Activities: Abstractions for Collective Behavior *

Bent Bruun Kristensen! and Daniel C. M. May?

! Institute for Electronic Systems, Aalborg University
Fredrik Bajers Vej 7, DK-9220 Aalborg @, Denmark
e-mail: bbkristensen@iesd.auc.dk
? Department of Information Systems, Monash University
Caulfield East, Victoria 3145, Australia
e-mail: dmay@ponderosa.is.monash.edu.au

Abstract. Conventional object-oriented modeling lacks support for rep-
resenting the interaction between objects in a conceptually intuitive way
— often dispersing the logic/control of interplay throughout the objects.
We introduce the concept of an activity as an abstraction mechanism to
model the interplay between objects.

Activities model how our human cognition organizes interaction into
units of collective behavior. They are described as classes, allowing in-
teraction to be modeled by such abstraction processes as generalization
and aggregation.

At the analysis and design level activities are presented as a general
modeling tool for describing the collective behavior of systems of objects.
We also discuss how activities can be supported at the implementation
level by extending existing language constructs in relation to object-
oriented programming languages.

1 Introduction

Objects are a powerful means of modeling entities that exist. But what of the in-
teraction between them? We need effective modeling approaches that will allow
us to describe the way objects work together — this need is especially acute in
systems where the number and organization of objects becomes increasingly com-
plicated. Where interaction is widely dispersed, discerning the purpose achieved
by such interaction becomes difficult.

An abstraction may be used as a tool to help us understand the nature of
a problem, as well as describing a possible design solution. Moreover, an ab-
straction should aid in understanding the purpose which a system accomplishes
through the interaction of its sum parts.

Most of all, we need abstractions that are intuitive to our comprehension of
problems - offering a modeling approach that is closer to our understanding of
how things are organized in the real world.

This paper presents the activity abstraction mechanism, that seeks to cap-
ture the interplay between groups of objects throughout at different points in

* This research was supported in part by the Danish Natural Science Research Council,
No. 9400911.

473

time. The activity is a modeling and language mechanism that may be used to
create abstractions relating other objects together — describing not merely their
participation in the relationship, but their interplay.

Modeling with Activities. As an illustrating example, we examine the activity
of reviewing papers for an upcoming conference — this can be referred to as
a paper._review. This activity requires a certain degree of interaction/interplay
between those who are involved in it. For instance, an author will submit a paper
for review, while the chairman will distribute papers to each reviewer who must
report back.

There will usually be some sort of specification that describes how the activity
should be carried out. For instance, with the paper_review, the specification
might be carried out in three distinct portions:

(a) author submits paper to chairman
chairman distributes papers to reviewers
reviewers submit referee reports to chairman
(b) paper_selection
(¢) chairman informs authors about result

Figure 1 illustrates paper review, its participants and specification (direc-
tive).

chairman author

paper_review

reviewer

Fig. 1. Graphical illustration of paper_review

We should first note that paper_review is only one type of review that can
take place. For example, a periodical.review is the review of a submitted article
that takes place for a periodical; it is somewhat similar but involves an editor
rather than a chairman and its selection process is different. Both paper review
and periodical._review are specialized types of review.

The directive that specifies how paper review should be carried out may
also be seen as a specialization of a more general review directive, namely the
following:

474

prepare_review_process
carry_out_review_process
complete_review_process

Each of these portions correspond to (a), (b) and (c) above (which are more
specialized). The participants of these activities may also be similarly classi-
fied. For instance, all review activities involve a coordinator and an author.
Thus, in a paper_review, we can refine a coordinator to be a chairman — in a
periodical_review, we can specialize a coordinator to become an editor.

These different types of review activity might have similar methods. For
example, producing a status_report (produce a listing of the current status
of the ongoing reviewing process) is something that each review activity must
do - a paper_review will produce a specialized type of status_report, as will a
periodical _review.

status_report

Directive of review:

prepare_review_process

carry_out_review_process

_____ .. complete_review_process

eview

Directive of paper_review:

author submits paper to chairman

chairman distributes papers to reviewers

reviewers submit referee reports to chairman

paper_selection

paper_review

chairman informs authors about result

Fig. 2. paper_review is a specialization of review

Figure 2 illustrates how paper.review is specialized from review. The direc-
tive of review is refined in paper_review. The figure also notes that the method
status_report of paper_review is a refinement of the same method of review.

Finally, it is important to realise that an activity may be constituted from
smaller sets of activities (part-activities). For example, within the paper_review
activity, there is a paper_selection activity to choose acceptable papers.

Thus, there are important characteristics of activities that we can note.

475

Their behavior is collective; that is, they can be contained into some logical
unit (such as paper_review). Activities may be composed of smaller activities
(e.g. paper_selection). Principles of generalization/specialization may apply to
activities (review) and their participants (coordinator). An activity may also
have methods (behaviour) that may be specialized (e.g. produce status_report)
— such methods may access and control the state of the ongoing process mod-
elled by the activity. It is worthwhile noting that an activity can have a set of
properties or state (e.g. which reviews have been returned?, is the review process
complete?).

And there are the entities that will participate in an activity (e.g. author,
chairman, reviewers), while a set of directions specifies how the activity will be
carried out.

coordinator chairman .
paper_review

VAN

el - TCView

paper_selection
Fig. 3. Relationships in paper_review

Figure 3 shows the specialization and aggregation relationships between ac-
tivities and participants in the paper_review example.

Collective Behavior is Objectified. An activity can be defined as an interplay
between entities over a given time — intuitively, this corresponds to a general
everyday understanding of an ‘activity’. It is normal to describe our participation
in an activity as a coherent unit; we engage in an activity as a single module and
describe it to others in the same way (e.g. “They reviewed the papers, then they
ate lunch”). The significant feature of viewing activities as units of collective
operation is a reduction in complexity.

The activity abstraction mechanism depicts the relationships that links in-
teracting objects. It is more than a mere gathering objects — applying the object-
oriented paradigm, this parcel of collective behavior is objectified, resulting in an
object that represents a contiguous unit of process. Activities will then possess

476

properties similar to those of regular objects: they may be aggregated, special-
ized, recursively defined, etc. Thereby, it is possible to describe the functionality
of a system by combining the behavior of different types of activities — in the
same way, these activities may be described in terms of the interplay between
their participants.

The interplay between the participants, which is described collectively, is
quite different to an object- or participant-centric view (refer Fig. 4). Rather than
specifying “what is done to whom”, a collective description states “who is doing
what to whom”. In an object-centric description, the ‘who’ is implicit, whereas
the collective description makes it explicit. Therefore, the atomic elements of
an activity’s directive will usually comprise three things: subject (who), object
(whom) and verb (what is done). There is more clarity in such a description -
participants are more clearly identified, and the nature of their interplay can be
more quickly discerned.

The notion of time has been implicit thus far in our discussion of the activity
abstraction. It is a key characteristic of activities that they are temporal in
nature; an activity such as paper_review has inception, execution and termination
phases. We emphasize that this is similar to the everyday activities that we
encounter which possess a finite lifetime.

The primary benefit of characterizing the behavior of a software system as
comprising activities is that it models our human approach to reducing com-
plexity in how we handle everyday tasks — in the same way that our cognition
clusters information to enhance comprehension, the activity abstraction seeks to
resolve complexity by clustering the interplay between objects.

Object-Centric Collective Behavior
V2N

M
"

-
.

Legend: Legend:
Link to participant
<————> Association between objects | “-o...-7 ~_7 class/object

"77">~a Thread-of-control link ; i § Activity

o — class/abject
EE} HH Class/object with methods e with methods
: : i) L] and directive

Fig. 4. Object-Centric and Collective Behavior

In Fig. 4, we illustrate two alternative forms of execution sequence - the

477

usual object-centric method invocation where a method of one object invokes
a method of another, etc (a recursive sequence of method invocations); and an
alternative scheme employing collective behavior, where the activity prescribes
a sequence of interplays each including a caller and a method call for the (called)
object.

Of course, there is a functional flavour to activities. [t is critical to note that
while purely functional modelling is insufficient to cope with describing systems,
its style of examining process and functionality appeals to us on an intuitive level.
Instead of advocating a binary ‘either/or’ approach to modelling, it is possible
to combine the functional perspective with object-oriented concepts. This may
result in a way of looking at the world that is more natural and powerful than
either individual perspective affords.

Paper Organization. In Sect. 2 we discuss the use of activities for modeling in the
analysis design processes. We use “card games” as a concrete example, and we
discuss the fundamental characteristics of activities in general terms. In Sect. 3
we discuss the implementation of activities. We discuss various proposals for
special language constructs for both direct support and simulation of activities
in object-oriented programming languages. In Sect. 4 we review theoretical and
practical experiments with activities. In Sect. 5 we summarize the proposals and
the results of the paper, compare them with related work (frameworks/design
patterns in software architecture and notation/language mechanisms in object-
oriented analysis, design, and implementation), and discuss further challenges.

2 Designing with Activities

We shall use a card game as a concrete example to illustrate the use of activities
in analysis and design. Through this example, we demonstrate and discuss the
fundamental characteristics of activities. Activities as abstractions in object-
oriented analysis and design is originally introduced in (Kristensen 93a).

Card Game Ezample. Our intuitive understanding of a card game is that it is
a human activity — it involves a specific kind of interplay between people that
exists over a duration of time. More importantly, like other activities we engage
in, a card game comprises recurring patterns of interplay that form its totality.
As such, the card game is an intuitive example that allows us to identify a
commonly understood activity, and explicitly abstract and model its aspects.
Figure 5 illustrates the structure for a bidding process of a game, consist-
ing of an activity the bidding and the participating objects Peter, Mary, John,
and Jane. the_bidding models an actual bidding activity at some specific point
in time. Activities are abstractions over the interplay between entities, — here
exemplified by the card game example. We have abstracted and classified that
specific activity as a bidding activity (to be described later) and each of the
persons as a player in the card game.
The particular example that serves as our model is the card game of Five
Hundred. The object of the game is to score 500 points before the other players.

478

the_bidding 01

Peter V Mary

bid bi

Jane John

Fig. 5. The Card Game Example

Each game comprises one or more rounds; players are dealt cards and play
against one another in each round. A player wins (or loses) points at the end of
each round depending on how well he/she plays.

We distinguish between part-activities and sub-activitics. Descendant activi-
ties - activities specialized from another (super)activity — are called sub-activities
or just activitics. Activities that can be aggregated to form larger activities
(whole-activities) are called part-activities.

Part-Activities. At the highest level of organization, we can create a cardGame ac-
tivity that represents the totality of interplay in the game. This activity actually
comprises several subordinate phases: a gameOpening phase (where initialization
and set-up take place), a gameRounds phase (in which one or more rounds are
played), and a gameClosing phase (where clean-up procedures take placc). We
consider the activity cardGame to be composed of the part-activities gameOpening,
gameRounds and gameClosing executed in sequence.

As most of the significant interplay takes place during each round, we shall
turther decompose the gameRounds part-activity. This phase of the game com-
prises one or more rounds — each of which is a part-activity. Like the cardGame, a
gameRounds part-activity consists of an opening phase (roundOpening), a central
execution phase (roundPlay) and a closing phase (roundClosing).

Figure 6 illustrates the hierarchical class organization of the cardGame: a
part-whole hierarchy (where gameOpening, gameRound and gameClosing are part-
activities of cardGame).

Activity Directive. In our normal understanding, the gameRound part-activity is
where most of the card playing takes place. Each round has three distinct stages:

1. dealing: Cards are dealt to each player.

2. bidding: Each player is successively asked to make a bid - the players bid
against each other, until the highest bidder is found. The player with the
winning bid starts the game.

3. trickTaking: After bidding, the players engage in taking tricks. A trick in-
volves each player putting down a card; the player whose card beats the

479

cardGame T

gameClosing

|

gameOpening gameRounds?
f

roundClosir; g

1

roundOpe?ling roundPlay

dealing bidding ttickTaking

Fig. 6. Card Game: Part-Activities

others is said to have taken the trick. For 4 players, the trick-taking phase
of each round involves the playing of 10 tricks.

this order .| this order
gameOpening dealing
gameRounds bidding
gameClosing trickTaking

Fig. 7. Directives for cardGame and roundPlay

In Fig. 7, we illustrate the use of special diagrams for describing the struc-
ture of the directives of the cardGame and roundPlay activities. The notation .’
represents sequential action according to a given specification (e.g. deal cards
according to rules).

Each activity /part-activity is responsible for managing its associated inter-
play. For instance, the bidding part-activity has to control the sequence of bids

480

performed by the players — as each player makes a bid, the part-activity will
ensure that certain constraints are in force: Is the present bid legal? Who is the
next bidder? When is the bidding process over and who is the winner?

* I until winner is found * | number of cards dealt
| | select according to . | order according to the
the rules for bidding rules for trick taking
make the bids according play cards according
to the rules for bidding to the rules for trick
for the card game taking for the card game

Fig. 8. Directives for bidding and trickTaking

In Fig. 8, we describe the structure of the directives of the bidding and
trickTaking activities. The notation “*’ indicates iterative execution — for ex-
ample, continue execution performing these actions “until a winner is found”.
The notation ‘|’ indicates that a selection action will take place, matching a
given condition (e.g. perform bidding actions, then select the highest bidder).

Sub-Activities. The game of Five Hundred is only one example of a card game;
we may consider Bridge as another example. Therefore, activities may be special-
ized — cardGame may be specialized to the sub-activities fiveHundred and bridge.
Most of the part-activities of cardGame may be specialized similarly.

cardGame . trickTaking

fiveHundred bridge 500TrickTaking bridgeTrickTaking

Fig. 9. Card Game: Sub-Activities

481

Figure 9 illustrates the hierarchical organizations of the cardGame: two gener-
alization hierarchies where fiveHundred and bridge are sub-activities of cardGame
and 500TrickTaking and bridgeTrickTaking are sub-activities of trickTaking.

Directive of 500TrickTaking: Directive of bridgeTrickTaking:
| 10 x| 13
. { this order . | this order
player[il].playCard player[il].playCard
player[i2].playCard player[i2].playCard
player[i3].playCard player[i3].playCard
player(i4].playCard player{i4].playCard

Fig. 10. 500TrickTaking and bridgeTrickTaking

In Fig. 10, we describe the structure of the directives of the 500TrickTaking
and bridgeTrickTaking activities as specializations of the directive of the trickTaking
directive (Fig. 8).

Properties of Activities. We have briefly mentioned how activities may have
properties. The roundPlay activity has information about which cards have been
played (cards_played) during the round and which tricks have so far been taken
by the players (tricks_taken). The properties cards played and tricks_taken of
roundPlay are examples of emergent properties because they only emerge through
the interplay of the part-activities of roundPlay. In other words, these properties
do not exist independently of the part-activities.

The bidding activity has a property bidding steps that details how each
bidding step takes place, while the property legal bid ensures that the next
bid made by some player is a legal step (in relation to bidding steps). The
properties bidding_steps and legal bid are examples of sub-activity properties
for 500bidding and bridgeBidding, that are refined (inherited) from the super-
activity bidding. Thus, in the sub-activities, the checking of a bid’s legality is
specialized according to the rules of the particular card game.

In Fig. 11, the properties cards_played and tricks taken for roundPlay and
bidding_steps and legal bid for bidding are shown in relation to the part-whole
and generalization hierarchies.

Summary: Designing with Collective Activities. Activities are abstraction mech-
anisms over the interplay between entities, as exemplified by the card game ex-

482

cards_played tricks_taken bidding_steps - legal_bid

bidding*

bidding_steps

legal_bid

dealing bidding trickTaking 500Bidding bridgeBidding
Fig.11. Properties for roundPlay and bidding

ample. In the card game, the players are the entities; they are seen to participate
in the game. For simplicity, we assume that the number and roles of players is
fixed. During the game, the players will take turn either bidding, playing a card,
etc — according to the rules of the card game (be it Five Hundred or Bridge).
This sequence of behavior forms the card game activity. The legal sequence (and
control) of possible behavior taken by the participating players is an abstraction
over the possible games to be played in the specific type of card game.

The term collective activity denotes the abstraction of the actual sequence of
behavior (in terms of the activity phenomenon) taken by the participants - on
instantiation, the collective activity is in progress. The directive is the behavior
description part of the collective activity. The term collective structure denotes
the totality of the activity phenomenon and the participating phenomena — on
instantiation, a collective structure is said to be performing.

Figure 12 illustrates the fundamental components of activities: the collective
structure consisting of a collective activity (with directive) and a number of
participants.

As the card game example indicates, the principles of aggregation and spe-
cialization may be applied to collective activities. In relation to aggregation, we
have seen that it is possible to form whole-activities using subordinate part-
activities. Elaborating on this, we can say that participants involved in these
part-activities are seen as participants of the whole-activity. An activity’s di-
rective is also subject to aggregation. The directives of part-activities form the
whole-activity’s functionality — specifying the whole-activity’s directive.

With respect to specialization, general activities and their participants (review
and coordinator) may be refined (paper_review and chairman), and additional
participants may be included. It is also possible to apply specialization to the
directive of a general activity. This is possible by specializing the directives of an
activity’s part-activities (for example using virtual part-activities) or by explic-
itly adding to an activity’s directive (for example via an inner-like mechanism).

483

participant activity participant |

directive i '

participant participant

Fig. 12. Collective Structure, and Directive

Activity aggregation é Activity specialization

Activity class with

directive and methods

Activity object with

directive and methods

Fig. 13. Abstraction Diagrams

Figure 13 summarizes the class/object notation proposed for the activity
as an abstraction mechanism. A general description of abstraction for activ-
ities in the form of classification, specialization and aggregation is given in
(Kristensen 93b).

We have proposed a special notation for expressing the sequencing of an
activity’s directive. In (Kristensen & May 96) a more complete description of the
diagrams is given. The diagrams employ the fundamental imperative sequencing
forms (sequence, selection, iteration) , and are inspired from other diagrammatic
notations (Nassi & Shneiderman 73).

3 Implementation of Activities

The following sections focus on the mapping from design with activities onto
object-oriented language constructs. We discuss language constructs which, when
added to existing object-oriented programming languages will directly support

484

the activity as a language mechanism. Such constructs are seen as an extension
to these languages rather than a radical shift in programming perspective. In
the uni-sequential execution the implementation of activities may be supported
by a set of abstract classes.

3.1 Integrating Activity and Participant

Fundamentally, we see activities as relations between entities. At the same time,
participants will belong to an activity. Our language constructs to support such
properties of collective behavior.

Activities as Relations. The activity is described by a relation-class. The partic-
ipants are temporarily related through their participation in the activity.

Activities can be seen as a type of relation between domains (which represent
the participants). Therefore, we may define an activity class A acting as a relation
between participant classes B, € and D:

CLASS B (...)
CLASS C (...)
CLASS D (...)
CLASS A [B, C, D] (...)

Such a declaration may be further extended. In the following example, objects
of class B, C, D may be accessed from the names B, rC, rD. Given “rB : B”, rB is
a reference to an object of class B — while “cC :* ¢” means that rC may refer to
an arbitrary number of C objects (one-to-many cardinality).

CLASS A [xrB : B, xC :* C, rD : D] (...)

Figure 14 illustrates the relation &4 with domains B, ¢ and D.

Legend:

Relation-class
¢ with links to

B : i D : * domains
‘s
SR CH Link named n
: B n o> X
: : to domain
: : N "Many-link" to
0 C domain

................

Fig. 14. Activity as a Relation

485

Figure 15 describes the paper_review activity in relation to its participants
chairman, reviewer, and author, named respectively the_chairman, reviewers, and
an_author:

CLASS chairman (...)
CLASS reviewer (...)
CLASS author (...)

CLASS paper_review
[the_chairman : chairman,
reviewers :* reviewer,
an_author : author 1]

...

chairman paper_review author

E'Hﬁg T ;ﬂﬁ'ﬂg

theChairman

........

reviewer

Fig. 15. paper_review as a Relation

The relations-class may be extended to include optional domains in order to
describe the dynamically varying situation, where participant arc coming and
going during the activity. We shall not describe the use of activity objects for
access of the participants etc, but refer to general descriptions of relation classes
and objects in (Rumbaugh 87).

Participation using Roles. Often, participants in an activity have no logical ex-
istence when the collective structure is not performing. A person may take part
in a paper_review activity several times during a year: the reviewer aspect of
this person is only existent when he/she participates in the paper review. Addi-
tionally, a participant may take part in several activities during some period of
time, either in the same or different kinds of activities. Hence, different aspects
of the participants may be relevant for different kinds of activities.

For example, a person taking part in a paper_review activity may be simul-
taneously writing a paper with some colleagues. In the paper_writing activity
the person is an author whereas in the paper_review activity, he is a reviewer.

486

He/she may still take part in several paper_review and paper_writing activities
during the same period. Language and modelling constructs should be able to
give force to such design models.

Throughout the course of his/her lifetime, a person will take on roles in
addition to his/her own functionality — at some point, a person will also act in
the added capacity of a reviewer and as an author. To support these dynamic
role changes, we introduce the concept of role (Kristensen & @sterbye 96) and
subject (Harrison & Ossher 93). The concepts of role and subject allow different
perspectives to be dynamically added to an object (for a given period of time),
augmenting its integral properties. It is should be noted that this is distinct
from dynamic class mutation as well as view of some existing object with its
properties given.

In general, an entity may assume a number of roles at a given time. These
roles may be allocated and deallocated dynamically. Roles are described as role-
classes. A role-class is defined to be role for some class or other role-class. In the
use of roles here, we define activities as relation-classes with role-classes as their
domains. An object will play the roles given as a domain of the relation-class
when the object takes part in an activity of the relation-class. This is then a
means of describing the dynamic participation of entities in activities, as well as
participation in several activities simultaneously.

R1 and R2 are role-classes for class ¢. The relation-classes A1 and A2 have the
role-classes respectively R1 and R2 as one of their domain classes.

CLASS C (...)

CLASS R1 ROLE C (...)

CLASS R2 ROLE C (...)

CLASS At [... , R1, ...1 C ...)
CLASS A2 [... , R2, 1 C...)

Legend:

4 ‘ ‘] Role class

Method with
: implementation

Fig. 16. participants as Role-Classes

487

Figure 16 illustrates a class C with role-classes R1 and R2 associated. An object
of class C can acquire role-objects form R1 and R2 during its life cycle. The
diagram shows that a role of role-class R1 (R2) is acquired for the activity A1

(a2).

. reviewer | person : author

o e
‘7(: alirman m

© /paper_writing ",

Fig. 17. Roles in paper_review and paper_writing

In Fig. 17, we illustrate how roles may be organized in the conference ex-
ample. The diagram describes how reviewer is a role-class to person when a
person is engaged in a paper_review activity. The same person may may engaged
in a paper writing activity, paper_writing, where he/she plays the role of an
author. A person object can have role-objects from these role-classes allocated
and deallocated during its life-cycle.

CLASS person (...)

CLASS reviewer ROLE person (...)
CLASS author ROLE person (...)
CLASS chairman ROLE person (...)

CLASS paper_review
[the_chairman : chairman,
the_reviewers :* reviewer,
an_author : author]

...

CLASS paper_writing
[the_authors :* author]

C...)

488

3.2 Simulation of Activities

In uni-sequential execution (a single thread at one time), we need to integrate the
participant’s behavior with the progress of the corresponding activity. Either the
activity or one of its participants is executing. To model how the participants are
taking part in the activity, execution control has to switch between a participant
and the activity to secure coordination. In the support of activities in the uni-
sequential case we distinguish between initiating activities, where the activity is
in charge and the participants are invoked from the activity in order to contribute
to the process, and reactive activities, where the participants take initiative and
the activity is ‘awakened’ to control and guide the process.

Initiating Activities. Participants may be seen as passive objects controlled and
activated by the collective activity — the initiating activity. In this scenario, the
activity will have the initiative towards the participants - invoking methods
of the participants, in order to make them contribute to the progress of the
activity. A participant may then (acting on its internal logic or by asking the
user for direction) invoke one of the activity’s methods. The activity is seen to
be continuously guiding the participants, controlling their behavior through its
method invocations.

[display -7~ |

bidRequest

Fig. 18. Card Game: lnitiating round

The following simplified version of the card game illustrates initiating activ-

489

ities — a single round of a Five Hundred game is modeled. An activity object
the_round, will sequentially invoke three part-activities: the_dealing, the_bidding
and the_tricks. Each of these part-activities respectively model the dealing, bid-
ding and trick-taking phases of a round. The four players (the_players[4]) are
the participants in the_round. Each player has a number of operations which
model the various requests he/she can make during the game. The life-cycle of
bidding is to repeatedly find and ask the next player to bid until the bidding
is complete (according to the rules of the game). In the example, we have the
operation bidRequest which asks a player to make a bid. The actual bid is reg-
istered by invoking the bidAccept method of the part-activity the bidding. The
bidding class has an operation bidAccept available to the players for placing their
bids. In Fig. 18, we illustrate activities, part-activities, participants and a calling
sequence in the example.

Reactive Activities. Alternatively, participants may be seen as active — actively
executing or having some interface to ‘active’ users who will invoke the par-
ticipants’ methods. The main point to note is that participants will have the
initiative towards the collective activity — the reactive activity, calling methods
of the activity. In turn, these calls may provide feedback to the participants to
direct what kind of ‘input’ is required next. The role of the collective activity is
to police the behavior of the participants (rather than actively controlling), in
some cases prohibiting a participant from performing certain actions.

In the simplified version of the card game, the life-cycle of the_bidding object
is lie dormant until activated. When ‘awakened’ by a player, the_bidding object
verifies the player’s bid. This life-cycle continues until bidding is complete. For
example, we have a player who makes a bid by invoking the operation bidRequest.
The actual bid is registered by invoking the bidAccept method of the part-activity
the_bidding. Once activated, the directive of the bidding checks the legality of
this bid. Also note that in this design, the whole-activity the_round lies dormant
until the part-activity the_bidding wakes it from its waiting state. In Fig. 19,
we illustrate activities, part-activities, participants and a calling sequence in the
example.

Simulation by Abstract Classes. In the case of uni-sequential execution an alter-
native to extensions to existing language constructs is a set of abstract classes
to support the use of activities. In (Kristensen & May 94) the implementation
of both initiating and reactive activities in C++ (Stroustrup 91) is presented. In
(Kristensen & May 96) the classes are expressed in an abstract, general object-
oriented programming language — which may be translated into an existing lan-
guage. Only initiating activities are simulated in detail. In the simulation it is
assumed that classes can have action clauses, virtual references/mecthods, and
inheritance for methods (action clauses and methods are extended by means of
the inner mechanism originally introduced in SIMULA (Dahl ¢t al. 84).

In these approaches we simmulote activities in some existing object-oriented
programming language, and we rely on the mechanisms available in the language.

490

l . display . |

bidRequest‘\ X bidRequest
il) L nE
id b , E G

the_players[1)

v | the_players[2]

bidRequ : < _bidRequest

Fig.19. Card Game: Reacting round

These mechanisms support — and restrict — our expressive freedom in describing
the aggregation and specialization of participants and activity directives.

3.3 Concurrent Execution in Activities

In general, objects may execute concurrently (or multi-sequentially with inter-
leaved execution, with only one active object at a time). We need special com-
munication and synchronization constructs to properly describe the interplay
between active (concurrently executing) objects, — in the form of activities and
participants.

Active Objects. We introduce briefly a simple model with active objects. The
ACTIDN clause illustrates that objects like oC may have an individual action part
— on instantiation, an object will immediately execute its action part and is
inherently active.

CLASS C

(
METHOD ¥ (...)
METHOD M’° (...)

OBJECT R : C’

491

ACTION:
v
R.MM

OBJECT oC : C

The description of the action part may involve the activation of methods in
class ¢ and methods for other objects than oC. Because the objects are active,
the interaction between objects is usually coordinated by means of various forms
of language mechanisms® available for the synchronization of the execution of
the life cycle of the object and method activation requests from other objects.
In the model we assume that when the object oC attempts a method request to
R by R.MM, then oC must wait until R explicitly accepts this invocation. When the
invocation is accepted the objects are synchronized and the invocation can take
place.

Multi-Sequential Execution. The action part of an activity object describes the
interaction of the activity with other entities (activities/participants). The col-
lective activity is seen as a supplementary part of the life cycle of its participating
entities — the life cycle of such an entity is described both in its own action part
and in the various collective activities in which it is participating.

Given activity A and participant rC, some form of communication will take
place between these two objects during execution. If rC is executing and A at-
tempts a method execution rC.M, then A must wait until xC explicitly accepts this
invocation. To avoid the additional synchronization arising from such a scheme,
we specify that a participating entity may execute its action part interleaved
with that of the method being invoked from an activity in which the entity
takes part. For example, if rC is exccuting its action part and A calls rC.M, both
method M and rC’s action part may execute in interleaved fashion.

The following schematic example illustrates the mechanisms introduced:

CLASS A [xB : B, xC : C]
...

ACTION:
rC::M - rB::rC.M
)

OBJECT oA : A

The activity object oA is of activity class A. The object rC is a participant of
class C — we assume that rC denotes the object oC. The construct rC::M means

3 According to (Chin & Chanson 91) this is an active object model; the model is static
with exactly one thread per object and the thread is controlled by the description
in the action part.

492

.7 Link to method

S 7 Thread-of-control link

—_— Link to participant

Fig. 20. Execution of xC::M

that the object rC is requested to execute its method M (Fig. 20) — because it is
requested by an activity oA it is as if object rC itself requested the execution of
M. This corresponds to the object rC invoking one of its own methods — the only
difference is that the description is given outside oC. At the time of this request,
the object oC may be executing its action part (e.g. executing M’’). Here, the
method M and the action part of oC are executed interleaved: at certain (language
defined) locations, oC will switch between the execution of M and its action part.

Fig. 21. Execution of rB: :xC.M

The construct rC::M is only one example of the mechanisms that may be
employed in collective activities and participants. The other example is rB: :xC. M,
where the participant rB requests rC to execute its method ¥ (Fig. 21). In this case
the activity specifies both the invoking participant rB, the invoked participant
rC and the method M. Because this situation is as if the object rB itself requested
the method execution rC.M a synchronization may be involved between rC and
rB (as a case of ordinary communication between the active objects rB and rc).

In the paper_review example, the_chairman and the_reviewers may be actively
performing other actions than those in connection with the paper_review (such
as research, teaching, writing). It would be natural to describe such tasks in the
life cycle of these objects (in the action part). Furthermore, the_chairman and
the_reviewers may be engaged in other collective activities concurrently (e.g.
participating in a selection committee, writing a paper) — possibly in different
roles.

493

CLASS reviewer

...
METHOD remind : (...)
METHOD submit : (...)
METHOD is_busy : (...)
)
CLASS author
...
METHOD submit_paper : (...)
)
CLASS chairman
(...
METHOD distribute : (...)
)

CLASS paper_review
[the_chairman : chairman,
the_reviewers :* reviewer,
an_Author : author]

ACTION:

the_author: :submit_paper
the_chairman::distribute

if the_reviewers[i]::is_busy then
the_chairman: :the_reviewers[i].remind

OBJECT a_paper_review : paper_review

The situation could arise where one of the_reviewers did not supply a referee
report, within the specified time. Here, it is possible for the paper_review activity
to monitor the overall progress of the activity, checking for such an occurrence
-~ the activity may then send a reminder to one of these the_reviewers on behalf
of the_chairman.

Figure 22 demonstrates how a paper_review activity may request participants
(here the reviewers[il) to invoke methods while they are performing their own
sequence of execution. The directive shows how the activity may communicate
on behalf of the participants (here the_chairman).

In general, activities may be performed simultaneously — interleaved or con-
current (e.g. paper_review and paper_writing activities). Nested execution is sup-
ported by the sequential execution of part-activities. Additionally, overlapping
execution of part-activities (either interleaved or concurrent) may also be sup-
ported (the prepare_review_process and the carry_out_review_process may over-

494

a_paper_review

an_author::submit_paper =i .
the_chairman::distribute

the_chairman::the_reviewers[i].remind -

- _;_submlt_paper

remind submit remindv submit remind s

ubmit
. qe AA g
the_chairman HEE w EERS) an_author
the_reviewers[1} the_reviewers[i] the_reviewers[n]

Fig. 22. Requests sent by paper_review

lap without problems to speed up the process).

The refinement of the directive of an activity in the multi-sequential case
- by means of a multiple inner mechanism (Kristensen 93b) — is motivated by
two principles. Firstly, it should be possible to describe additional sequences of
action which must be executed simultaneously (interleaved or concurrent) with
sequences of the existing directive. Secondly, it should be possible to ensure that
parts of the existing directive of an activity are refined, allowing the part of the
existing directive and the refined part to execute together as a unit. These two
principles may be applied in a mixed sequence in the refinement of the directive.

4 Experiments

In this section we review some practical and theoretical experiments based on the
notion of activities; we classify activities in the dichotomy of software abstrac-
tion; we summarize the experience from a project focused on the construction of
a framework for card games; and we compare implementations based on design
patterns and the activity abstraction.

Where should activities be classified in the dichotomy of software abstrac-
tion? Activities are distinct from frameworks and design patterns. A framework
{Johnson & Foote 88) is a software architecture, including an abstract program.
In essence, it provides a reusable design solution for a specific class of software
the design decisions that are common to the framework’s domain are captured.
Frameworks are specialized to become applications in the domain.

A design pattern can be seen as an organizational idiom, comprising an

495

abstract code component. A pattern represents the core of a solution to sim-
ilar recurring problems, comprising a general arrangement of classes/objects
(Gamma et al. 94). Design patterns are more abstract design elements than
frameworks (they may be applied in the construction and design of a frame-
work) and their architectural granularity is finer.

The activity is a modelling and programming mechanism that may be used
to describe a wide variety of programs and program fragments, abstract or con-
crete. It is an abstraction mechanism, able to be used to create abstractions
of varying definition — from the more abstract/general (design patterns) to the
more concrete (frameworks). This abstraction mechanism enables us to have
another basic component in the design vocabulary we use when creating such
abstractions.

Frameworks, design patterns and abstraction mechanisms are also used dif-
ferently in the program development process. The universe of frameworks and
design patterns is not, by nature, finite. Therefore, it will be necessary to search
for and identify appropriate frameworks/design patterns that may be applicable
to the problem. In the case of a framework, you will need to understand its
functionality and how to customize it. With design patterns, it is necessary to
recognize the context in which a pattern could be applied and how it should be
realized in a concrete design.

An abstraction mechanism forms part of the language. It is therefore funda-
mental in its influence on how we conceive the world around us, how we initially
form our understanding, and then later in expressing it. Such mechanisms give us
a basic lexicon with which we can describe higher-level, structured abstractions
— like frameworks and design patterns.

Card Games and C++. The activity abstraction was investigated in a project
described in (May 94). The objective of the project was to explore issues re-
lated to the design and construction of object-oriented frameworks — the C++
language was used to build software artifacts through the course of the project.

The problem domain on which the study concentrated was that of card
games, namely, designing a framework for writing card game applications. Sev-
eral pieces of software were produced: a Blackjack game (to gain experience in
the problem area), a card game framework, and a Five Hundred game.

We explored the activity abstraction to address the issue of representing more
complicated sequences of interplay yet simplifying their complexity. A framework
for activities was created, which later became the basis for a card game frame-
work. This was eventually used to create the Five Hundred game.

Limitations were encountered using C++. In its ‘standard’ form, the lan-
guage lacks multi-sequential and concurrent mechanisms - it is not possible to
properly represent multiple executing active objects or reactive activities. Fur-
ther, there is no support for locality.

Overall, the project indicated that most mainstream object-oriented lan-
guages had little support for the facilities required to accurately simulate activ-
ities. While activities could be implemented in such languages, the absence of
such support will result in an implementation solution that does not properly

496

match the design solution — and is less intuitive. Languages should provide more
flexible constructs (e.g. sub-method inheritance, locality, roles) to enable the
design model to be implemented and communicated in a far more natural way.

Conference Organizing end the Mediator. The activity abstraction was com-
pared to design patterns, especially the Mediator (Gamma et al. 94), in an im-
plementation project. Descriptions of a subset of a conference organizing system
was developed and compared.

The intent of the Mediator pattern is to “Define an object that encapsulates
how a set of objects interact. Mediator promotes loose coupling by keeping ob-
jects from referring to each other explicitly, and it lets you vary their interaction
independently”.

Mediator
Mediator Colleague
ConcreteColleaguel] I—)‘ ConcreteColleague2

Fig. 23. Structure of the Mediator Pattern

In Fig. 23 the structure of the Mediator pattern is reproduced. The Mediator
class corresponds to an activity and the Colleague classes to participants. The
ConcreteMediator class implements cooperative behaviour by coordinating Colleague
objects, and knows and maintains its colleagues. Each Colleague class knows its
Mediator object, and each Colleague class communicates with its mediator when-
ever it would have otherwise communicated with another colleague.

From our description in the experiment, the Mediator pattern appears to
be similar to how we characterise the collective behavior of activities. Indeed,
there is centralisation of control into an object — which manages the interaction
between other objects. But while the overall architectural techniques are similar,
motivation and focus for collective behavior is different.

At its heart, the design pattern aims to provide an abstract, general design
solution to a set of problems. It is structured to be less well-defined and more
informal. In short, it is an abstraction that is not supposed to be set in concrete:
its malleability and generality is its strength.

On the other hand, our approach has been at a more elemental and atomic
level. The purpose of our research was to inquire into the nature of interaction —
first, our intuitive understanding, then mapping into an object-oriented domain.
We have therefore characterised and defined how we picture activities: the ways

497

in which object-oriented concepts may be applied to them, and how they relate
to each other and their participants.

The activity is an abstraction mechanism — a type of brick that can be used
to build abstractions. In the same way that a class is used to create abstrac-
tions (like design patterns), the activity is used as well-defined component in
constructing abstractions. In short, the activity is a mechanism that is supposed
to be capable of extension, but well-defined and less vague.

Similar to the class, it is used ‘as is’ rather than requiring a mapping into spe-
cific domains (like design patterns). Therefore, it is possible to envisage building
libraries of components that have been constructed using activities (and other
mechanisms). The nature of this abstraction mechanism covers the ambit of
modelling and programming languages. Thus, we can use activities as building
mechanisms in creating modelling abstractions then isomorphically map into a
concrete language.

Furthermore, the emphasis of the Mediator pattern is to promote loose cou-
pling and encapsulate object interaction. The activity abstraction mechanism
also seeks to give force to these goals; of themselves, they are useful and worth-
while objectives. But the emphasis of our inquiry was to represent and give force
to the properties of interaction — collective and otherwise.

We also investigated beyond the generalised object arrangement scheme em-
bodied by the Mediator. The present paper looks at a dichotomy of how activ-
ities can be classified into initiating and reactive forms, how they may exploit
the power of object-oriented properties in a natural fashion, and supporting
the characteristics of activities using concepts such as relations and roles. This
clearly exceeds the scope and definition of the Mediator pattern.

In essence, activities are used to build abstractions — solutions.

5 Summary

The underlying assumption in this paper is that in cxisting object-oriented
methodologies and languages, objects appear as isolated elements with an im-
plicit and poor description of the interplay structure between them. However, as
human beings we identify such interplay structures as another kind of phenom-
ena — usually known as activities — and inspired of this kind of phenomena we
introduce an abstraction mechanism, which may be used to model the interplay
structures. This language mechanism — the activity - is expressive and powerful
for the modeling of organization and interplay of usual objects, — the collective
behavior of objects.

Related Work. While not discussed explicitly, collective activities are within the
ambit of Booch’s description of an object (Booch 94): “tangible and/or visible
thing; something capable of intellectual apprehension; and something toward
which thought or action is directed”. Most pointedly, “an object models some
part of reality and is therefore something that exists in time and space”.

498

In OMT (Rumbaugh et al. 91) the dynamic model is a collection of state
diagrams that interact via shared events. A state diagram describes the life cycle
of a class of objects — but only from a local perspective. State diagrams are also
related to the object structure: the aggregation of objects implies the aggrega-
tion of the state diagrams of these objects, resulting in composite states; the
specialization of classes implies that a subclass inherits the state diagram of its
superclass and together with the state diagram added it works as a composite
of concurrent state diagrams.

Responsibilities, collaborations, and contracts from (Wirfs-Brock et al. 90)
define the dependencies between objects and subsystems. However, these are
only concerned with the static dependencies, and there is no support for the
description of the dynamic interplay between them.

Use cases from (Jacobson et al. 92) models system functionality. Use cases
- with actors of various kinds — are abstractions of the user’s interaction with
a system. The actor and system in dialogue is a sequence of transactions each
initiated by some stimulus from the actor. An actor may be involved in a number
of use cases. A user is seen as an instantiation of an actor, and an actual execution
of an interaction session with a user is seen as an instantiation of a use case. This
instantiation yields an object. A use case is described by a state transition graph,
and user stimuli imply state changes. The description of a use case is organized as
a basic course and several alternative courses. A use case may be seen as a special
case of a collective activity, which is restricted to the system functionality; it is
an abstraction, but no generalization and aggregation hierarchies are discussed
for use cases, only the distinction between abstract/concrete use cases, as well
as the insertion of a “part” use case into another by means of extends.

BETA (Madsen et al. 93) has active objects in the form described here but
no mechanisms for supporting the combined execution of the directive of an
activity-object and the life cycles of its participants. The aggregation and spe-
cialization as presented here can (with a few exceptions) be seen as an adaptation
of corresponding mechanisms of BETA. Relations and roles — as described here
- are not supported.

Contracts (Helm et al. 90) are specifications of behavioral dependencies be-
tween cooperating objects. Contracts are object-external abstractions and in-
clude invariants to be maintained by the cooperating objects. The inter-object
dependencies are made explicit by means of supporting language mechanisms.
The result is that the actions — i.e. the reactions of an object to changes — are
removed from the object and described explicitly in the contracts: the objects
are turned into reactive objects, whereas the reaction-patterns for an object in
its various relations with other objects are described in the corresponding con-
tracts. The intention of the contract mechanism is not the modeling of real world
phenomena and their interdependencies — rather, it is to have a mathematical,
centralized description that supports provable properties. In (Holland 92) a fur-
ther development of contracts is presented. Contracts are used for representing
and reusing algorithmic programming cliches.

According to (Gamma et al. 94) the Mediator design pattern has the fol-

499

lowing benefits and drawbacks: It limits subclassing. It decouples colleagues. It
simplifies object protocols. It abstracts how objects cooperate. It centralizes con-
trol. These qualities are also valid for the activity abstraction. In contrast, the
description of the Mediator pattern does not include any considerations about,
multi-sequential executioy of participants and activities. A straightforward use of
the Mediator pattern the multi-sequential case will certainly lead to a lot of un-
necessary synchronization. Furthermore, we have presented a notation/language
constructs for activities for use both in the design phase and in the implementa-
tion phase. Most design patterns, including the Mediator pattern, can be used
in both these phases too. The activity is defined differently for these phases, in
order to support the informal, intuitive description during design, as well as the
formal, though still high level description in terms of relations, roles etc at the
implementation level.

There are well-known, existing abstraction mechanisms that are commonly
used to construct control abstractions (Tennent 81). Such examples include the
procedure, coroutine, and various process mechanisms. Similarly, the activity
mechanism supports abstraction of control. However, in the same way that the
class is not merely equivalent to a record or structure, the activity mechanism
integrates concepts of functional behavior with object-oriented modelling capa-
bilities. Activities can be used to coordinate/control objects - not merely stating
an order or sequence of action, but explicitly stating the nature of the interplay:
the participants, their relationships, and the actions that take place between
activities and participants.

In (Aksit et al. 94) Abstract Communication Types (ACTs) are classes/objects
in the object-oriented language Sina. The purpose of ACTs is to structure, ab-
stract and reuse object interactions. The composition filters model is applied to
abstract communications among objects by introducing input and output com-
position filters that affect the received and sent messages. Using an input filter
a message can be accepted or rejected and, for example, initiate the execution
of a method. Inheritance is not directly expressed by a language construct but
is simulated by the input filter by delegating a message to the methods sup-
ported by internal objects. Several primitive filters are available in Sina, e.g.
Dispatch, Meta, Error, Wait, and RealTime. In ACTs the Meta filter is used to
accept a received message and to reify this as an object of class Message. The
requirements for ACTs include large scale synchronization and reflection upon
messages; the ACT concept is used as an object-oriented modeling technique in
analysis and design. ACTs appear to be a technical, very comprehensive concept
that — according to (Aksit et al. 94) — supports a wide variety of object inter-
action kinds including action abstraction, distributed algorithms, coordinated
behavior, inter-object constraints, etc.

Results. The main results are summarized as:

- Intuitive and general understanding of the fundamentals of activities as ab-
stractions for collective behavior. Activities support the modeling of the
organization of and interplay between objects in object-oriented analysis,
design, and implementation.

500

— Activities support modeling that is more similar and intuitive to our hu-
man understanding — in our clustering of information and abstracting of
detail (particularly of processes): A notation to support the modeling with
activities in analysis and design.

— In the implementation activities offer an orthogonal solution to expressing
and manipulating collective behavior of objects:

(1) Abstract classes for the support of implementation of activities.
(2) Language features for direct support of activities as an abstraction mech-
anism in object-oriented programming languages.

Challenges. There exist numerous issues with activities that remain to be inves-
tigated and/or resolved:

Dynamic participation: An activity relates the interplay between various par-
ticipating entities. The actual entities participating may change during the ac-
tivity — entities may join or leave the activity. This has been achieved to a certain
degree by allowing participants to assume additional roles during the life cycle of
an activity. However, this is a participant-centric view of dynamic participation.
From the activity’s point of view, it is not possible to tell which participants are
involved in the activity. (This is a general problem in programming languages —
to be able to “know” which objects are associated in a given relationship.)

Part-whole activity state access: It is an open question as to the degree of state
access enjoyed between part-activities and their whole-activities. Should a part-
activity have state access to its enclosing whole-activity? Part-activities will not
generally execute in isolation or ignorance of their whole-activities’ properties —
however, a relatively high degree of encapsulation should be enforced between
activity classes. Conversely, it is a question as to whether a whole-activity has
automatic access to the state of its part-activities.

References

Aksit, M., Wakita, K., Bosch, J., Bergmans, L., Yonezawa, A.: Abstracting Object In-
teractions Using Composition Filters. Proceedings of the ECOOP ’93 Workshop
on Object-based Distributed Processing, Guerraoui, R., Nierstrasz, O., Riveill, M.
(Eds.), LNCS 791, Springer-Verlag, 1994.

Booch, G.: Object Oriented Analysis and Design with Applications. Ben-
jamin/Cummings, 1994.

Chin, R. S., Chanson, S. T.: Distributed Object-Based Programming Systems. ACM
Computing Surveys, Vol. 23, No. 1, 1991.

Dahl, O. J., Myhrhaug, B., Nygaard, K.: SIMULA 67 Common Base Language. Nor-
wegian Computing Center, edition February 1984.

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, 1994.

Harrison, W., Ossher, H.: Subject-Oriented Programming (A Critique of Pure Ob-
jects). Proceedings of the Object-Oriented Programming Systems, Languages and
Applications Conference, 1993.

501

Helm, R., Holland, I. M., Gangopadhyay, D.: Contracts: Specifying Behavioral Com-
positions in Object-oriented Systems. Proceedings of the European Conference
on Object-Oriented Programming / Object-Oriented Programming Systems, Lan-
guages and Applications Conference, 1990.

Holland, I. M.: Specifying Reusable Components Using Contracts. Proceedings of the
European Conference on Object-Oriented Programming, 1992.

Jacobson, 1., Christerson, M., Jonsson, P., Overgaard, G.: Object-Oriented Software
Engineering, A Use Case Driven Approach. Addison Wesley, 1992.

Johnson, R. E., Foote, B.: Designing Reusable Classes. Journal of Object-Oriented
Programming, 1988.

Kristensen, B. B.: Transverse Classes & Objects in Object-Oriented Analysis, Design,
and Implementation. Journal of Object-Oriented Programming, 1993.

Kristensen, B. B.: Transverse Activities: Abstractions in Object-Oriented Program-
ming. Proceedings of International Symposium on Object Technologies for Ad-
vanced Software (ISOTAS’93), 1993.

Kristensen, B. B., May, D. C. M.: Modeling Activities in C4++. Proceedings of Inter-
national Conference on Technology of Object-Oriented Languages and Systems,
1994.

Kristensen, B. B., May, D. C. M.: Modeling with Activities: Abstractions for Collective
Behavior. R 96-2001, IES, Aalborg University, 1996.

Kristensen, B. B., K. @sterbye: Roles: Conceptual Abstraction Theory & Practical
Language Issues. Accepted for publication in a Special Issue of Theory and Practice
of Object Systems (TAPOS) on Subjectivity in Object-Oriented Systems, 1996.

Madsen, O. L., Mgller-Pedersen, B., Nygaard, K.: Object Oriented Programming in
the Beta Programming Language. Addison Wesley 1993.

May, D. C. M.: Frameworks: An Excursion into Metalevel Design and Other Dis-
courses. Department of Computer Science, Monash University, 1994,

Nassi, 1., Shneiderman, B.: Flowchart Techniques for Structured Programming. Sigplan
Notices, 8 (8), 1973.

Rumbaugh, J.: Relations as Semantic Constructs in an Object-Oriented Language.
Proceedings of the Object—Oriented Programming Systems, Languages and Appli-
cations Conference, 1987.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object-Oriented
Modeling and Design. Prentice-Hall 1991.

Stroustrup, B.: The C++ Programming Language. 2/E, Addison-Wesley 1991.

Tennent, R. D.: Principles of Programming Languages. Prentice Hall, 1981.

Wirfs-Brock, R., Wilkerson, B., Wiener, L.: Designing Object-Oriented Software. Pren-
tice Hall, 1990.

