just tables. Mo-
reover, methods define means for manipulation. These methods work on objects
and are automatically implemented on relational SQL. In fact, the implementa-
tion is done in direct correspondence to the semantic enrichment. For example,
referring to Figure 7, we consider the case of creating a new employce:

Ref <EMP> emp = new(db) EMP (3, “Lucky Luke", 3000); (1)
emp->Worksln = d; (2)

The first C+4 statement implies an SQL insert into tables E and P due to
a vertical subtype strategy: Employees are stored in both tables. Assigning a
department to the employee requires an update of the foreign key atiribute Dept
in E (Dept represents the Worksln relationship).

Let us discuss the architecture of the generated runtime system. The imple-
mentation files (.cc) do not directly use the relational database system due to

415

portability, efficiency, and reduced amount of generated code. Hence, the run-
time system is layered in order to bridge the gap between the ODMG interface
and relational operations. Figure 10 gives a brief survey about the layering.

I Application |

Database
Interface
Layer

I Database |

Fig. 10. Runtime System

The upper ODMG Layer consists of ODMG-93 conforming C++ classes that
provides database access. Some classes like Transaction, Database and templates
like lterator<T>, Ref<T> and Set<T> are independent of the enrichment speci-
fication. Others indeed are dependent, in particular those classes that represent
interface definitions.

The ODMG layer classes use functionality supplied by a Runtime Layer.
This layer consists of several forms of Managers, a Transaction_Manager, Da-
tabase_Manager, Extent_Manager, Object_Manager, and Query_Manager. The
Query_Manager handles OQL queries, by translating them into relational SQL
queries [Hoh95]. An Object_Manager manages all the objects at runtime in a
cache. All modifications to objects are first made in the cache. When a commit
occurs, all changes are made persistent in the database, 1.e., objects are taken
from the cache and put into the relational database. Figure 11 illustrates the
principle of the Object_Manager.

Ref objects, the substitutes for pointers, refer to temporary identifiers, so-
called tids, in the cache. This is advantageous because several references el,
¢2 can point to the same object, e.g., if this object is fetched several times
into different references. Tids avoid synchronizing modifications via different
references, as just one physical instance of the object exists:

The internal structure of the Object_Manager can be understood as a coll-
ection of triples (tid, key, object pointer). Key and Tid are Auxiliary Classes. Key
maintains the key values of any tuple. Keys are used to build object identifiers
in the runtime system.

We discuss the connection between the ODMG Layer and the Object_Manager
by listing the actions for creating a new object emp in OML (cf. (1) above). Ope-

416

rator new is overloaded as it now yields a reference instead of a pointer. The
implementation of new creates the storage for an EMP object; attributes remain
unset firstly. Then a tid entry is requested from the Object_Manager. An entry
in the cache is made, relating tid and object pointer.

Ref <EMP> el EMP

Tid
I R R e
Ref<EMP> e2) k ={Z|
T —

Ref<DEPT> d 4 DEPT

N N o vy

Fig.11. Object_Manager

The implementation of the constructor EMP::EMP(Long k, ...), being implicitly
invoked afterwards, reserves the key k in the relational database. If the key
already exists, an error is returned. Furthermore, a Key instance is created from
k. Tid and key are then associated in the cache. The Key instance serves as an
object identifier: The pair (EMP, 3) uniquely identifies an object in the database,
since 3 is unique in type EMP. The assignment emp = ... finally lets the reference
of the newly created employee point to the entry in the cache.

The methods to allocate storage and to associate Key’s, Tid’s, and object
pointers are part of the Object_Manager. Additional methods are available to
look up objects by means of keys or tid’s. The internal state of objects, i.e.,
whether they are deleted, inserted, or modified, is maintained and can be asked
and set by corresponding methods. Any modifications are made in the cache,
making topical the objects’ states. Only if a commit is invoked at the ODMG
layer, changes are made persistent. Indeed, the implementation of this method
scans the cache and calls operations according to the objects’ states, i.e., delete,
insert, or update them. These basic operations are provided by the beneath
Object_Converter.

The Object_Converter consists of several classes: each interface has a corre-
sponding Object_Converter of its own. They support basic operations

® to load_objects into cache for a given key or tid,

¢ {0 load_extent (elements) and load_instance sets in order to materialize whole
object types,

e t0 load.relationships of objects given by tid, and
e to store, modify, and delete objects.
‘The implementation of these methods is dependent on the specification of

semantic enrichment as the effect varies from type to type due to specific map-
pings onto tables and columns. For example, inserting an object of type EMP

a7

has an impact on table E and P; both contain information about employees. But
storing a department is only done in D.

The Object_Converters incorporate several strategies to load objects from
the database into the cache. Their goal is to find a good compromise between
efficient access, main memory occupation, and necessity of information. In any
case, if an object is demanded (calling load_object), all the information directly
available in the corresponding base table is fetched into cache. Materializing an
EMP object thus picks up all the informationstored in E, i.e., Eld, Salary, and Dept;
the Dept-value is converted into a relationship Worksin, but the related department
is not always loaded. State information in the Object_Manager maintains what
parts of an object have been fetched, what attributes, relationships, attributes
of supertypes, and so on. Consequently, it is known what is available and what
has to be fetched on demand. Sometimes, further information can be easily
computed by joins in advance. For example, the department of an employee,
which is referred by column Dept in E and M, can be materialized when fetching
an employee by joining D, E, and M. Similarly attributes of supertypes can be
pre-fetched by joins, e.g., a join between E and P to make available attributes
inherited from PERSON. Nevertheless, too many joins in one SQL statement
arc rather inefficient. Global parameters like a maximal number of joins to be
performed, maximal amount of storage for one object, total cache size, etc. can be
tuned in order to control materialization. In a simple case, just a “lazy fetching”,
picking up elementary properties of an object, is possible.

The Object_Converters could in principle access the relational database di-
rectly. However, we put a Database Interface Layer in between due to por-
tability; each relational DBS has its own call level interface. Exchanging the
underlying relational DBS thus requires few modifications in only this layer.

4.3 Constraints Checking

Specifying semantic enrichment manually, there must be a monitor checking
whether an enrichment specification makes sense, i.e., whether the database
contains the semantics specified by a user. Comprising this semantics means for
relational systems that certain conditions are satisfied by the relational data.
Those integrity constraints are monitored by an integrity checker.

Given an enrichment specification, many constraints are derived by the ge-
nerator automatically. For example, DEPT from relation D[DId] requires that DId is
a candidate key for relation D: DId is obliged to uniquely identify tuples. The
below SQL query Q) yields all tuples that violate this constraint:

select * select * fromS s select *

from D where not exists (select * from Ee, Mm
group by DId from E e where m Mld = e.Eld
having ent(DId) > 1 where e Fld = 5.51d)

< Query Q1 > <Query @z > <Query Q3 >

Typical constraints claim for inclusion and exclusion conditions. Hence, as
SECR is vertical subtype of EMP in Figure 7, the inclusion S.Sld C E.Eld must
hold; Q2 detects violation. Horizontal strategy demands exclusive key values in

418

tables, e.g., E.Eld N M.MId = @, respectively Q3. Combining strategies produces
constraints that are even more complex like E.Eld C o'worker?=false(P.1d).

These SQL queries are automatically generated and must yield an empty re-
sult; the constraints are violated otherwise, and the specified enrichment is not
sensible. However, the queries supervise correctness only at the time of monito-
ring; constraints might not hold later on so that periodic checking is necessary. In
fact, those queries are also useful in the reverse engineering process to indicate,
e.g., subtype relationships. This is taken into account by the process described
in [HoK95].

5 Conclusions

In this paper, we described an approach to interfacing existing relational data-
bases from C++ programs. Handling the database is completely done in C4+4.
In contrast to some commercial tools that encapsulate database access in special
classes, we take a step further and eliminate the semantic gap between relational
tuples and C++ objects. Our solution to this problem is semantic enrichment
[MaM90, CaS91, HoK95]. Powerful object-oriented view of tables can be built
by taking full benefit of object-oriented concepts. Hence, relational data is ma-
nipulated in an object-oriented manner, i.e., real objects are handled instead of
tuples. Relationships can be traversed like pointers, and inheritance is applicable.

Our approach consists of specifying how tables are combined to object ty-
pes by using a powerful specification language. This is advantageous because
the approach is capable of remodelling complex relational situations as classes.
Having defined a specification of semantic enrichment, a generator produces a
corresponding object-oriented database interface. The methods, as well as their
implementations on top of a relational system, are generated automatically. The
overall result behaves like an object-oriented DBS. Nevertheless the goodies of
relational systems, i.e., powerful query capabilities in the sense of SQL are still
available, now in an object-oriented fashion. Deficiencies of querying, often re-
cognized in object-oriented systems, are thus eliminated.

The generated interface complies with the future standard ODMG-93 [Cat94]
for object-oriented DBSs. Hence, our approach facilitates replacing relational sy-
stems with object-oriented ones without affecting applications. Similarly, data
can easily be migrated from relational to object-oriented systems, since migra-
tion programs can read objects from existing relational databases and then store
them in an object-oriented DBS by handling just one interface. This is a first
contribution to handle the hard problem of legacy data [IEEE95]. We are just ex-
tending our tool to ease the process of enrichment. [HoK95] presents a graphical
approach to interactively design semantic enrichment.

The presented approach has been implemented on SUN workstations in
AT&T C++ on top of the relational system INFORMIX. The implementa-
tion makes use of a compiler-compiler to produce the generator. The generative
principle is designed to provide flexibility. Hence it is easily possible to exchange
the underlying DBS.

Motivation for our work comes from a project concerned with database in-
teroperability [HNS92]. A global interface, relying again on ODMG-93, should

419

provide database access to several kinds of database systems, relational, object-
oriented ones, and others. Object-orientation provides a good basis for inte-
grating heterogeneous systems [Har92, BNPS94]. The essential idea is to first
translate schemas of component DBSs, expressed in the native data model of
the system, into the ODMG-93 model. This leads to a homogenization of sche-
mas. Thus, syntactic heterogeneity resulting from different data models and ac-
cess interfaces of the component systems is eliminated. Our generator supports
the homogenization of relational systems in an effective way, as it expresses im-
plicit semantics directly in the ODMG object model and provides an ODMG
database interface. Using ODMG-93 plays an important role: Soon or later,
object-oriented DBSs will support this standard database interface. Then, no
real homogenization will be necessary for them.

The main concern of the successive integration step is identifying conflicts
between several homogenized schemas, to resolve them and to merge the schemas
into global schema(s). Global schemas give a user the illusion of a homogeneous
“database system”, with a unified, database spanning, and transparent access
to all the integrated data.

Future work will be directed to that integration step. We carry on applying
our generative principle. Object classes that represent global schemas are au-
tomatically generated. They now provide an integrated database interface for
all databases. An integration specification language is used to dissolve semantic
heterogeneity between schemas. Syntactic constructs are necessary to handle ty-
pical problems of schema integration like different units of measurement (8 vs.
£) and homonyms and synomyms. Means to give schemas a new structure are
useful to overcome structural differences [ScN88], e.g., if some unit is modelled
by an attribute in one schema, but as an object type elsewhere [SpP91, SCG92].
Generalization is an important concept to bring together objects of the same
type, but from different databases [KDN90]. Vertical fragmentation has an or-
thogonal effect: Objects are built by “joining” objects from different databases.
Hence logical links between thus far disjoint databases must be newly specified.

Up to now, a prototype that integrates INFORMIX and the object-oriented
database systems Objectivity/DB and VERSANT has been implemented, but a
lot of work 1is still necessary.

References

[ABV92] M. Aksit, L. Bergmans, S. Vural: An Object-Oriented Language-Database
Integration Model: The Composition-Filters Approach. In [Mad92]

[AlT92] A. Alashqur, C. Thompson: O-R Gateway: A System for Connecting C++
Application Programs and Relational Databases. In: C++ Conference,
Portland 1992, USENIX Association, Berkeley

[BNPS94] E. Bertino, M. Negri, G. Pelagatti, L. Sbattella: Applications of Object-
Oriented Technology to the Integration of Heterogeneous Database Systems.
In: Distributed and Parallel Databases 1994, Vol. 2

[CACM94] Reverse Engineering. Special Issue of Comm. of the ACM 37(5), 1994

[CaS91] M. Castellanos, F. Saltor: Semantic Enrichment of Database Schemas: An
Object-Oriented Approach. In: Proc. of 1st Int. Workshop on Interoperabi-
lity in Multidatabase Systems Kyoto (Japan), 1991

[Cat94]
[CBS94]
[ERA93]
[Har92]

[HNS92]

[Hoh95]

[HoK95]

[Ho093]

[HTIC93]

[IEEEYS]
[Kim92]

[KDNuo]

[Mad92]
[MaM90)]
[NNJ93]

(PeH95]

[PrB94]
[SCGY2)

[ScN&8s]

[SpP91]
[Str91]

[YaL92]

420

R. Cattell (ed.): The ODMG-93 Standard for Object Databases. 2nd edi-
tion, Morgan-Kaufmann Publishers, San Mateo (CA) 1994

R. Chiang, T. Barron, V. Storey: Reverse Engineering of Relational
Databases: Extraction of an EER model from a Relational Database.
Data&Knowledge Engineering 12, 1994

Proc. 12th Int. Conf. on Entity- Relationship Approach. Karlsruhe 1993
M. Hartig: An Object-Oriented Integration Framework for Building Hete-
rogeneous Database Systems. In [HNS92]

D.K. Hsia, E.J. Neuhold, R. Sacks-Davis (eds.): Proc. of the 5th I[FIP WG
2.6 Database Semantics Conference {DS-5) on Interoperable Database Sy-
stems, Lorne (Australia), 1992

U. Hohenstein: Query Processing in Semantically Enriched Relational Da-
tabases. In: Basque Int. Workshop on Information Technology (BIWIT 95)
“Data Management Systems”, San Sebastian (Spain), 1995

U. Hohenstein, C. Kérner: A Graphical Tool for Specifying Semantic En-
richment of Relational Databases. In: 6th IFIP WG 2.6 Work. Group on
Data Semantics (DS-6) “Semantics of Database Applications” 1995

U. Hohenstein, E. Odberg: A C++ Database Interface Based upon the
Entity-Relationship Approach. In: Proc. of 11th British National Conf. on
Database Systems (BNCOD11), Keele (England) 1993

J.-L. Hainault, C. Tonneau, M. Joris, M. Chandelon: Schema Transforma-
tion Techniques for Database Reverse Engineering. In [ERA93]

Legacy Systems. Special Issue of IEEE Software 12(1), 1995

W. Kim: On Unifying Relational and Object-Oriented Database Systems.
In [Mad92]

M. Kaul, K. Drosten, E. Neuhold: ViewSystem: Integrating Heterogeneous
Information Bases by Object-Oriented Views. In: Proc. 6th Int. Conf. on
Data Engineering, Los Angeles 1990

O.L. Madsen (ed.): European Conf. on Object-Oriented Programming
(ECOOP92), Utrecht 1992

V. Markowitz, J. Makowsky: Identifying Extended ER Object Structures in
Relational Schemas. IEEE Trans. on Software Engineering 16(8), 1990

B. Narasimhan, S. Navathe, S. Jayaraman: On Mapping ER and Relational
Models into OO Schemas. In [ERA93]

G. Pernul, H. Hasenauer: Combining Reverse with Forward Engineering
- A Step forward to Solve the Legacy System Problem. In: Int. Conf. on
Database and Expert Systems Applications, 1995

W. Premerlani, M. Blaha: An Approach for Reverse Engineering of Rela-
tional Databases. Communications of the ACM 37(5), May 1994

I". Saltor, M. Castellanos, M. Garcia-Solaco: Overcoming Schematic Dis-
crepancies in Interoperable Databases. In [HNS92]

M. Schrefl, E. Neuhold: A Knowledged-Based Approach to Overcome Struc-
tural Differences in Object-Oriented Database Integration. In: The Role of
Artifical Intelligence in Database & Information Systems. IFIP Working
Conf., Canton (China) 1988

S. Spaccapietra, C. Parent: Conflicts and Correspondence Assertions in In-
teroperable Databases. ACM SIGMOD-RECORD 1991, 20(4)

B. Stroustrup: The C++ Programming Language. 2ud edition, Addison-
Wesley 1991

L.-L. Yan, T.-W. Ling: Translating Relational Schema With Constraints
Into OODB Schema. In [HNS92]

