Metaphoric Polymorphism: Taking Code Reuse
One Step Further

Ran Rinat! and Menachem Magidor?

! Institute of Computer Science, Hebrew University, Jerusalem 91904, Israel
E-mail: rinat@cs.huji.ac.il
2 Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel
E-mail: menachem@sunset.huji.ac.il

Abstract. We propose two new constructs for object oriented program-
ming that significantly increase polymorphism. Consequently, code may
be reused in ways unaccounted for by existing machinery. These con-
structs of type correspondence and partial inheritance are motivated from
metaphors of natural language and thought. They establish correspon-
dences between types non of which is (necessarily) a subtype of the other.
As a result, methods may operate on objects - and may receive arguments
- of types different than the ones originally intended for. The semantics of
the proposed constructs generalizes that of ordinary inheritance, thereby
establishing the latter as a special case. We show that the incorporation
of these constructs in programming supports the process of natural soft-
ware evolution and contributes to a better conceptual organization of
the type system.

1 Introduction

One important benefit of object oriented programming is the ability to reflect
conceptual structure in software: the class hierarchy of an object oriented system
represents to a large extent the categorical hierarchy of the real-life domain in
which it operates. Some of the most important constructs of object oriented
programming are counterparts of mechanisms that exist in human cognitive
activity. For example, inheritance reflects the is-a relationship between concepts
([2], [15], [14]), and genericity represents what may be called “parameterized
concepts”.

Imitating cognitive mechanisms leads to a better organization of software,
resulting in a higher degree of code reuse. In particular, because classes are
organized in an inheritance hierarchy, a single piece of code may apply to a whole
sub-hierarchy of classes. With genericity, types that have common properties and
behavior may be derived from a single generic class, allowing them to share the
code for that class. This can also be conceived as a sort of organization method,
imitating human conceptual capabilities.

The (human) conceptual system, however, has a much more complex struc-
ture than what is captured by existing object oriented constructs. This structure
is analyzed by George Lakoff in his book [6]. One factor that is singled out there
as being central in human categorization is that of metaphors. In an earlier



450

book by the same author and by Mark Johnson ([7]), which is wholly dedicated
to the issue of metaphors, it is argued that “the human conceptual system is
metaphorically structured and defined”. The authors demonstrate through nu-
merous examples, that metaphors are not (just) elements of poetry, but are
constantly used in everyday speech, affecting the way in which people perceive,
think and act. Quoting from [7], “The essence of metaphor is understanding and
experiencing one thing in terms of another”. We bring their first example to
illustrate what is meant by that: consider the metaphor ARGUMENT IS WAR.
This metaphor is reflected in everyday language by many expressions:

— Your claims are indefensible.

— She attacked every weak point in my argument.
— His criticisms were right on target.

— If you use that strategy, he’ll wipe you out.

— P’ve never won an argument with her.

As seen by this example, notions from the realm of war are applied to argu-
ments. However, an argument is not really a war, in the sense that only part of
what constitutes the concept war is applicable to arguments. Put it another way,
there is a partial mapping from the building blocks of war to those of argument.

Looking at this argumentation, and considering the benefit that has been
gained from incorporating conceptual oriented constructs into programming, it
seems reasonable that metaphors could motivate some useful programming con-
structs.

We propose two new constructs for object oriented programming: type cor-
respondences and partial inheritance. Both of them are based on the observation
that a piece of code, originally written to work with certain types, can actually
work with other ones, which are not necessarily subtype compatible. The idea,
motivated by metaphors, is to partially relate two types in a useful way.

To illustrate, assume we have a class INTEGER with methods mulliply
(n:INTEGER): INTEGER and power (n:INTEGER): INTEGER. The first re-
turns the result of multiplying the receiving object by n, and the second returns
the result of raising it to the power of n. We also have a class MATRIX of
square matrices of a given fixed size, equipped with a method matriz_multiply
(some_matrizzMATRIX): MATRIX which returns the result of multiplying the
target object by some_matriz. Our goal is to make use of the fact that the power
function on matrices relates to matrix multiplication just as the power function
on integers relates to integer multiplication, in order to be able to apply power
to matrices. This is what metaphors do: they use similarities between concepts
to apply notions of one to the other.

To account for that we define a type correspondence that relates the types
INTEGER and MATRIX, mapping multiply of INTEGER to matriz_multiply
of MATRIX. Having done that, and assuming that power is implemented using
multiply (but not in any specific manner), we may now apply power to objects of
type MATRIX. That is, we may issue a call matrix.power(n), where matrix is a
(variable of type) MATRIX and n is an integer. It will work, because whenever



451

multiply is mentioned in power’s text, matriz_multiply will be invoked instead,
since multiply has been mapped to it in the type correspondence. Thus, the code
for power, originally written for integers, has been reused for MATRIX, which is
not a subtype of INTEGER3. Note that INTEGER may have other attributes
and methods not mapped to MATRIX, such as prime:BOOLEAN, and so the
mapping is partial in that sense. The proposed syntax for type correspondences,
that also declares power as applied to MATRIX, is given in Sect. 2.1.

In this examples, a new working method has been added to the type MA-
TRIX. But the main point is not so much this enrichment of MATRIX’s set of
methods, as it is the use of a certain piece of code (that of power) with argument
types not originally intended for. power actually has two arguments: self and n,
both intended to be integers. Our type correspondence makes the text of power
meaningful when the first argument (self) is a matrix and the second still an
integer. That power is also added to the list of methods supported by MATRIX
so as to legalize calls such as matrix.power(n) is another separate feature offered
by the construct of type correspondence. This becomes clearer if we take power
to be a free-standing function rather than a method of INTEGER. In this case
power(k,m : INTEGER) : INTEGER receives two (intended) integers k and m
and returns k™. Given the type correspondence relating INTEGER to MATRIX,
we could supply a matrix argument for k, yielding a matrix result.

The second construct we propose is partial inheritance. It is conceptually the
same as type correspondences, only it establishes the (partial) correspondence
while actually creating one of the classes.

The INTEGER-MATRIX case is a toy example that involves only one type
correspondence. However, in realistic cases, a set of type correspondences will
be needed in favor of a single reuse task, involving a collection of collaborating
classes. In fact, when partial inheritance is also employed, we conjecture that
frameworks, that is libraries of collaborating classes, could be reused in new
and unanticipated ways. Although we do not show a framework example in this
paper, a complicated enough scenario is outlined in Sect. 3.2, which we believe
testifies to that effect.

The semantics of the proposed constructs is defined in a way that generalizes
ordinary inheritance and allows a uniform treatment of type correspondences,
partial inheritance and ordinary inheritance altogether. We argue that this se-
mantics also leads to a type system with a richer semantic structure, a fact
that manifests itself in higher potentials for code reuse. This structure reflects
the conceptual organization of the problem domain, and supports the process of
natural software evolution (Sect. 4.1).

Type correspondences and partial inheritance increase polymorphism, be-
cause they allow a given piece of code to be interpreted in new ways - in
metaphoric ways. Following the terminology of subtype and parametric poly-
morphism employed in the context of inheritance and genericity respectively, we
term the phenomena resulting from the inclusion of these constructs in program-
ming metaphoric polymorphism.

3 We assume that power receives a positive integer as argument.



452

As can be seen by the INTEGER-MATRIX example, metaphoric polymor-
phism raises some fundamental issues regarding type correctness. To start with,
functions (methods of some type or free-standing) are supposed to accept ar-
guments which are not subtype-compatible with the declared signature. These
issues are briefly discussed in Sect. 4.2, and a full analysis is deferred to another
paper.

Section 2 introduces type correspondences (2.1), and defines their seman-
tics (2.2). Section 3 introduces partial inheritance (3.1), and outlines a real-life
scenario that we believe testifies to the scaling up potential of the proposed
constructs (3.2). Section 4 shows how these constructs support natural soft-
ware evolution and structure (4.1), and discusses the new kind of polymorphism
suggested here along with its implications on type correctness (4.2). Section 5
compares our approach to previous work. Section 6 concludes with suggestions
for further research.

2 Type Correspondences

In this section we introduce the construct of type correspondence that enables
programmers to take advantage of similarities between ezisting types. It estab-
lishes a partial mapping between two types, allowing appropriate pieces of code,
originally expecting one, to work with the other. This construct is defined in 2.1,
where it 1s informally described through some examples. The title metaphoric
polymorphism is also explained in 2.1. A semantics treating type correspondences
and inheritance uniformly is given in 2.2.

2.1 Construct Definition

A type correspondence is a programming construct that establishes a pariial
mapping between the attributes and methods of one type, called the source of
the correspondence, to those of another, called the target. It may also specify
some of the source’s methods as being applied to the target. This will have the
effect of legalizing calls, invoking methods listed in the apply part (along with
their original implementations) on objects of the target’s type, although that
type does not have these methods listed in its definition, nor did it inherit them
from an ancestor.

While executing the implementations for these applied methods on objects of
the target type, references to attributes and methods of the source type will be
interpreted in the target type according to the map part of the correspondence.
In general, the mapping defined in the correspondence will be used whenever
there is a need to interpret (on run time) a reference exp.f to a method or
attribute, where the intended type of exp is the source type and the object
at hand is of the target type. Such interpretations will very likely be needed
while executing the applied methods, but they are also likely to be needed while
executing any routine for which an object of the target type has been supplied
while one of the source type was expected. This will be exemplified in a moment.



453

relate source_type to target_type
[map source.att_or_method to target.att_or-method
source_att_or_method to target_att_or_method

-
[apply source.method [as name_in_target ]
source_method [as name_in_target ]

end;

Fig.1. A proposed syntax for the construct of type correspondence

Figure 1 shows a possible syntax for a type correspondence. As an example
recall the case from the introduction, involving a class INTEGER with meth-
ods multiply (n:INTEGER): INTEGER and power (n:INTEGER): INTEGER,
and another one M AT RIX with a method matriz_multiply (some_matrix: MA-
TRIX): MATRIX. Here is the type correspondence that allows the application
of power to MATRIX, as discussed in Sect. 1:

relate INTEGER to MATRIX
map multiply to matriz_multiply
apply power as matriz_power

end;

Given this type correspondence, and assuming that power of MATRIX is
implemented using multiply, the following call will be valid, where matrixl and
matrix2 are of type MATRIX*:

matrixl := matrix2.matriz_power(5);

When the statement in the example arrives at execution, matrix2 is bound to
some object of type MATRIX. Now, this type does not originally have a method
called matriz_power, but in the type correspondence, power of INTEGER 1s
applied to MATRIX as matriz_power. Therefore, the code for power will be
executed. While executing, calls to multiply will be encountered, which will be
interpreted as calls to matriz_multiply, because of the mapping of multiply to
matriz_multiply in the type correspondence. We have thus added a new working
method to the class MATRIX without having to implement it. In other words,
the code for power of INTEGER has been reused in a new context, which is not
a class inheriting from INTEGER.

* We assume that power receives a positive integer as argument.



454

The apply and map parts of a type correspondence have different roles. In
fact, they could be separated to yield two different constructs. The mapping is
the more essential part, enabling the use of certain pieces of code (that of power
in this example) with types not originally intended for. power actually has two
arguments: self and n, both intended to be integers. The type correspondence
makes the text of power meaningful when the first argument (self) is a matrix
and the second still an integer. The apply part makes matriz_power available as
a new method of the type MATRIX, while establishing the code of INTEGER’s
power as the one to be executed when it is called. Applying a method also maps it
implicitly to the newly added one in the target. Thus, our type correspondence
maps power of INTEGER to matriz_multiply of MATRIX although it is not
explicitly specified.

The mapping established by a type correspondence in the map part may
be useful regardless of the methods it applies, if any. For example, if power
were a free-standing function expecting two integer arguments n and k, and
returning n* then our type correspondence would enable calling it with a matrix
as first argument, with no need for an apply part. As another example, consider
a free standing-function three_multiply (n,mk: INTEGER): INTEGER, which
returns nxmxk. In the presence of the type correspondence relating INTEGER
to MATRIX, three_multiply may be invoked with matrices as arguments:

matrixl := {hree_multiply (matrix2, matrix3,matrix4);

three_multiply could of course be a method of some unrelated type, not just
a free-standing function.

Note that the mapping is partial: INTEGER may have other attributes and
methods which are not mapped to MATRIX, e.g. a method prime:BOOLEAN.
Also note that in order for this to work, all that is required is for power to be
implemented using multiply, but not in any specific way. For example, n™ may be
computed by multiplying n m—1 times by itself, or it may proceed by computing
n?, then multiplying it by itself to yield n*, and so on in O(log(m)) steps. Thus,
type correspondences somewhat trade the principle of encapsulation for code
reuse, but only to the extent, that in order to apply a method, one must know
what other methods and attributes it refers to, not (exactly) how it works®.

Back to the discussion of type correspondences in general, mapping a source’s
attribute or method f to h in the map part means that references to f directed
at (= sent to) objects whose intended type is the source, but whose actual type
is the target, will be interpreted as references to h. We shall have more to say
on intended typesin 2.2 .

In the apply part, it is possible, but not necessary, to give the applicable
source’s methods new names in the target’s context. This is done using the as
keyword. If f appears in the apply part of some type correspondence with target
T, we say that f is applied to T (by that type correspondence). This means that
it is possible to invoke f on objects of type 7', even though f is not listed nor

® What exactly needs to be known and how to express it is an issue for further research.
See Sect. 6.



455

inherited in 7’s definition. If f is applied to T without renaming, or some g is
applied to T and is renamed as f, we say that f is added to T (by that type
correspondence).

Here are some points and restrictions concerning the definition of type cor-
respondences:

— Each source_attr_or_method is either an attribute (instance variable) of the
source, a method of the source, or a method added to the source by some
type correspondence (a method or attribute is of a type if it is defined there
directly or it is inherited from some ancestor).

— Each target_attr_or_method is either an attribute of the target, a method of
the target, or a method added to the target by some type correspondence.

— Attributes are mapped to attributes and methods are mapped to methods®.
If method f; is mapped to method f; then f; and f; must have declared
signatures of the same arity, that is they must have the same number of
arguments, and either both are functions or both are procedures. There are
no restrictions regarding relationships between argument types.

— Only methods may be applied, and all those that are applied must be of the
source, or added to it by some type correspondence.

Clearly, it is not the case that a matrix argument to a routine may be sup-
plied whenever an integer is required, as it is not the case that any method of
INTEGER may be successfully applied to MATRIX. For instance, the method
prime:BOOLEAN of INTEGER could not be applied to MATRIX because inte-
ger division has no counterpart in matrices (in the specific type correspondence
of the example and also in principle). Similarly, a call matrix1.matriz_power (ma-
trix2) would be illegal because there is no counterpart to the successor function
in matrices. These limitations stem from the fact that type correspondences are
partial mappings between types. The question of what is valid and what 1s not
is an issue of type correctness, and is briefly discussed in Sect. 4.2. We note here
that type correctness in the presence of type correspondences can be well defined
and algorithmically verified. These results will be reported elsewhere.

The essential contribution made by type correspondences is the ability to
interpret a given piece of code in new ways. The mechanisms of inheritance and
genericity also give rise to a similar phenomena. With respect to these mecha-
nisms, this ability is referred to as subtype polymorphism (for inheritance) and
parameltric polymorphism (for genericity). Following this terminology, we term
the phenomena resulting from the inclusion of type correspondences (as well as
partial inheritance introduced in Sect. 3) in programs metaphoric polymorphism.

The INTEGER-MATRIX example consisted of a single type correspondence.
However, in the general case, a set of type correspondences may be combined
for the purpose of a single reuse task. This is the case when the pattern to be

® In languages that also treat attributes as functions without arguments, such as EIpr-
FEL, methods may be mapped to attributes (but not vice versa).



456

reused consists not only of a single class, but of a set of collaborating classes. For
instance, if one class is part of another one, then partially relating the containing
class could also require relating the contained one.

The following example illustrates this on a toy case. A more realistic ex-
ample, that also includes partial inheritance, is given in 3.2. Consider a type
INTEGER_LIST having a method first, which positions the cursor (some sort
of pointer) on the first element of the list, a method nezt:INTEGER, that re-
turns the element at the cursor’s position and advances it one further, and a
method min_list:INTEGER, which returns the minimal element of the list. Sup-
pose also that we have a type COU RSE with a method first_student that sets
some pointer to the first student in the course according to the alphabetical
order, and a method nezi_student:STUDENT that returns the student at the
current position and advances to the next according to the alphabetical order.

We now wish to apply the min_list method of INTEGER_LIST to COURSE
in order to find the student with the minimal grade. To do that, it is necessary
to get down to the building blocks of INTEGER_LIST and of COURSE, that is
to the level of integers and students. Suppose further that the type INTEGER
has a method less_than(INTEGER):BOOLEAN, and that the type STUDENT
has a method has_lower_grade(STUDENT):BOOLEAN. Now, assuming that the
method min_list is implemented using the methods first, nezt and less_than, the
following type correspondence will allow the desired application:

relate INTEGER_LIST to COURSE

map first to first_student

next to nezt_student

apply min_list as worst_student:STUDENT
end;
relate INTEGER to STUDENT

map less_than to has_lower_grade
end;

The observation that a complex structure, consisting of several type cor-
respondences, can be used to relate two sets of collaborating classes in favor
of some reuse task suggests that frameworks may be used in new ways when
type correspondences are allowed for. This point becomes more prominent when
partial inheritance, presented in Sect. 3, is brought into the scene.

Type correspondences may also be useful in combination with with con-
strained genericity as implemented in EIFFEL ([8]) and with class substitutions
([12], [11]). We cannot elaborate on that due to lack of space.

2.2 Semantics: Dispatch in the Presence of Type Correspondences

As discussed above, type correspondences allow functions (methods or free-
standing) to be invoked with arguments different from the intended ones. This



457

means that when a call exp.f(ezpy, ..., ezpp) invoking the method f on ezp ar-
rives at execution, it is no longer guaranteed that ezp is bound to an object of
type S, where S is the intended type of ezp. Intuitively, the intended type of an
expression is the type of exp as anticipated by the programmer who wrote it. If
exp is a local variable, an attribute, or a formal argument, then its intended type
is its declared type. If it is, however, a compound expression involving function
invocations, then determining the intended type is a more subtle task. For ex-
ample, the intended type of the expression three_multiply(n,m k) is INTEGER,
but the intended type of three_multiply(matrixl,matrix2,matrix3) is MATRIX.
The latter is true despite the fact that three_multiply’s signature declares the
resultant type as INTEGER. We do not give a precise definition of the intended
type of a general expression in this paper but only state that this notion can be
well defined. For the current presentation, an intuitive understanding will suffice.
Alternatively, the reader may think of exp as being a simple expression (i.e. one
identifier), in which case its intended type is its declared type.

Continuing the discussion, the problem is that f is (supposedly) a method of
exp’s intended type, not of o’s type, o being the object actually attached to exp
when ezp.f(ezpy, ..., expy) arrives at execution”. The handling of this situation
proceeds in two steps (7" denotes o’s type):

1. Identify which method of T' (if any) is referred to by f. In the INTEGER-
MATRIX example, when power’s text is executed on a matrix, a call n.multiply
(m) might be encountered, where n is intended to be an integer but is in
fact a matrix. Given the mapping defined by the type correspondence, ma-
triz_multiply is identified as MATRIX’s method referred to by multiply.

2. Determine the implementation, i.e. the actual code, to be invoked. With
matriz_multiply there is nothing special here: just use its implementation
as defined in the class MATRIX. However, type correspondences contribute
to this step too, when it comes to finding an implementation of an applied
method. For example, when a call matrix.matriz_power(n) is encountered, it
is the implementation of INTEGER’s power that should be invoked.

Before defining how these steps are carried out, let us point out that they
conceptually exist even without type correspondences. To see that, consider the
inheritance structure shown in Fig. 2, which assumes a language that supports
attribute and method renaming, such as EIFFEL. Part (a) of that figure shows a
directed graph whose nodes are types, representing an ordinary inheritance hi-
erarchy between PERSON, EMPLQOYEE and STUDENT. In part (b) the nodes
are elements of the form S.f where S is a type and f is a method or an attribute
of S. There is an edge T.h — S.f iff T' (directly) inherits S and h = f or f 1s
renamed h in T. Thus, for example, STUDENT inherits PERSON while renam-
ing income as scholarship and leaving age as is. Now, if a call person.income()
arrives at execution®, where person is a variable of type PERSON bound to an

7 Moreover, even if o’s type has a method named f, it is not a-priori clear that it is
this method that we want to invoke.
8 We assume income, salary and scholarship to be functions with no arguments.



458

(a) An ordinary (type level) is-a graph

PERSON.age PERSON.income
EMPLOYEE.age EMPLOYEE salary STUDENT.scholarship

(b) An attribute-method level graph (G)

STUDENT .age

Fig. 2. Bringing the inheritance graph to the attribute-method level

object of type STUDENT (which is a subtype of PERSON), then scholarship is
identified as STUDENT’s method referred to by income. This is because there is
a path in the graph from STUDENT.scholarship to PERSON.income, PERSON
being the intended type and STUDENT being the actual type.

The same attribute-method level graph may also serve for the second step -
that of finding the implementation. This is done by conducting a search starting
at the identified method (STUDENT.scholarship in the example) looking for a
closet implementation®.

We now extend this analysis to handle type correspondences as well. For
the first step, i.e. that of identifying the actual type’s method referred to, con-
struct a graph Gidentify whose nodes are elements of the form S.f where S is a
type and f is a method or an attribute of S or a method added to S by some
type correspondence!®. Add an edge T.h — S.f to Gigentisy when either of the
following holds:

1. T inherits S in its definition and either f is not renamed and f = h, or f is
renamed as h.

2. There is a type correspondence with source S and target 7', in which f is
mapped to h (in the map part).

3. There is a type correspondence with source S and target 77, in which f is
applied as h.

4. There is a type correspondence with source S and target 7', in which f is
applied without renaming and f = h.

® In the presence of multiple inheritance, either all inherited methods and attributes
should have different names, perhaps after renaming (as in EIFFEL), or some lin-
earization strategy should be employed during the search.

10 Note that if 7 inherits S and f was added to S by some type correspondence then
f will also be a method of T, and there will be a node 7' f in Gidentify-



459

REAL.multiply

INTEGER.multiply

INTEGER .prime INTEGER .power
MATRIX.matrix_multiply MATRIX . matrix_power

Fig. 3. Gidentisy for the INTEGER-MATRIX example

The last two items reflect the fact mentioned in 2.1, that applying implicitly
implies mapping. Figure 3 shows the graph for the INTEGER-MATRIX exam-
ple. In that figure, one node for the type REAL, from which INTEGER inherits,
is also included in order to show that type correspondences join the inheritance
relation to yield one graph.

Given Gidentify, we say that T.h corresponds to S.f if there is a path (of
length 0 or more) from T.h to S.f. Thus, the graph defines a reflexive binary
correspondence relation between attributes and methods of types. Gigentigy 18
required to be unambiguous, that is for any types S and 7" and any method or
attribute f of S there should be at most one h such that T.h corresponds to
S.f. Ambiguity is also a potential problem without type correspondences. For
example, in Eiffel such ambiguities must be resolved using the SELECT keyword.

For the second step, i.e. that of finding an implementation, we need a slightly
different graph when type correspondences are in effect. Let Ginpr be a graph
similar to Gigentisy, only without the edges added due to map parts, that is
without item 2 in the definition of Gigentify-

With these graphs at hand, dispatching in the presence of type correspon-
dences proceeds as in Fig. 4.

The correspondence relation between methods and attributes of types repre-
sented by Gigentify generalizes the ordinary inheritance relation between types.
It contains all information present in the latter plus what is given by type cor-
respondences. Given Gigentify, We no longer care whether this or that edge is
there because of inheritance or because of some type correspondence. Thus, the
correspondence relation abstracts over the reasons that justified its construction.
It directly represents a type system possessing a certain structure, and it can
express a richer semantic structure than what can be expressed with an ordinary
type-level inheritance relation. This richer structure results in higher potentials
for code reuse.

Note, however, that the same amount of code sharing allowed for by a given
type correspondence could be simulated using inheritance. For instance, in the



460

Let ezp.f(ezpi,...,ezpn) be a statement invoking the method f on ezp, where the
intended type of exp is S. Suppose that when this statement arrives at execution, exp
is bound to an object o of type T (because there are type correspondences, 1" is not
necessarily a subtype of S). Let Gidentify and Gimpt be obtained from the inheritance
relation and the type correspondences altogether as described. To find the code to be
executed proceed as follows:

1. Identify which method of T is referred to by f: search for a method h such that
T.h corresponds to S.f, that is, there is a path (of length 0 or more) in Gidensify
from T'h to S.f (because Glidentify 1s unambiguous, there can be at most one such
k). Tf the search is unsuccessful, terminate and return a “no such method” run
time error (an appropriate type checking strategy should aim at detecting this at
compile time). Otherwise, proceed to the next step.

2. Search for an implementation: perform a search on Gimp starting at Tk, looking
for a closest node (to T.k) containing an implementation.

Fig. 4. Method dispatch in the presence of type correspondences.

INTEGER - MATRIX example, one could introduce an abstract class MULTI-
PLIABLE having methods multiply and power, the first of which is virtual (de-
ferred). Then, letting INTEGER and MATRIX inherit from MULTIPLIABLE,
each implementing multiply appropriately, will have achieved the same amount
of code sharing. The main reasons why this observation does not render type
correspondences superfluous are that they support the process of natural soft-
ware evolution, and that they spare unnatural abstractions. See Sect. 4.1 for a
full discussion.

Some object-oriented experts may object to the late addition of methods to
classes, resulting from the apply part of type correspondences. The potential
criticism is that in OOP all methods of a class should be defined in one place.
However, what the apply does is no different from what ordinary inheritance
does. With inheritance too, a class possesses methods not visible in its declara-
tion. To overcome this, the environment may provide a class flattener ([8]), that
gives a description of a class along with all its inherited attributes and methods.
Such a tool may, and in fact should, bring in methods applied through type
correspondences as well. This is also in line with our semantics that treats both
constructs uniformly.

Finally, there are other statements and expressions besides those of the form
exp.f(exps, ..., exzp,) that need be analyzed when type correspondences are
present. Among them are references to attributes and unqualified method calls.
We cannot treat them here due to lack of space, but they do not introduce more
difficulties than those discussed.

3 Partial Inheritance

A type correspondence partially relates types that exist independently of it, and
in fact might have been defined long before the correspondence was identified



461

and recognized as beneficial. However, after realizing that the main point is the
association of attributes and methods, rather than full types, to one another, it
1s only natural to provide a mechanism that derives one class from another while
only taking part of its methods and attributes.

We propose partial inheritance for this purpose. There is nothing conceptually
new here with respect to type correspondences: partial inheritance also gives
rise to metaphoric polymorphism, that is the ability to metaphorically interpret
a given piece of code. The only difference is that it establishes the (partial)
correspondence while actually creating one of the classes. The new derived class is
not (necessarily) a subtype of the one from which it is derived. Partial inheritance
suggests itself as a natural generalization of (full) inheritance, and its semantics
is also merged into the framework introduced in the previous section.

Suppression of attributes and methods in inheritance has been proposed be-
fore, and there are also experimental languages that support it. But in these
languages, this is only conceived as a technical feature, not as a way of estab-
lishing a partial relation between types. It is in order to emphasize this point
that we have chosen to present type correspondences first.

Combining partial inheritance and type correspondences provides a manner
of reusing sets of collaborating classes in new ways. After defining the construct
of partial inheritance in 3.1 below, we lay out in 3.2 an example that illustrates
how a large software consisting of classes working together can be significantly
expanded on the basis of reuse. If such an expansion were carried out without
partial inheritance and type correspondences, then either the class hierarchy
would need to be reorganized, or the new classes would need to be written
directly without reusing existing components. Although that example regards
a specific software, 1t strongly suggests that whole patterns could be reused
from frameworks in new and unanticipated ways when constructs giving rise to
metaphoric polymorphism are allowed for.

3.1 Construct Definition and Semantics

Figure 5 specifies an EIFFEL-like syntax for partial inheritance. Here is an
explanation of the clauses mentioned in the figure:

— The take clause specifies those attributes of the inherited class that will
become part of the inheriting class. The keyword all may be used to specify
full inheritance.

— In the rename clause, some of the attributes and methods specified in the
take clause may be given new names in the inheriting class.

— The redefine clause lists all methods whose implementations are redefined
in the inheriting class. The methods listed here must appear among those

defined in the inheriting class for the first time, where their new implemen-
tations are given.



462

class inheriting_class_name inherit inherited_class_name
take
(att_or_method,att_or_method,...,att_or_method) | all
rename
att_or_method as new_name
att_or_method as new_name

redefine
att_or_method,att_or_method,...,att_or_method

Rest of the class deﬁnition]

end class_name;

Fig.5. A proposed syntax for partial inheritance

As a simple example, consider again the types INTEGER and MATRIX, but
this time suppose that only INTEGER existed in the environment and we wished
to derive MATRIX, including the method matriz_power, from it. Figure 6 shows
how this is done using partial inheritance. Note that by this derivation MATRIX
does not become a subtype of INTEGER. The latter has other methods such as
prime.

class MATRIX inherit INTEGER
take
multiply, power
rename
multiply as matriz_multiply
power as matriz_power
redefine matriz_multiply

l New implementation for matriz_multiply

IRest of the class definition

end MATRIX;

Fig. 6. Using partial inheritance to derive MATRIX from INTEGER

The semantics of partial inheritance is naturally described within the frame-
work of Sect. 2.2: whenever C) partially inherits C5, extend both Glidentify and
Gimpi as follows:



463

— Add nodes Cs.f, where f is an attribute or method taken from C; (if f is
renamed as h, then add Cs.h instead).

— Add edges Cy.h — C;.f whenever f is taken and renamed as h, or it is taken
without renaming and f = h.

— Add nodes Cs.f for every new attribute or method f first introduced in Cs.

Having extended the graphs as described, dispatching in the presence of
partial inheritance (and type correspondences, and full inheritance) proceeds as
in Fig. 4 of Sect. 2.2.

3.2 An Example

The real-life scenario of this subsection involves partial inheritance and type
correspondences that join in favor of a single reuse task. A real software would
surely include many more classes, and those listed here are understood as forming
only a partial picture. However, it should be clear from the example that a real
software of this kind could be expanded in the same spirit.

Consider an airline company which has been in the air travel business for
some time, during which a large object oriented software supporting its activi-
ties has been constructed for it. Among the classes of this software, there is one
called FLIGHT that has attributes like number, date, origin, destination, depar-
ture_time, arrival_time, passengers, carrier and more. carrier holds an object of
type AIRCRAFT, the one carrying out the flight. passengers holds a list of type
AIR_PASSENGER.

The class FLIGHT also has several methods, one of which is register_seats
(passenger_list: LIST[AIR_.PASSENGER], class: AIR_CLASS'", smokersflag :
BOOLEAN) . This method operates by first invoking a method get_seats on the
flight’s carrier, and then distributing the seats returned by the aircraft among
the passengers listed in passenger_list. The distribution proceeds by invoking
the method set_seal(seat: AIR_SIT) on each passenger of the list. The result
of the method register_seats will thus be reflected in the attribute passengers
of the flight object (i.e. some of them, namely those included in passenger_list,
will have seats). get_seats, a method of the type AIRCRAFT, has the follow-
ing signature: get_seats(number : INTEGER, class: AIR_CLASS, smokers_flag:
BOOLEAN): LIST(AIR_SIT). It returns a list of available seats according to
the desired number, class, and smokers/non-smokers preference.

Suppose that at a certain point, this company decides to expand its business
to include railway traffic as well. It decides to treat train journeys much the same
as flights. Naturally, the supporting software must be modified to handle this
expansion. It would be of great efficiency if existing code could be reused without
change and without harming what already works. We show how to use partial

' Do not confuse this with classes of OOP. Here we mean first class, business class and
tourist class.



464

class TRAIN.JOURNEY inherit FLIGHT
take
number, date, origin, destination, departure_time, arrival_time,
passengers, carrier, register_seats

| Rest of the class definition

end TRAIN_JOURNEY:;

relate ATRCRAFT to TRAIN
map get_seats to get_seats
end;

relate AIR_PASSENGER to TRAIN_PASSENGER
map passenger_name to passenger_name
map sitting_place to sitting_place
map set_seat to set_seat

end;

Fig.7. Deriving TRAIN.JOURNEY from FLIGHT

inheritance to derive a new class TRAIN.JOURNEY from the class FLIGHT
with the help of some type correspondences.

Suppose a class TRAIN has been somehow defined (it could be derived
from AIRCRAFT through partial inheritance, but we shall assume 1t was not).
TRAIN also has a method gef_seats(number: INTEGER, class: TRAIN_CLASS,
smokers_flag: BOOLEAN): LIST(TRAIN_SIT) with signature and semantics
similar to that of AIRCRAFT. Note, however, that instead of AIR_CLASS
we here have TRAIN_CLASS. Also, the way get_seats operate in each type is
different. For example, trains have wagons, and so looking for available seats
is different. For that reason, a list of TRAIN_SIT is returned rather than a
list of AIR_SIT. We also assume that these new types (TRAIN.CLASS and
TRAIN_SIT) have been defined separately. Finally, we assume that a class
TRAIN_PASSENGER have been defined, differing from AIR_PASSENGER only
in keeping train seats instead of air seats, and, subsequently, in having the
method set_seai(seat: TRAIN_SIT) with this different signature!?.

Figure 7 shows the derivation of TRAIN_JOURNEY from FLIGHT using
partial inheritance and the type correspondences needed for it. Note that quite
a number of methods and attributes have been inherited by TRAIN_ JOURNEY,
and there could probably be many more if the example were complete. Also note
that there may be other attributes and methods of FLIGHT not inherited by

12 TRAIN_.PASSENGER could certainly be derived from AIR_PASSENGER through
generalized inheritance.



465

TRAIN_JOURNEY such as mazimum_weight_allowed, free_meal_menu etc. This
is no wonder since TRAIN_JOURNEY is not a subtype of FLIGHT.

4 Discussion of Metaphoric Polymorphism

4.1 Support for Natural Software Evolution and Structure

In Sect. 2.2, we have remarked that the same amount of code sharing achieved
by type correspondences can be simulated via (full) inheritance. To simulate
a type correspondence relating T to S, define a new class encapsulating those
attributes and methods of 7" which are mapped or applied to S, and let T" and
S inherit from this new class, redefining implementations as needed. The same
technique may be applied to simulate partial inheritance via full inheritance.
However, this is only a technical simulation that in many cases does not fit well
into the development process. Consider the following points:

~ If one or both of the two types related via a type correspondence existed
before the correspondence was identified and recognized as beneficial, then
this simulation requires to reorganize the class hierarchy, so that the existing
type(s) will inherit from the new abstract class. This means touching a work-
ing code - a fine potential for problems. This argument applies equally to
partial inheritance, in case the inherited class already existed as a function-
ing component. Even if the language supports a generalization mechanism
as proposed in [13], then using our proposed constructs will still be more ap-
propriate in many cases: see the next two points, the rest of this subsection
and the comparison to related work in Sect. 5.

— Partial inheritance along with type correspondences may be the only way
to adapt supplied components or frameworks, as it is unreasonable to let
imported components inherit user defined classes.

~ The new abstract class might turn out to be an ad-hoc class, not representing
any natural abstraction. One should aim at minimizing the number of such
classes present in the system.

Let us back-up these arguments by a deeper rationale. As we have been
emphasizing, the proposed constructs are motivated from metaphors. In many
cases, metaphors of thought precede abstractions, and in that sense they are
more basic. For example, it is unlikely that the notion of vehicle was conceived
just after the invention of the first vehicle. Rather, there probably was some
sort of vehicle, say a carriage. Then another sort emerged, say a train, and
terms from one were applied to the other. For example, the notions driver and
passenger were applied from carriages to trains. Then perhaps a new sort of
vehicle came about, and some of these notions were applied to it as well. After
some time, enough concepts shared enough terms to justify the encapsulation
of these common terms into the new abstraction of vehicle. From that time on,
carriages, trains, cars etc. were considered vehicles.



466

Now, the key word is justify: not all metaphors end up as abstractions, and
if they do, it is after some time. One might say that there is a trade off in the
conceptual network: we can have fewer concepts related by metaphors, or we
can pay the price of reorganizing the network, ending up with simple taxonomic
(sub-concept) relationships, but with more concepts.

In view of this discussion, we propose the following principle argumenta-
tion for the inclusion of type correspondences and partial inheritance in object
oriented languages:

1. The underlying rationale. Metaphors that partially relate concepts are
first class citizens of language and thought. It therefore makes sense to incor-
porate appropriate counterparts in programming to yield a more elaborate
organization of the type system, reflecting conceptual structure, and result-
ing in higher potentials for code reuse.

2. Support for natural software evolution and structure. The concep-
tual network often evolves through metaphors. Partial inheritance and type
correspondences can be used to reflect this evolution in software. This means
that functionality can be added to software in a manner that parallels its
discovery. In practice, it means that components may be reused, without
change and without adding any unnecessary abstractions, in ways unantici-
pated by their developers. Abstraction can take place at a later stage, if and
when it is justified. In this development paradigm, software evolves along
with its designers’ way of thinking. As is the case in the conceptual level,
the question of justification involves a trade off: either leave things as they
are, or pay the price of reorganization to gain a simpler structure, but with
more types.

3. Adaption of supplied components. Since frameworks or supplied classes
cannot be made to inherit user defined classes, partial inheritance and type
correspondences may be the only way to adapt them to a given application.
As noted in Sect. 3, we conjecture that these constructs open a new range
of possibilities for the exploitation of frameworks.

Finally, we note that the process by which a type correspondence or a partial
inheritance clause is replaced by a new abstraction can be automated. This sug-
gests once again, that abstracting should be delayed until it is justified, whence it
can be done automatically, requiring the user only to supply a meaningful name
- a task that can be carried out properly just when the abstraction is indeed
meaningful.

4.2 Polymorphism Based on Semantic Correspondences

Most typed object-oriented languages support subtype polymorphism and dy-
namic method dispatch. This means that an identifier may be bound on run
time to objects of any type which is a subtype of its declared type, and that a
method invocation on that identifier will be dynamically dispatched according
to the type of the object to which it is bound.



467

This sort of polymorphism is entirely based on the subtype relation between
types. Indeed, the definition of what it means for one type to be a subtype of
another was engineered to suit subtype polymorphism. Such a definition may be
found in [1]. It implies that T} is a subtype of T3 iff objects of type T1 may appear
wherever objects of type T are expected. In 3] it was shown that inheritance
and subtyping are distinct, and that identifying them may lead to insecure type
systems. This is because inheritance does not imply subtyping, on which safe
substitutability must be based. EIFFEL is singled out there (and previously in
[4]) as possessing this problem.

Nevertheless, substitutability must be based on subtyping only in as much
as one insists on a type checking strategy that never looks back on anything but
a class’ declared interface once it has been successfully compiled. Although such
strategy is surely desirable for obvious reasons, one’s adherence to it should be
weighted against the benefit that might be gained from constructs that render
it inappropriate. Of course, some other strategy should be suggested to handle
such constructs!®.

Throughout this paper we have demonstrated the advantages of basing poly-
morphism on semantic correspondences between types, not (just) on subtyping.
M ATRIX is not a subtype of INT EGE R, but because the programmer seman-
tically related them via a type correspondence, the former may be beneficially
substituted for the latter in appropriate contezts. But to enjoy this flexibility,
one must abandon the conception that 77 is allowed to be substituted for 75 only
if it can be substituted for it in any context, that is only if T} is a subtype of
Ty. It is enough that the substitution be valid in the given context, represented
by the program or class library at hand. That is to say, a program is quit safe if
it issues a call three_multiply (matrix1,matrix2,matrix3) but does not issue calls
such as three_multiply (matrix1,n,m) or matrixl.matriz_power(matrix2).

The type safety of programs or class libraries allowing such polymorphism
can be well defined and algorithmically verified through an appropriate type
checking procedure. Such a procedure cannot exclusively rely on a class’ declared
interface once it has been compiled, but it does not necessarily have to involve
analyzing a class’ text more than once. Roughly speaking, the compiler can
generate appropriate constraints while compiling a class, listing the conditions
that must be met by arguments supplied to methods of that class. For a given
method, these constraints may be thought of as a “generalized signature”. Then,
only this information, not the class’ text, will be re-consulted on need.

Note that the declared signature of routines no longer restrict arguments to
the specified types. Nevertheless, user type annotations do not loose their mean-
ing: they serve to interpret routines by providing the intended types of identifiers
and (indirectly) of compound expressions. A routine’s text is interpreted with
respect to these intended types given the correspondence relation and the actual

3 The system level validity originally intended for EIFFEL ([8]) was a strategy meant
to resolve its type checking problems, that resulted from the (justified) desire not to
restrict substitutability to subtypes. Recently, however, Meyer declared his intention
to adopt a new rule ([9]) which will actually restrict polymorphism to subtypes.



468

provided types. But still, when one looks at a given routine’s text, one need not
be bothered with the possibility of this text being interpreted metaphorically:
for all he or she is concerned, the text is understood, maintained, assessed for
quality etc. as if the types handled by the routine are those actually declared.
Later on, someone may take this routine and apply it - or supply arguments
- other than the ones for which it was originally written. Deciding whether or
not such use will be valid is the job of the type checking procedure. Thus, user
type annotations still keep their most important advantage of readability, be-
cause when one reads a routine, she or he need not concern themselves with its
possible metaphoric interpretations.

Finally, we note that the definition of type correctness should preserve the
contert independence of subtype substitutability, that is it should imply the
unconditional safety of providing arguments to a routine which are subtype
compatible with its declared signature. This will ensure that no extra work will
be done by the compiler for subtype polymorphism relative to the situation in
existing languages. Results to that effect will be reported elsewhere.

5 Related Work

This section discusses some related work and compares it to ours.

The as-a relationship. In [10] Mitchell et al. propose a relationship between
classes, called as-a, that is meant to support code reuse. They argue {as others
did previously) that people do not always use inheritance in ways that reflect
is-a relationships between heirs and ancestors, but they often tend to use it for
reasons of convenience, in order to reuse some implementations. As they say,
“...programmers do use inheritance to reuse code from one class into another,
with no intention of substituting objects of one class for objects of the other via
dynamic binding and with no intention of explaining or legitimating the use of
inheritance in terms of an is-a relationship in the modeling domain”.

The authors of [10] propose not to fight this tendency, but to support it in a
way that will ensure safe usage of such implementation inheritance. To account
for this, they propose to allow what we called here partial inheritance, and to
support its correct usage by an as-a relationship. This relation actually involves
three parameters: a class C; as-a Cy for some operation o. The idea is that if
this holds then o may be safely inherited from C; to C;. As-a relationships are
established in a formal system that uses equations relating attributes in both
classes, to prove certain implications between the post and pre-conditions of the
operation at hand.

There is an important fundamental difference between their approach and
ours. The authors of [10] stress that the problem they address is that of im-
plementation inheritance, that is the apparent desire of programmers to inherit
without any conceptual basis. This is exemplified in the quotation given above.
Consequently, they devise a tool that enables one to establish that it is indeed
correct to inherit in such circumstances (when it is correct). But they are not



469

interested at all in the relationship that is permanently established via such
(partial) inheritance between the two types!®.

Our approach, on the other hand, is entirely based on the observation that
one should allow types to be partially related because it reflects conceptual
metaphors. Partial inheritance is conceived as just one way of achieving this.
Contrary to Mitchell et al. we consider such relationships to be a strong basis
for substitutability, that is for semantic (or metaphoric) polymorphism. Indeed,
that is the main point that we wish to convey (see Sect. 4.2). In our approach,
a matrix is-al® integer as far as it concerns appropriate contexts. This approach
also led us to (first) introduce the construct of type correspondence that may
relate two existing types, while they talk only of inheritance. There are many
other essential and technical differences between these two approaches that we

could not discuss due to lack of space.

Generalization. In [13] Pedersen proposes a construct that generalizes over a
set of classes to yield one parent class. The set of methods of the new class is the
intersection of the sets of methods of all classes generalized over (minus some
methods explicitly removed). This construct indeed offers a way of reusing an
existing class from which, in our terms, we would like to partially inherit. This
proceeds by first abstracting over the existing one while removing unnecessary
methods, and then inheriting. While such a construct should be useful, there
are cases in which it forces the inclusion of unnecessary abstractions in the class
hierarchy, and others in which it is not applicable (see Sect. 4.1). We believe
that this construct should co-exist with ours to provide maximum flexibility. As
argued in 4.1, however, type correspondences and partial inheritance will usually
better suit the natural evolution of software. Moreover, given these constructs,
generalization at a later stage can be automated.

Fine-grain inheritance. This notion was proposed by Johnson and Rees in
[5]. Tt is a strategy according to which classes should be as minimal as possible
(feature-wise), so as to make them fully inheritable. They urge designers to
define many small classes, representing “small concepts”. Without starting a
discussion on what makes up a concept, 1t seems inevitable that followers of
such strategy will end up defining many ad-hoc, perhaps conceptually unclear,
classes. We believe that the problem addressed by [5], that of reusing a library in
ways not predicted by its authors, should find its solution through a paradigm
that accounts for elaborate relationships between real and obviously justified
concepts. We hope to have made a contribution in this direction.

Ada-style genericity. In Ada, it is possible to write generic packages that are
parameterized not only by types, but also by operations on these types. It should
therefore be possible to write one generic package that implements power while
parameterizing on its first argument’s type and on the multiplication operation.
Apparently, there is no need to abstract over INTEGER and MATRIX for this
package (i.e. there is no need to define a type MULTIPLIABLE), which is similar

% And maybe for that reason they speak of classes, not types.
'* There is no mistake here - we did not mean as-a.



470

to our case. But the resemblance i1s only apparent, since the abstraction is there
anyway: 1t 1s this generic package that constitutes the abstraction. Whoever
writes it thinks of multipliables, that is (abstract) types that have a multiph-
cation operation. Our approach genuinely avoids the abstraction. It makes it
possible to use power, written exclusively for INTEGER and even as part of
it, for matrices. In that sense, our approach offers an alternative to generic pro-
gramming because there is really no need to abstract in order to reuse. Of course,
genericity is very useful when the abstraction is justified and made on time.

6 Conclusion and Further Research

We have proposed the constructs of type correspondence and partial inheritance
for object oriented programming, both of which are motivated by metaphors
of natural language and thought. They have been shown to introduce a new
kind polymorphism into programming, called metaphoric polymorphism, which
results in previously unavailable code reuse potentials. The semantics of these
constructs was defined as a generalization of ordinary inheritance, and was shown
to yield a type system with a richer semantic structure. These constructs were
shown to support natural software evolution and structure.

A first and most important, issue for further research is type correctness in
the presence of metaphoric polymorphism, as discussed in 4.2. We shall report
results to that effect in future works.

Because is-a relationships play a central role in knowledge representation,
and in semantic nets in particular, it may prove beneficial to examine the appli-
cations of the proposed semantics, involving a correspondence relation in a level
lower than types (concepts), to this field.

Another issue is that of method specification. In order for one to consider
applying a method in a type correspondence, one must know something about
the methods and attributes referred by that method’s implementation and how
they are inter-related!®. A similar knowledge is required in order to consider
providing routine arguments which are not subtypes of the required ones. What
that “something” is, and how it may be expressed, is a matter for further re-
search. Algebraic specifications are a possible direction, but less formal methods
could also be considered. Recently, Stata and Guttag ([16]) proposed to provide
spectalization spectfications to programmers that adapt classes by inheritance,
which are different from the specifications given to other programmers, who just
use them as black box components. Their specialization specifications divide
the methods of a class into independent groups of cooperating methods. Then,
only entire groups can be overridden in inheritance. Their approach may prove
beneficial for our case.

We have conjectured in this paper that metaphoric polymorphism opens new
opportunities to use frameworks. Finding some large scale examples to that effect
is one more research option.

' Whether or not the application is in fact correct will be determined by the type
checking procedure.



471

While presenting the metaphor motivated constructs, we have advocated the

stance that reflecting conceptual structures and mechanisms in programming is

pr
pr

actically beneficial. We believe that many more contributions can be made to
ogramming on these grounds.

Acknowledgments

We thank Yossi Gil and Ari Rappoport for their comments on earlier versions

of

this paper. We also thank the referees for their comments, especially the one

who provided a long and detailed list of valuable suggestions.

References

1.

10.

11.

12.

13.

14.

15.

16.

R.M. Amadio and L. Cardelli. Subtyping recursive types. ACM Transactions on

Programming Languages and Systems, 15(4), 1993.

. G. Booch. Object-Oriented Analysis and Design with Applications. The Ben-
jamin/Cummings Publishing Company, Inc, 1994.

. E.R. Cook, W.L Hill, and P.S. Canning. Inheritance is not subtyping. In C.A.
Gunter and J.C Mitchell, editors, Theoretical Aspects of Object-Oriented Program-
ming. The MIT Press, 1994.

. W.R. Cook. A proposal for making eiffel type-safe. The Computer Journal, 32(4),
1989.

. P. Johnson and C. Rees. Reusability through fine-grain inheritance. Software-
Pratice and Ezperience, 22(12), December 1992.

. G. Lakoff. Women, Fire and Dangerous Things: What Categories Reveal About
the Mind. The University of Chicago Press, 1987.

. G. Lakoff and M. Johnson. Metaphors We Live By. The University of Chicago
Press, 1980.

. B. Meyer. Eiffel, the Language. Prentice Hall, 1992.

. B. Meyer. Beware of polymorphic catcalls. Personal research note,

http://www.eiffel.com/doc/manuals/technology/typing/cat.html, 1995.

R. Mitchell, J. Howse, and I. Maung. As-a: a relationship to support code reuse.

Journal of Object-Oriented Programming, 8(4), July/August 1995.

J. Palsberg and M.1. Schwartzbach. Object-Oriented Type Systems. John Wiley &

Sons, 1994.

J. Palsberg and M.I. Schwartzbach. Type substitution for object oriented program-

ming. In OOPSLA/ECOOP ’90 conference proceedings, ACM SIGPLAN Notices,

Volume 25, Number 10, October 1990.

H. Pedersen. Extending ordinary inheritance schemes to include generalization. In

OOPSLA ’89 conference proceedings, ACM SIGPLAN Notices, 1989.

J. Rumbaugh. Dishinerited! examples of misuse of inheritance. Journal of Object-

Oriented Programming, 5, February 1993.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorenson. Object-

Oriented Modeling and Design. Prentice Hall, 1991.

R. Stata and J. Guttag. Modular reasoning in th presence of subclassing. In

OOPSLA ’95 conference proceedings, ACM SIGPLAN Notices, Volume 30, Number

10, October 1995.



