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Abstract. The type system of object-oriented programming languages
should enable the description of models that originate from object-oriented
analysis and design. In this paper, the BETA type system is generalised,
resulting in direct language support for a number of new modelling as-
pects. The increased expressive power is obtained from a synergy between
general block structure and the generalised type hierarchy, and not from
syntactic additions to the language.

The type hierarchy described in this paper is a superset of the class
hierarchy. In order to regain an orthogonal and internally consistent lan-
guage, we investigate the impact of the new type hierarchy on other parts
of the language. The resulting increase in expressive power serves to fur-
ther narrow the gap between statically and dynamically typed languages,
adding among other things more general generics, immutable references,
and attributes with types not known until runtime.

Keywords: language design, type systems, object-oriented modelling,
constraints, BETA.

1 Introduction

The type system of an object-oriented language should enable the description
of important aspects of models that originate from object-oriented analysis and
design. For example, an object-oriented model may describe issues like “the
manufacturer of my car” and “the wheel of a car”. “The manufacturer of my car”
is an immutable reference from “my car” to the actual manufacturer, implying
that 1) the manufacturer is not a part of the car, 2) the manufacturer existed
before the car, and 3) the reference can never change in the entire lifetime of the
car. Here, both “the manufacturer” and “my car” are concrete objects.

Another example is “the wheel of a car”, that refers to a part object (“the
wheel”) of some other object  “a car”), but without determining the concrete car
object. The type “the wheel of a car” is therefore a concrete type only relative
to a concrete car object, but includes enough information to imply that this
specific type does not describe the wheel of a truck.

A common understanding of types in object-oriented languages is as predi-
cates on classes. For example, in BETA [Madsen et al. 93b], C++ [Stroustrup 93],
and Eiffel [Meyer 92, a type is the name of a class C. Interpreted as a type, the
class name C is a predicate that evaluates to true on the set of subclasses of C.
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Other languages, such as Sather [Omohundro 93] and Emerald [Black et al. 87],
separate the type and class hierarchies, but still interpret types as predicates on
classes: The predicate evaluates to true for classes that conform to the type. In
any case, a typed reference can only refer to instances of classes on which the
type predicate evaluates to true.

Even though the BETA type system is very expressive as compared to most
statically typed OO languages, it is at times found to be more restrictive than
necessary. The quest for flexible yet static type systems is a search for good
compromises between the ultimate freedom of expression in a dynamically typed
language, and the safe but constraining rigidity of completely static type sys-
tems. The generalisation of the BETA type system presented in this paper is
an attempt to gain more flexibility without sacrificing the level of static type
checking supported, and to allow expression of a number of models arising in
object-oriented analysis and design.

‘The BETA type system is generalised in two directions: Firstly, by allowing
type expressions that do not uniquely name a class, but instead denote a closely
related set of classes. Secondly, by allowing types that cannot be interpreted as
predicates on classes, but must be more generally interpreted as predicates on
objects. We then investigate the impact this generalisation has on other parts of
the language. The result is a large increase in expressive power.

The type system described in this paper originates from the development of
MetaBETA [Brandt & Schmidt 96|, a reflective extension of BETA, featuring a
dynamic meta-level interface accessible to programs at runtime. The challenge
of adding a dynamic meta-level interface to a statically typed language without
circumventing the type system lead to the generalisation of the BETA type sys-
tem described in this paper. It is a major ingredient in the MetaBETA approach,
allowing dynamic reflection in a statically typed language.

"This paper assumes some basic knowledge of the BETA language. For readers
not familiar with the language, a short BETA primer is included in Appendix A.
Section 2 describes current BETA type checking, Section 3 generalises the BETA
type system, and Section 4 investigates the effect of the generalised type system
on object creation operators. Section 5 shows some examples of the expressive
power gained from the generalisations, Section refpatvarextension generalises the
BETA concept of dynamic pattern references, and Section 7 describes the se-
mantics of generalised attribute declarations. Finally, Section 8 describes some
limitations on the generalised type system, and Sections 9 and 10 point to future
work and presents our conclusions.

2 BETA type checking

The type checking rules of BETA are heavily influenced by BETA’s general sup-
port for localisation in the form of pattern (class) nesting. Simula [Dahl et al. 84]
originally introduced this property, inspired by the general block structure in
the Algol languages. However, class nesting in Simula is more restricted than in
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BETA. This section describes aspects of the BETA type system needed for the
purposes of this paper. Other aspects are described in [Madsen et al. 93a].

2.1 Terminology

BETA is a block structured language allowing general pattern nesting: Objects
are instances of patterns and have attributes that are references to either other
objects or patterns. These references may be either dynamic of static.

Dynamic object references may refer to different objects at different points in
time. However, dynamic object references cannot refer to arbitrary objects: They
are subject to qualification constraints!. Likewise, dynamic pattern references
may, subject to qualifications, refer to different patterns at different points in
time. The BETA declaration:

aCircle: ~“Circle;

declares aCircle as a dynamic object reference (") qualified by Circle, i.e., it
is only allowed to refer to instances of Circle or instances of subpatterns of
Circle. Statically it can only be assumed that attributes defined for the Circle
pattern are available in the object referred to by aCircle. At runtime, the actual
object referred to by aCircle may have several other attributes (since it might
be an instance of a subpattern of Circle), but these cannot be accessed through
the aCircle reference, since they are not statically known. An unconstrained
declaration can be made using Object as qualification:

o: “Object;

o can refer to any object, but only operations defined for all object types are
allowed on object references qualified by Object.

Most BETA type checking is done at compile time. However, by allowing
attributes to have a virtual type that can be specialised in subpatterns, BETA
supports covariant? pattern hierarchies, and runtime type checks can therefore
not be completely avoided in the general case®. To enforce strong typing, BETA
therefore in some cases reverts to runtime type checking on destructive assign-
ments that cannot be statically accepted or rejected.

For example, writing o[]->aCircle[], the value of the Object reference o
may be assigned to the Circle reference aCircle. The compiler is unable to
accept or reject this assignment, since it cannot statically deduce whether the
assignment is type correct: It knows nothing of the actual type of the object

! The qualification of a BETA dynamic reference corresponds to the type of an Eiffel
reference or a C++ pointer.

2 Covariance means that a subpattern may specialise inherited attributes. Hence, the
pattern and its attributes are simultaneously specialised — they are covariant. For
an interesting discussion on covariance, see [Shang 95].

8 Usually, static typing of hierarchical type systems is ensured by enforcing con-
travariant or nonvariant relationships between super/sub-types in a type hierarchy
[Black et al. 87, Omohundro 93].
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referred to by o. To handle this problem, the compiler inserts a runtime type
check.

In summary, type checking in BETA is based on qualified (typed) attribute
declarations. A qualification limits the possible values of a dynamic reference,
and is usually the name of a pattern. A qualified reference can only refer to
instances of the qualification or instances of subpatterns of the qualification.
Hence, the qualification tells the compiler what operations are applicable to any
object that can potentially be referred.

2.2 Formal Notation

In BETA, the term “attribute” encompasses all variables and procedures in
a BETA program. To describe the qualification constraints on attributes, this
section introduces some formal notation. The aim of this notation is to enable
precise description of the semantics of the different kinds of attributes in a BETA
program:

dor: ~Circle; (* Dynamic Object Reference x*)
sor: QCircle; (* Static Object Reference  *)
dpr: ##Circle; (* Dynamic Pattern Reference *)
pd: Circle(# ... #); (* Pattern Declaration *)
so: @Circle(# ... #); (* Singular Object *)

The notation is summarised in Figure 1, where attr and q are path expressions,
o is an object, and psyp and pgyper are patterns. The details of the notation are
described in the following.

attr: The attribute denoted by the path expression attr.
object(attr:) |The object referred to by the object reference attr:.
location(attr:)|The object of which attr: is an attribute
pattern(attr:)|The pattern referred to by the pattern reference attr:.
qit# The path expression q interpreted as a qualification.

qual(attr:) |The qualification of the attribute attr:.
pattern-of(o) |[The pattern of which the object o is an instance
extension(q##) |The extension of the qualification q##.

Psub < Psuper |Psub isa Sllb-pattern of Psuper-

Fig. 1. Formal notation used in this paper.

Adding a trailing colon to a path expression is used to reflect that we are
talking about the attribute itself, and not its value. For example, to denote the
aCircle attribute itself, we shall write aCircle:.
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The object() function returns the object referred to by an object reference
attribute. For example, object(aCircle:) is the object currently referred to by
the attribute aCircle:.

location(attr:) returns the object that contains the attr: attribute. For ex-
ample, location(aCalc2.clear:) is object(aCalc2:) in Figure 9 of Appendix A.

The pattern() function returns the pattern referred to by a pattern reference
attribute. For example, pattern(dpr:) denotes the pattern currently referred to
by dpr:.

To avoid ambiguities, we shall use a.b.c## to denote the qualification inter-
pretation of a path expression a.b.c. If, for example, a.b.c denotes a pattern,
the expression a.b.c could be taken to mean “the result of creating and ex-
ecuting a new instance of pattern(a.b.c:)”. Likewise, in a later section we
will allow qualification expressions denoting object reference attributes, and in
that case the BETA expression a.b.c would mean “evaluate the do-part of
object(a.b.c:)”. The a.b.c## notation avoids these ambiguities.

The qual() function returns the qualification of an attribute, and is defined
for all kinds of BETA attributes: For the dor:, sor:, and dpr: attributes, qual()
returns the qualification expression to the right of, respectively, =, @, or ##.
Hence, qual(dor:) = qual(sor:) = qual(dpr:) = Circle##. Pattern declara-
tions such as pd are fixed points for qual(), and qual(pd:) therefore returns the
pd pattern itself. For singular object declarations such as object(so:), qual()
returns the otherwise anonymous pattern of which object(so:) is the only in-
stance. Exactly what constitutes a pattern will be described in Section 2.3.

The pattern-of() function returns the pattern of which an object is an in-
stance. For example, after evaluating:

myCircle: Circle (# ... #); (* Circle subpattern *)
aCircle: ~“Circle;
do &myCircle[]->aCirclel(]; (* Object instantiation *)

pattern-of(object{aCircle:)) is the myCircle pattern.

The notation psyb < Psuper Means that the pattern psyp is a subpattern of
Psuper- Hence, used as a qualification, all objects that qualify to psus also qualify
t0 Psuper- The set of objects qualifying to a pattern p is denoted extension(p).
Hence, we shall define the < relation on patterns by:

d . .
Psub < Psuper 4 extension(p;.s) C extension(pgyper) (1)

The meaning of extension(p) will be defined in Section 2.3. For example, myCircle <
Circle, since all instances of myCircle are in the extension of Circle.

With the notation introduced, we may now formally express the general

qualification constraints on dynamic object and pattern references. Consider the
declarations:
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dor: “Q;
dpr: ##Q;

The qualification constraint on the dynamic object reference dor: is:

pattern-of(object(dor:)) < qual(dor:) (2)

meaning that the object referred to by dor: must at all times be an instance of
a subpattern of the qualification of dor:, in this case Q##.
The qualification constraint on the dynamic pattern reference dpr: is:

pattern(dpr:) < qual(dpr:) (3)

meaning that the pattern referred to by dpr: must at all times be a subpattern
of the qualification of dpr:, in this case Q##.

2.3 The Impact of Block Structure

BETA is a block structured language allowing general pattern nesting: Objects
are instances of patterns and have attributes that may themselves be patterns.
This influences the type system since the apparently “same” pattern attribute
of different objects in fact denotes different patterns. This is illustrated by the
example in Figure 2, which declares a pattern Window with the nested (class)
pattern Line and the nested (method) pattern drawline. Furthermore, two in-
stances of Window, w1l and w2, are declared.

The patterns wl.Line and w2.Line are different, since the draw method
in instances of each of these patterns draws a line in separate windows. This
has consequences also when using w1.Line and w2.Line as qualifications, as
illustrated in Figure 2: References qualified by w1.Line cannot refer to instances
of w2.Line and vice versa.

Window: wl,w2: @Window;

(# drawline: 11: "“wil.Line; 12: “w2.Line;
(# pl,p2: QPoint; do &wl.Line[]1->11[]; (* OK *)
enter (p1,p2) do ... &w2.Line[1->12{]; (* 0K *)
#); 11[1->1200; (* ERROR *)

Line: 12(]1->11[1; (* ERROR *)

(# pl,p2: QPoint;
draw: (# do (pl,p2)->drawline #);
#);
#);

Fig. 2. Nested pattern example
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Two important concepts in understanding the BETA type system and its
relation to block structure, is patterns and object descriptors. An object de-
scriptor, as shown in Figure 3, is a source code entity, whereas a pattern is a
corresponding runtime entity.

In the BETA grammar, the syntactic category <ObjectDescriptor>matches
source code of the form shown in Figure 3. Every occurrence of the syntactic

Super

(# Decll; Decl2; ... Decln (* attribute-part *)
enter In (* enter-part *)
do Impl; Imp2; ... Impm (* do-part *)
exit Out (* exit-part *)
#)

Fig. 3. Syntactic category <0ObjectDescriptor>

category <ObjectDescriptor> in a program source uniquely defines an object
descriptor. In addition to being the meat of pattern declarations, (see Figure 7
in Appendix A), object descriptors occur in singular object declarations, as well
as nested directly in the do-part of other object descriptors (as exemplified by
Figure 77 in Appendix A).

General block structure allows pattern nesting to an arbitrary level, and a
nested BETA pattern is therefore a closure defined by a a unique object descrip-
tor and an origin object. The origin of a pattern is significant for two purposes:
Firstly, instances of the pattern may need access to attributes of the origin ob-
ject 4. Secondly, the origin affects the set of objects qualifying to a pattern when
used as a variable qualification, and is therefore significant for type checking
purposes. A pattern p is uniquely identified by the pair:

(origin(p), descriptor(p))

where origin(p) is the object of which p is an attribute, and descriptor(p)
is the object descriptor for p. Due to inheritance, a pattern may have a super
pattern, super(p), uniquely identified by the pair:

(origin(super(p)), descriptor(super(p)))

leading to a chain of patterns starting in p and terminating with the Object
pattern. For patterns declared at the outermost block-level, no origin reference
is needed, since there is no surrounding object.

4 The static link between activation records of languages, such as Pascal, where proce-
dures may be declared local to other procedures is a special case of the BETA origin
reference.



428

Direct pattern instances An object is a direct instance of a pattern iff the object
was created as an instance of that pattern. A direct instance of a pattern p
contains a reference to descriptor(p) and also a reference to each of the origin
objects found in the pattern chain starting in p. For example, the wl.Line
pattern corresponds to the pair (object(wl:),Window.Line). As illustrated in
Figure 4, the 11 instance of wi.Line therefore has a reference to the object
descriptor corresponding to Window.Line, and an origin reference to the wi
object. The Window instance w1l has a reference to the object descriptor for
Windows, but no origin reference, since the Window pattern is declared at the
outermost block-level. That objects 11 and 12 are instances of different patterns
follows from their origin references pointing to different objects, although 11 and
12 share the descriptor of Window.Line objects.

i
=2 :descriptor(Window)|

wl = descriptor I descriptor < w2

11 ——————! descriptor : ! +descriptor j€————————— ]2
origin . descriptor(Line) | origin
pl TTTTTTTo - pl
p2 p2

Fig. 4. Lines have an origin reference to the Window instance in which their pattern is
nested.

The extension of a pattern Finally, we may now define the extension of a pattern
as follows: An object o that is a direct instance of a pattern p is in the extension
of a pattern q, i.e., o € extension(q), iff q can be found in the chain of patterns
starting in p.

3 A Generalised Qualification Concept

In this section, we introduce a generalised qualification concept. The BETA type
system is generalised by 1) allowing type expressions that do not uniquely name
a class, and 2) by allowing types that are interpreted as predicates on objects.
The generalisation is obtained without adding new syntax to the language.

In most situations, current BETA only allows qualification expressions that
uniquely name a pattern. But logically there is no reason why a qualification
should always be equivalent to a specific pattern. In fact, current BETA does
allow one special kind of qualification that does not uniquely name a pattern:
Recall that at runtime, a BETA pattern p is a closure defined by an origin
object and an object descriptor. By naming the object descriptor but leaving the
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origin unspecified, a qualification that corresponds to a set of patterns results.
In current BETA, this is allowed in the case of dynamic object references, as
exemplified by aShape below:

Window: (# Shape: (# ... #)#); aShape: “Window.Shape;

Seen as a predicate on patterns, the Window.Shape qualification evaluates to
true on any pattern Shape nested inside some Window object w, and subpatterns
of these.

Figure 5 illustrates the process of pattern specialisation as a stepwise nar-
rowing of the pattern extension. But no matter the degree of specialisation, the

animal
mammal fish bird reptile
animal extension
predator — :
mammal extension fish extension
lion tiger predator extension -

bird extension

tiger extension

reptile extension

tiger instance

Fig. 5. Classification hierarchy and corresponding extension sets

extension of a pattern continues being unlimited, since any pattern has an un-
limited number of instances. Hence BETA, like all other OO languages, only
allows the expression of qualifications with unlimited extensions.

In principle we can imagine qualification extensions of any size, finite or
unlimited. By explicitly listing a number of object names, any qualification with
finite extension can be specified. As a tentative syntax for such qualifications,
consider w: ~[wi,w2,w3];, with the intended meaning that the dynamic object
reference w is allowed to refer to any of the objects w1, w2, or w3. However, not
wanting to change the syntax of BETA, we restrict our attention to lists of length
one, i.e., allowing the use of a single object name in place of a qualification.

3.1 Taxonomy of Generalised Qualifications

The previous section introduced the idea of generalising the set of qualifications
allowed. This section divides qualifications into 8 main categories along three
binary axes.
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Syntactically, a BETA qualification expression is a path expression, i.e., a
dot-separated list of names: A qualification q is generally of the syntactic form
nj.ny....n,, where each n; is a name that denotes either a pattern attribute
or an object reference attribute. Qualification expressions appear in several sit-
uations:

— As qualifications in variable declarations:

dor: "q; (* dynamic object reference *)
dpr: ##q; (* dynamic pattern reference *)

— As values assigned to dynamic pattern references: do q##->dpri#
— As pattern specification in part object declarations: sor: Qq;
— As super specification in pattern declarations:

p: q(# ... #);  (* pattern declaration *)
pv:i< q(# ... #); (* virtual pattern declaration *)

— As super specification in singular object declarations and method execu-
tions:

sor: Qq(# ... #); (* singular object *)
do q# ... #) (* method execution *)

The first axis along which we classify qualification expressions q distinguishes
pattern qualifications and object qualifications: If n,, is the name of a pattern
reference attribute, q is called a pattern qualification. If n,, is the name of an
object reference attribute, q is called an object qualification.

The second axis distinguishes full qualifications and partial qualifications:
If all n;, ¢ < m, are names of object reference attributes, q is called a full
qualification. If some n;, i < m is the name of a pattern attribute, q is called
a partial qualification. Partial qualifications do not uniquely identify an object
attribute.

These two axes result in four qualification categories as depicted in Figure 6.

nj....nm,m—1: only objects|n;....nn_1: at least one pattern
n,: object | full object qualification partial object qualification
nn,: pattern| full pattern qualification partial pattern qualification

Fig. 6. Qualification categories for q=n;.n2....nm

The third and last axis distinguishes static qualifications from dynamic quali-
fications: If all n; are names of static pattern attributes or static object reference
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attributes, q is called a static qualification. Otherwise, q is called a dynamic
qualification. A static qualification has a static extension, whereas the extension
of a dynamic qualification depends on the time of evaluation.

Note that the classification of qualification expressions only depends on the
statically known kind of the attributes named in the expression, and can there-
fore easily be known by the compiler.

Ezample 1. Full pattern qualifications such as Window and aWindow.Shape uni-
quely name a pattern. Partial pattern qualifications such as Window.Shape cor-
respond to sets of related patterns. Full object qualifications such as aWindow or
aShape correspond to qualifications with a single element extension, i.e., they
name an object. Finally, for an example of a partial object qualification consider
the following code:

Person: (# name: QText #);
aPersonName: “Person.name;

aPersonName is here constrained by a static partial object qualification to refer
to the name of some person, but without restricting the specific person. m)

3.2 Qualification Hierarchies

Inheritance is the basis for building pattern hierarchies such as the one shown
in Figure 5. BETA pattern hierarchies is a generalisation of class hierarchies in
languages such as Eiffel and C++. With the introduction of generalised qualifi-
cations, another hierarchy has emerged: The qualification hierarchy.

A pattern name is a special case of qualification (the full pattern qualifica-
tion), and the set of patterns is thus a subset of the set of qualifications. The
inheritance relation equips the set of patterns with a partial order as defined
by Equation 1 in Section 2.2. Likewise, the qualification hierarchy is partially
ordered: For full pattern qualifications, the partial order corresponds to the in-
heritance relation. In general, we shall define the partial order on qualifications
by means of their extension. This is a straightforward generalisation of Equa-
tion 1:

q<q’ (f:e:{ extension(q) C extension(q’)

where ¢ and ¢’ are both qualification expressions. For example, the extension of
a full object qualification o is a single-element set:

0<q
‘Zf extension(o) C extension(q)
< {0} C extension(q)
& o € extension(q)
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The special value NONE® means no object. By definition, NONE qualifies to any
qualification, and is therefore the bottom (L) of the qualification hierarchy:

Vq: NONE < q

In current BETA, the pattern hierarchy is the basis for type checking. In
generalised BETA, the qualification hierarchy takes over, and hence allows more
general qualifications.

We have introduced a qualification hierarchy which is different from the pat-
tern hierarchy. However, as opposed to the type and class hierarchies of, e.g.,
Emerald, the qualification and pattern hierarchies are not separate, since the
pattern hierarchy is embedded in the qualification hierarchy. Another difference
from the Emerald type hierarchy is that our qualification hierarchy contains
qualifications that uniquely identify single objects.

4 Generalised Semantics for Object Creation Operators

The BETA operators & and @ are used to create new objects, i.e., new instances
of BETA patterns: & is used for dynamic object creation in imperative code, and
@ is used in declarations to denote the creation of static part objects as part of
their location:

Person: (# left_arm, right_arm: Qarm #);
aPerson: “Person;
do &Person[]->aPerson[];

Here, a new person object is created using the & operator. A reference to the
new person object is then assigned to the dynamic object reference aPerson.
Along with the new Person object, a number of static part objects, the limbs,
are created. Creation of the limbs happens automatically, since they are declared
using the @ operator, which also binds the newly created limbs to the identifiers
left_arm and right_arm.

The & operator takes a single qualification parameter q. The @ operator takes
two parameters: A qualification parameter q, and an identifier parameter id.
Current BETA requires that the q parameter given to & and @ denotes a pattern,
i.e., g must be a full pattern qualification. Given a qualification g, the semantics
of both operators is to create a new instance of the pattern denoted by q. In
addition, @ binds the newly created object to the identifier parameter id.

To what extent can these semantics be generalised to allow other kinds of
qualification parameters to & and @? Given a qualification with a finite extension,
the “create a new object” semantics do not apply anymore, since all objects
contained in a finite extension are by definition already there, and any new
object would therefore not be part of that extension. We therefore generalise the

5 NONE corresponds to the null pointer in C++, and the special value Void in Eiffel.
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semantics of & from “create new object” into:

new q if q is a full pattern qualification
&(g)=q o if q is a full object qualification and extension(q) = {0} (4)
error otherwise

That is, applying & to a qualification q always returns an object that qualifies
to q. But in case of q being a full object qualification, the returned object is no
longer newS.

The object creation operator, &, is evaluated each time the statement of which
it is part is executed. The static object reference operator, @, is evaluated once,
namely at creation time of its location. The result of evaluating @(id, q) is to
bind the value &(q)[] to the identifier id. Afterwards, the binding of id is not
allowed to change.

5 Examples

Before considering all possible declarations in more detail, we show some exam-
ples of the expressive power gained from the introduction of generalised qualifi-
cations and object creation operators.

Example 2. The following code demonstrates one way of binding an immutable
reference to an already existing object:

aWindow: “Window;
Foo: (# sor: QaWindow #);
aFoo: “Foo;

do &Foo[]->aFool[];

When an instance of Foo is created, the static object reference sor: is bound to
the value &(aWindow##) [1, where aWindow is a dynamic full object qualification.
According to Equation 4, this means that aFoo.sor: is bound to refer the ob-
ject referred to by aWindow: at the time when aFoo is created. l.e., aFoo.sor:
becomes an immutable reference to object(aWindow:). O

Generalised qualifications allow us to think of full object qualifications as
specialisations of qualifications with unlimited extensions. This results in virtual
patterns that can be specialised into full object qualifications.

Ezample 3. Consider the relation between a child and each of its parents. These
relations are immutable references bound when the child comes into existence.
In generalised BETA, we can express this as follows:

% The decision to disallow partial qualifications as parameter to & is more or less
arbitrary. It could be argued that a better choice would be to create a new object
along with the objects necessary to provide the environment of the new object. For
example, &Window.Shape[], could create a new Window object w, followed by the
creation of an instance of w.Shape.
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Person:
(# FatherBinding:< Person; father: QFatherBinding;
MotherBinding:< Person; mother: @MotherBinding;
#);
makeChild:
(# newfather, newmother: “Person
enter (newfather[}, newmother[])
exit &Person
(# FatherBinding:: newfather;
MotherBinding:: newmother;
0
#);

Here, a Person is defined to have an immutable reference to each parent. Due to
Person having Person part objects, Person is an abstract pattern of which it is
impossible to create direct instances. However, by further binding FatherBinding
and MotherBinding into full object qualifications, it becomes possible to create
a Person, and at the same time bind the parent references. Current BETA forces
us to describe the parent references by dynamic references, which is unfortunate
since people do not tend to change biological parents. Conversely, generalised
BETA is able to directly model that parent references are immutable and that
the parents existed before the child. To solve the chicken-and-egg problem of
creating the very first Person instance, we can create a person with no parents:

do (NONE,NONE)->makeChild->adam[];
0

To be used as super specification in a pattern declaration, a qualification
expression must be a full pattern qualification: A partial qualification would
be ambiguous, and a full object qualification would correspond to the action
of specialising an object. Likewise, in a part object declaration, the pattern
specification must eventually evaluate to a full qualification for the part object to
be unambiguously defined. Notice however, that an abstract pattern may declare
part objects of only partially known type, as long as concrete subpatterns specify
a full qualification for the part.

Ezxample 4. Consider an abstract CodeDisplay pattern:

Grammar: (# PrettyPrinter:< (# ... #); ... #);
CodeDisplay:
(# PrettyPrinter:< Grammar.PrettyPrinter;
pp: @PrettyPrinter;
#);

A CodeDisplay uses a prettyprinter to actually display the code, but the ex-
act type of the pretty-printer depends on the type of Grammar being used.
CodeDisplay is an abstract pattern, because the type of the pp part object
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is ambiguous. However, on creation of a CodeDisplay, the actual grammar used
is known, and can be used to disambiguate the type of pp:

aGrammar: QGrammar;
aCodeDisplay: @CodeDisplay
(# PrettyPrinter:: aGrammar.PrettyPrintef #);
0

We may also make good use of partial pattern qualifications in expressing
generics: In BETA, the type parameter of a generic class is expressed by a nested
virtual class [Madsen & Mpgller-Pedersen 89].

Ezxample 5. Consider the declaration of a generic list pattern:

List:
(# Element:< Object; (* Element type *)
insert: (* Insert element x*)
(# new: "Element
enter new[] do ...
#);
#) ;

To create a list of persons, the generic List class is specialised by final binding
the Element virtual:

aPersonList: QList(# Element:: Person #);

But to create a generic Shape list, we must use a partial pattern qualification:

ShapeList: List (# Element::< Window.Shape #)

which is illegal in current BETA, since the Element virtual in ShapeList does
not uniquely name a pattern. In generalised BETA, however, the example is
perfectly legal. Further specialising ShapeList, we can now create lists that can
contain shapes from specific windows only, or use ShapeList directly to create
a list of all shapes, regardless of the window to which they belong:

wl,w2: @Window;

wlshapes: @ShapelList(# Element:: wl.Shape #);
w2shapes: Q@ShapeList(# Element:: w2.Shape #);
allShapes: @Shapelist;

In current BETA, a list containing all Shape objects can only be declared as a
list that can contain any object, thereby losing all static information on the type
of objects in the list. a

Ezample 6. Consider the declaration of a dynamic text reference: aText: ~Text;
One might be interested in declaring a dynamic text reference that is only al-
lowed to refer to text objects that are actually person names:
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Person: (# name: QText; ... #);
aPersonName: “Person.name;

Clearly, aPersonName can only refer to text objects, but the type system now
also expresses and enforces that the text referred is the name of a person. O

6 Generalised Dynamic Pattern References

Dynamic pattern references were originally introduced in BETA to support pat-
terns as first-class values [Agesen et al. 89], e.g., allowing patterns as method
parameters. In practice, dynamic pattern references are used in several ways:

— As function and method pointers.
— As dynamic class references.

— As qualification references, allowing explicit runtime type checks.

In Section 3 we argued that patterns are a special case of the more general
qualification concept. It is therefore natural to introduce a corresponding gener-
alisation of dynamic pattern references, turning them into dynamic qualification
references. However, to avoid introducing new terminology, we retain the term
dynamic pattern reference.

In current BETA, a dynamic pattern reference value is obtained by appending
the ## operator to object names or pattern names: The expression o## returns
pattern-of(o), i.e., a reference to the pattern of which the object o is an instance.
Likewise, the value of the expression p## is a reference to the pattern p. In both
cases, a reference to a full pattern qualification is obtained. These semantics give
rise to the following irregularities:

1. If object(so:) is a singular object, the BETA expression so## returns
a reference to the otherwise anonymous pattern pattern-of{object(so:))
of which object(so:) is the only instance. This breaks the anonymity of
pattern-of{object(so:)), and using so##, it is then possible to create new
instances of the pattern. This would destroy the singularity of object(so:),
and singularity can therefore not be guaranteed by the compiler.

2. There is currently no way to obtain a reference to qualifications other than
full pattern qualifications. For example, partial qualifications are currently
not first-class values, and can therefore not be passed as method parameters.

Consider the copy method below, intended to copy an object unless it is of
a specific type:
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copy:
(# o,ocopy: "Object; dont_copy: ##0bject;
enter (o[],dont_copy##)
do (if not (o##<=dont_copy##) then
o[J->performCopy->ocopy(];
if);
exit ocopyl]
#);
do (anObject[],Window.Shape##)->copy->aCopyl(];

As illustrated, a desired use of copy might be to copy all objects that do not
qualify to Window . Shape##. Unfortunately, Window . Shape##is a partial pat-
tern qualification, and the example is therefore illegal, since only references
to full pattern qualifications are currently allowed.

To remove these irregularities, we change and generalise the ## operator into:

The value of the expression nj .ny. . . .n,## is the qualification denoted
by the path expression nj.ny. .. .n,, at evaluation time.

Note that for dynamic qualification expressions, each evaluation of the expression
may result in a new qualification. For full object qualifications o, the above
definition changes the value of o## from pattern-of{object(o:)), to the full
object qualification with extension {object(o:)}. The expression &(o##) [J thus
becomes equivalent to o[], and the singular object irregularity has disappeared.
Likewise, the copy example is now fully legal.

7 Attribute Declaration Semantics

Previous sections generalised the notions of qualifications and object creation
operators. In this section, we list the semantics for all attribute types in light
of the new qualification concept. As will be seen, very few surface changes have
been made to the semantics of attribute declarations. The real changes stem from
generalisations to the qualification hierarchy, and the resulting changes to the
object creation operators. To describe the semantics of attribute declarations,
we consider the following attribute properties:

— Is destructive assignment allowed?
— Initial value.
— Possible values.

BETA supports four attribute kinds, described in turn below.

Static Object References: sor: Qq

The only interesting property of a static object reference is its initial value,
since destructive assignment is not allowed. We use the notation crt(sor: , expr)
to denote the value of expr at the time when location(sor:) is created.
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The initial value of sor: is given by
object(sor:) = crt(sor: ,&qual(sor:)[])

with the value of &qual(sor:)[] defined by Equation 4 in Section 4. The above
equation is the same as in current BETA, with the new possibilities resulting
from Equation 4.

Static Pattern References: spr:q or spr: q(# ... #)

In current BETA, static pattern references always declare new patterns. This
is consistent with the declaration of static object references, that always create
new objects. However, we have generalised static object references to allow them
to be bound to already existing objects, and generalised dynamic pattern refer-
ences to be able to refer to any kind of qualification. As a combination, static
pattern references can be bound to any kind of qualification, including existing
ones.

Again, the behaviour of static pattern reference spr: is essentially captured
in a single equation:

pattern{spr:) = crt(spr:,qual(spr:))
We may split static pattern reference declarations into two cases:

— spr: q(# ... #), declaring the pattern (location(spr:),q(# ... #)).
— spr: q, where spr: gets bound to crt(spr:,q##).

The last case is new, and allows static pattern references to be bound to existing
qualifications. For example, this allows a dynamic qualification to be evaluated
and then bound to a static pattern reference, leading to attributes whose qual-
ification is not known until runtime. As will be demonstrated later, the result
is a great flexibility while retaining the need to do runtime type checks only on
potentially dangerous assignments, as opposed to the need in dynamically typed
languages to do an implicit type-check (method lookup) on each message send.

Dynamic Object References:  dor: ~q;
The initial value of object(dor:) is NONE, with possible values given by a

generalisation of Equation 2 in Section 2.2:

object(dor:) < qual(dor:)

Dynamic Pattern References: dpr: ##q

The initial value of pattern(dpr:) is NONE, with possible values given by
Equation 3 from Section 2.2:

pattern(dpr:) < qual(dpr:)
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8 Restrictions on Qualifications

We have described a generalised concept of qualified, (typed), attributes, adding
considerably to the expressive power of the BETA language. However, not all
the described qualifications on dynamic references can be efficiently enforced.

As described in Section 2, the BETA type system is not completely statically
checkable, and therefore needs a minimal number of runtime type checks. Gen-
eralising the type system should not make it inherently more difficult to check.
For this reason, we choose to allow only qualifications that can be enforced by
a combination of compile time checking and occasional (constant-time) runtime
checks on potentially dangerous assignments.

In general, we only allow a qualification q on a dynamic reference dr:, if it
is checkable by only monitoring assignments to dr:. If the qualification itself
is dynamic, (as explained in Section 3.1), not only the attribute itself must be
monitored, but also its qualification, resulting in complex relationships between
the allowed values of dynamic attributes. Although it is possible to implement
a runtime system that maintains constraint graphs in order to enforce dynamic
qualifications, we choose to disallow dynamic qualifications to avoid severe un-
predictable runtime overheads. Thus, if the declaration of a dynamic reference
attribute results in a qualification equation, (see Section 7), with a dynamic
right-hand side, the declaration will be declared illegal, and rejected by the com-
piler.

Ezample 7. Consider the declaration of a dynamic object reference attribute
aShape with a dynamic qualification:

Window: (# Shape: (# ... #) #);
aWindow: “Window;
aShape: ~“aWindow.Shape;

Here, the qualification constraint object(aShape:) < aWindow.Shape## must
be enforced, which requires that we monitor the value of object(aShape:) and
the value of object(aWindow:), since extension(aWindow.Shape) changes if
object(aWindow:) changes. In the general case, knowing where to do runtime
checking therefore requires either global information at compile time, or the
maintenance of a constraint graph at runtime. We do not find any of these
options acceptable, and hence choose to disallow this kind of qualification. O

In fact, the current Mjglner BETA compiler does allow the above kind of
dynamic full pattern qualification. However, the dynamic full pattern quali-
fication aWindow.Shape is interpreted as the static partial pattern qualifica-
tion Window.Shape. and therefore only the less restrictive object(aShape:) <
Window.Shape constraint is enforced. The following scenario is thus accepted
without compile time or runtime errors:
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do &Window([]->aWindow[];
&aWindow.Shape []->aShape[]; (* OK *)
&Window[]->aWindow[]; (* object(aShape:) illegal!! x)

Fortunately we can disallow this type of dynamic full pattern declaration with
virtually no loss of expressive power, since we can convert the dynamic qualifi-
cation into a static qualification:

aDynWin: “Window;
do &Window[]->aDynWin[];

(# aStatWin: @aDynWin;
aShape: ~aStatWin.Shape;

do &aStatWin.Shape[]->aShape[]; (* OK *)
&Window[]->aDynWin[]; (x 0K *)
&Window[]->aStatWin[]; (* compile time error *)

#)

Note that aStatWin.Shape is a static qualification whose extension cannot
change, and therefore does not need to be monitored at runtime: Assignment
to aDynWin does not change the extension of aStatWin.Shape, and assignment
to aStatWin is a compile-time error.

However, if we were content with the knowledge that object(aShape:) qual-
ifies to the Shape pattern of some window, and do not care about the exact
window, we should have used a partial pattern qualification:

aDynWin: “Window;
aShape: “Window.Shape;
do &Window[]->aDynWin[];
&aDynWin.Shape []->aShape[]; (* OK *)
&Window[]->aDynWin[]; (*x 0K %)

Ezample 8. Another illegal example is the declaration of object references with
dynamic partial object qualifications:

Vehicle: (# owner: ~“Person #);
aVehicleOwner: “Vehicle.owner;

Again, the problem is that the qualification itself is dynamic: In this case, a
Vehicle changing owner may result in the breaking of the qualification con-
straint on aVehicleOwner, since the previous owner may thereby stop being the
owner of any vehicle. O

Static Binding of Dynamic Qualifications The decision to disallow dynamic qual-
ifications for dynamic references is not a real limitation. In general, if we wish
to specify something like:
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anObject: “dynqual
do o[]->anObject[];

where dynqual is some dynamic qualification expression, we can transform it
into:

o[]->(# statqual: dynqual; anObject: “statqual;
enter anObject[] do ...
#)

which enforces a static qualification on the anObject reference. This technique
is called static binding of dynamic qualification and can be used to resolve all
dynamic qualifications.

Ezample 9. As a more complete example of using this technique, consider a List
pattern, where the qualification of the types of objects in the List can be con-
trolled dynamically:

List:
(# elementType: ##0Object;
insert:
(# elmType: elementType; new: “elmType;
enter new([] do ...
#);
changeElementType:
(# newElementType: ##0bject;
enter newElementType##
do scan
(#
do (if not (current##<=newElementType##) then
current[J->delete
if)
#);
nevElementType##->elementType##
#);
#);

We may now create a List object to contain Window.Shape objects:

winShapelList: QList;
do Window.Shape##->winShapelList.changeElementType;
&aWindow.Shape[] ->winShapeList.insert;

If we later choose to restrict the same List object to contain only aWindow
Shapes, we can dynamically choose to do so by:
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do aWindow.Shape##->winShapelList.changeElementType;

causing all Shapes that do not qualify to aWindow.Shape## to be removed from
the list. At all times during the lifetime of winShapeList, the elements in the
list will automatically conform to the qualification, given by the elementType
attribute.

We can also create a List that can only contain instances of a pattern un-
known until runtime, for example because it is loaded dynamically:

alist: QList;
aPattern: ##0bject;

do ’aPatternName’->loadPattern->aPattern##;
aPattern##->alist.changeElementType;
&aPattern[]->alist.insert;

It should be noted that runtime type checks are clearly still needed to en-
force the typing in these examples, but considering the dynamic nature of the
examples, avoiding runtime checking would also be a surprising achievement.
However, the example does ensure that the element type is enforced, although
it is not known until runtime. a

The generalisation of BETA qualifications has resulted in a type-system with
an increased expressive power. Several of the new possibilities are easy to im-
plement, and add considerably to the expressive power of the BETA language,
without adding new syntax.

Static attributes do not require continuous monitoring, since they are bound
to a value that is acceptable at creation time, and afterward are not allowed
to change. Therefore, any qualification expression is acceptable as the type of a
static attribute.

For dynamic references, we have chosen to disallow attribute declarations
with dynamic qualifications, since their enforcement requires either global compile-
time knowledge, or the maintenance of a constraint-graph at runtime. Neither of
these options are acceptable in a language with support for separate compilation
and efficient execution.

9 Future Work

Static type systems are continuously under attack from dynamic type systems.
Dynamic type systems play an important role in early software development
such as prototyping and explorative programming. Conversely, static type sys-
tems show their strength in industrial software production. This tension has
resulted in an almost religious war amongst language designers for at least
the last decade, but it seems that it is now time to join forces: The last few
years have seen much research in type inference of dynamic type systems, ex-
tracting type information from a given program. The information may then be
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utilised as an aid to the programmer, giving him a better understanding of
the types implicitly specified in the program, but also as a help to the com-
piler and runtime system in order to optimise the runtime efficiency of the pro-
gram [Chambers & Ungar 90, Oxhgj et al. 92, Plevyak & Chien 95, Agesen 95].

The work reported in this paper only deals with this tension in a limited way,
by allowing more flexible type declarations without compromising the level of
static type-checking already supported. However, industrial strength type sys-
tems must look for better ways to support early software development. One way
to go is to investigate the possibilities for introducing dynamic typing compo-
nents into static type systems.

10 Conclusion

This paper examined the current BETA type system and proposed generalisa-
tions that can be introduced without extensive runtime overhead, and without
changing the language syntax. The paper investigated the impact of these gen-
eralisations on other parts of the language, in order to regain an orthogonal and
internally consistent language.

We have investigated the tension between BETA block structure and the type
system, giving rise to the introduction of the concepts of full and partial pattern
qualifications. Partial pattern qualifications are types that do not uniquely re-
late to a single pattern, resulting in increased flexibility in expressing dynamic
references and generics.

Analysis of BETA qualification expressions revealed that any conceivable
path expression can be given a perfectly logical type-interpretation, giving rise
to increased expressive power without changing the language syntax. We have ex-
amined the generalised qualifications, finding that the BETA language has been
augmented with several new and powerful mechanisms, including creation-time
bound immutable object references, creation-time bound immutable pattern ref-
erences, virtual object binding, and more general generics.

Finally, we have examined the runtime overhead of the new facilities, reveal-
ing that a particular kind of qualifications, the dynamic qualifications, impose
severe runtime overhead. Albeit dynamic qualifications are very powerful, we
have excluded them from this proposal due to their runtime overhead. Further
investigations into these qualifications are needed in order to fully understand
the ramifications. Fortunately, in most cases where dynamic qualifications seem
the obvious choice, it is found that the type constraints needed can be speci-
fied by either using the newly introduced partial qualifications, or by re-binding
dynamic qualifications to static pattern references.

In general terms, we have extended the flexibility of the BETA type system
without imposing any additional runtime overhead. Object relations that natu-
rally arise in object-oriented analysis and design have been given direct language
language support, without adding new language concepts or syntax. The flexi-
bility has been gained from a more general interpretation of existing concepts.
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A A BETA Primer

This section briefly introduces the BETA language, and may be skipped by
readers familiar with BETA. For a comprehensive description of the language,
readers are referred to [Madsen et al. 93b].

A.1 Patterns

A BETA program execution consists of a collection of objects. An object is
an instance of a pattern. The pattern construct unifies programming language
concepts such as class, generic class, method, process, coroutine, and exception.
This results in a syntactically small language, but is also a point of confusion
for programmers with background in more traditional languages because classes
and methods in BETA have the same syntax. In this paper, we use the conven-
tion that patterns with names beginning with an upper-case letter correspond
to classes, whereas patterns with names beginning with a lower-case letter cor-
respond to methods’.

A pattern declaration has the form shown in Figure 7, where P is the name

P: Super
(# Decll; Decl2; ... Decln (* attribute-part *)
enter In (* enter-part *)
do Impl; Imp2; ... Impm (* do-part *)
exit Out (* exit-part *)
#)

Fig. 7. Structure of a pattern declaration

of the pattern and Super is an optional superpattern for P. The attribute-part is
a list of declarations of reference attributes, part objects, and nested patterns.
The most important forms taken by Decli are the following:

— R1: ~Q where Q is a pattern, declares R1 as a dynamic reference to instances
of (subpatterns of) Q. R1 is similar to a pointer in C++, and may thus refer

7 Occasionally, the same pattern is used as both a method and a class, although such
cases do not occur in this paper.
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to different objects at different points in time. The value of R1 is changed
through destructive assignments of the form newvalue[]->R1[].

— R2: @Q where Q is a pattern, declares R2 as a static reference to an instance of
the pattern Q. R2 is also called a static part object. “Static” means that R2 is
an immutable reference that cannot be changed by destructive assignment. It
is bound to a new instance of Q when the object containing the R2 attribute
is created.

~ R3:Q (# ... #). R3 declares and names a nested pattern R3 with super
pattern Q. R3 can be used as a nested class or as a method pattern.

— R4:< Q. Declares R4 as a new virtual pattern that can be specialised in sub-
patterns of P. The operators ::< and :: are used to specialise a virtual
pattern.

— R6: ##Q. Declares R5 as a dynamic pattern reference, allowed to refer to
the pattern Q, or any subpattern of Q. Dynamic pattern references are in
practice used as dynamic method and function references, class references,
and dynamic qualification references (described later).

The enter-part, In, describes input parameters to instances of P (formal pa-
rameters), the do-part describes the actions performed by executing instances of
P, and the exit-part, Out, describes the output parameters (return values).

Calc:
(# add: (* add is non-virtual *)
(# a,b,c: QInteger;
enter (a,b)
do a+b->c; c->display;
exit ¢
#);
clear:< (* clear is virtual *)
(#
do O->display; INNER; (* INNER used for specialisation *)
#);
display: @ (* display is a part object *)
(# value: QInteger;
enter value
do value->screen.putint;
#);
#);

Fig. 8. An example BETA pattern.

Figure 8 shows a BETA fragment defining a simple calculator. The Calc
pattern is used as a class. The add pattern is a non-virtual pattern, serving
as a method for instances of the surrounding Calc pattern. The clear pattern
is a virtual pattern, serving as a virtual method which can be specialised in
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subpatterns of Calc. Finally, display is a static part object modelling the display
of the calculator. Creation of a Calc instance and invocation of its add method
is done by:

aCalc: ~“Calc; value: QInteger,
do &Calc[]->aCalc[]; (1,2)->%aCalc.add->value;

First, an instance of Calc is instantiated, using the object creation operator
&. Object expressions followed by the box ([J) operator means “object refer-
ence”. Thus, evaluation of &Calc(] creates a new calculator object and returns
an object reference which is assigned to the dynamic object reference aCalc.
gaCalc.add creates an instance of the add pattern and executes its do-part.
The arrow (->) exiting (1,2) assigns the actual parameter list (1,2) to the for-
mal enter list (a,b) of the method object, while the arrow exiting &aCalc.add
assigns the formal exit list (c) to the actual exit list, in this case one-element list
(value). Syntactic sugar allows the & sign to be omitted in the case of method
executions. Thus, we may instead write:

aCalc: ~Calc; value: QInteger,
do &Calc[]->aCalc[]l; (1,2)->aCalc.add->value;

For readability, we shall use the syntactically sugared method call syntax.

A.2 Specialisation

In BETA, a virtual pattern can be specialised in a subpattern, not overridden.
Execution of an object always begins at the top of the inheritance hierarchy, and
control is transfered down the specialisation chain at each INNER imperative. The
INNER imperative has no effect in the most specific pattern.

For example, the virtual pattern, Calc.clear, may be extended in subpat-
terns of Calc:

Calc2: Calc (* subpattern of Calc *)
(# clear::< (* further binding *)
(# do INNER; ’Clear’->screen.putline #);
#);
aCalc2: @Calc2;
do aCalc2.clear;

Calc? inherits from Calc, and extends (::<) the clear virtual pattern to re-
port whenever the screen is cleared. The execution of aCalc2.clear begins
at the do-part of Calc.clear (in Figure 8), and then, at the INNER impera-
tive, control is transferred to the do-part of Calc2.clear. The INNER impera-
tive in Calc2.clear has no effect, since clear has not been further extended.
When the do-part of Calc2.clear terminates, control returns to the do-part of
Calc.clear which returns directly to the caller of aCalc2.clear. Thus, exe-
cution of aCalc2.clear first clears the display, and then writes Clear to the
terminal screen.
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Specialisation of virtual patterns using ::< is called further binding. After
further binding, the clear pattern is still virtual, and can be further extended
in subpatterns of Calc2. Using a final binding (::) the pattern is extended and
at the same time converted to a non-virtual pattern which cannot be further
extended.

It is possible to specialise a method without creating a new pattern: Firstly,
assuming that aCalc2 is the only instance of Calc2 we need, aCalc2 could be
declared as a singular object, as shown in Figure 9a.

aCalc2: @Calc do aCalc2.clear
(# clear:: (* final binding *) (#
(# do ’Very ’->screen.puttext
do INNER; #);

’Clear’->screen.putline;
#);
#);
do aCalc2.clear;

Fig. 9. (a) Singular object declaration. (b) Call-spot specialisation.

This ensures that aCalc2 will be the only object of its kind, and avoids name
space pollution with the superfluous Calc2 name. The example demonstrates
that instance creation and specialisation may happen simultaneously. Secondly,
specialisation and execution can happen simultaneously. For example, the method
aCalc2.clear can be specialised directly at the call-spot, as shown in Figure 9b,
where the display is cleared, and Very Clear is written to the terminal screen.

A.3 Dynamic Pattern References

An example usage of the dynamic pattern reference attribute kind is shown
below:

calcP: ##Calc; aCalc: ~“Calc;
do Calc2##->calcP##; &calcP[]->aCalc(];

The dynamic pattern reference calcP is allowed to refer to the Calc pattern or
subpatterns of Calc. Above, the Calc2 pattern is assigned to calcP, and then an
instance of the Calc2 pattern now referred to by calcP is created and assigned to
aCalc. Dynamic pattern references may be compared using relational operators
<=, >=, and =, in order to check inheritance relationships.



