Using Patterns for Design and Documentation

Georg Odenthal and Klaus Quibeldey-Cirkel

Department of Electrical Engineering and Computer Science
University of Siegen, D-57068 Siegen, Germany
{odenthal | quibeldey} @ti.et-inf.uni-siegen.de

Abstract; The dovetailing of design and documentation is characteristic for many mature engi-
neering disciplines. In electrical engineering, for example, a circuit diagram is a means and
technique for both designing and documenting. Software engineering falls short in this respect,
especially when it comes to architectural issues. Design patterns can help here. Using both
form and content of design patterns promotes the principle of documenting by designing. Our
experience report presents some examples of this principle taken from an evaluation project at
SAP, Germany.

Keywords: object-oriented design patterns, pattern form, software documentation

Overview: In Section 1, we clarify what we mean by the principle of documenting by design-
ing. In Section 2, we outline the aim of the evaluation project. We then generalize the steps of
instantiating a pattern to solve a particular design problem and of identifying a pattern candi-
date in a given design to gain some flexibility. To demonstrate these pattern-related activities,
we discuss two examples in more detail. Section 3 enlarges on documentation using patterns.
We discuss the central role of hypertext and give two forms (templates): one for the documen-
tation of pattern instances, and an extension for documenting frameworks. In Section 4, we
summarize our experiences in using patterns for design and documentation contrasting them to
experiences from literature. We conclude our report with some remarks on further research ac-
tivities.

1 Introduction
Design patterns are generally welcome for their pragmatism:

e capture and reuse of design expertise and experience (1, 9, 10, 12, 13, 15],
e design and documentation of frameworks [3, 14, 16, 17, 22, 24],
e economy and clarity of expression [4, 27].

In this experience report, we stress the dual nature of the pattern approach: it is
both generative and descriptive.! Kent Beck and Ralph Johnson give a reliable defini-
tion [3]:

Alexander's patterns are both a description of a recurring pattern of architec-
tural elements and a rule for how and when to create that pattern. [...] We call
patterns like Alexander's that describe when a pattern should be applied ‘'gen-
erative patterns’.

! See the mailing discussion on "Generative vs. Descriptive Patterns” and "Designs Documen-
ted as Patterns?", the latter initiated by Robert S. Hanmer:
http:/fiamwww.unibe.ch/~fcglib/WWW/OnlineDoku/archive/DesignPatterns/1171.html

512

In ontological terms, the attribute generative refers to a pattern’s content, that is
the recurring thing itself (classes constituting a micro-architecture). In epistemological
terms, descriptive refers to a pattern’s form, that is the way we capture and articulate
this thing (by formats like problem-context-forces-solution). It is the dual function of
design patterns, the interplay between form and content, that we experienced worth-
while in the context of documenting software.

1.1 The Guiding Principle of ""Documenting by Designing"

In mature engineering disciplines, the design of an artefact is dovetailed into its
documentation, and vice versa. Architects and electrical engineers, for example, get a
great deal of their product documents in passing, that is as a by-product of the design
process. The main reason for this is that circuit diagrams or blueprints describe mate-
rial artefacts, i.e. hardware such as buildings and circuits. Their structures can be eas-
ily made explicit as geometric models or schematic diagrams. The mode of designing
the product is the mode of documenting it. On the other hand, software engineers have
to struggle with immaterial constructs, i.e. data structures and algorithms. The essence
of software complexity, as Frederick Brooks has coined it [6], lies in the mixture of
data structures, algorithms, and function calls.

Although today’s software engineers have far more expressive constructs at their
disposal, such as inheritance and polymorphism, they still lack architectural constructs
with clear semantics. Categories [5], Subjects [11], or Clusters [20] aim at grouping
semantically linked classes. However, these terms are used notationally. They are of
little value as architectural vehicles for they function only as ad hoc containers: What
is put into them is at the will of the designer. It is this lack of architectural constructs
that makes class libraries, and especially frameworks, so hard to design and difficult to
comprehend and maintain (see Fig. 1).

Obviously, it was the deficit of conceptual structures beyond the boundary of indi-
vidual classes that has initiated the search for an "Architecture Handbook" of software
engineering; first articulated at OOPSLA 91. And it was the framework context,
where design patterns were first identified for documentation purposes (see Erich
Gamma’s thesis [14]). The GoF ("Gang of Four") authors of the best-selling standard
pattern text [15] have gained their expertise in the development and documentation of
well-known frameworks (ET++, UniDraw, and InterViews). Design patterns are both
a means and technique to design and document micro-architectures that can be easily
identified and reused. By establishing a further level of abstraction, patterns can re-
duce the accidental complexity (again, in Brooks’ terms) of system description. This
has been regarded as a further indirection, and therefore as a disadvantage. With
documentation, however, the advantages overwhelm. Documents are living products
that should be atlowed to evolve fogether with the iterative and incremental design cy-
cle. Using patterns in both ways — generative and descriptive — promotes this principle
of documenting by designing.

P e et el el sal¥ s — ~—~ ~ e

% : IR AN LN I
e .
Al S A 3
ran a3 z i
£)
an
il /l/f -~
s |
~))

/Vf,‘. 7 3
+

¢ 7
Y ;
4 \ 4

U A ! L.
F‘ i i HWNZT
TN 7o
a1 o
:,—Zj i I \ { 4 5
/\\ ¥ : ;l : $ g
] ,,!f'bﬂjé: X ey Cserovien 3

(i 'ff" A I ~ b
~i N '

p 1 TR ’ on)
FL_'uﬁ,th/k ! % L G ™ 7 . / :)
B ' L I)

Al :r- i \ Nt e L b

rZ N RS -3l
'_7_}‘ i 14 Lt % ; Y CRurtime n N
(“j‘Y A AN R I L~

H i ~.

Nt e & TS 7 e

I 7 s . T T HE
47T \ - I A
AN [2 T mmeers - ‘..‘_\ b 'F’J

i 2\ ,? CFramewnd 1 ,# ccombogox” ST
G na b : w H YT
- T 2 Vet Ty L o
A3 il — “‘lni et ke JJ' AT

P, : \
Pl o=t b, WL LS i
B e

Fig. 1. In need of architectural information and guidance®

1.2 The Interplay between Form and Content

If we relate the pattern form to software documentation, we should be ready to give
some pragmatic answers to "What constitutes good software documentation?" To sum
up the literature (5, 20] and one’s experiences [23], characteristic of good software
documentation is a sound mix of formal and informal means of description: graphic
versus textual notations; natural versus formal languages. As an empirical fact, most
designers are reluctant to rigid formalisms of description. On the other hand, however,
documenting a design in natural language has psychological constraints of its own —
the "white paper" barrier, for example. Additionally, many designers associate bu-
reaucratic activities with documenting. Moreover, for documentation in a natural lan-
guage there is only little systematic CASE support; mostly restricted to fragmented
and distributed annotations of individual design components. In contrast to traditional
means of documentation (use cases, CRC cards, class diagrams), the pattern form as a
natural prose style is systematic, disciplined, cohesive, and more comprehensible. Re-

2 What is shown here resulted from reverse engineering the MFC framework into a Booch dia-
gram. Zooming into this mass of classes does not reveal any architectural structure that could
be easily recognized, or directly used for documentation.

514

garding prose style, Alexander’s and the Portland pattern forms are narrative, while the
GoF form is more structured. The latter seems to better reflect the engineer’s writing
mentality. Besides, documents structured in the GoF form can be directly supported
by hypertext techniques and retrieval systems. In contrast to paper documents, a fine-
grained and consistent information system is feasible.

Form and content of a pattern stimulate design and documentation in concert. Its
content motivates documenting by its very nature: it helps the designer to reflect on
his decision. Either by way of confirmation or by contrast, he will document his cur-
rent design. Let us elaborate on this point: The GoF pattern form comprises more than
a dozen sections such as Applicability, Consequences, and Implementation. In the
process of instantiating a pattern of this form in your design, you will refer to the
original pattern description. Documenting the resulting class structure, you will,
again, refer to the pattern description. In doing so, you self-critically validate, justify,
or dismiss your design decision. Hence, documenting your design rationale in the
pattern form will make you reconsider its validity. Take, for example, the Applicabil-
ity section: Do you recognize the situations described there? Does your design fit to
the context? Or take the Consequences section: What are the trade-offs and results of
instantiating the pattern in your design context? What aspects of your system structure
does the pattern instance let you vary independently? Or the Implementation section:
What pitfalls, hints, or language-specific issues should a maintenance programmer
reading your document be aware of? Thus, besides the pattern form, the pattern’s
content, too, will help you produce the design documents. Finally, your growing expe-
rience in using a certain pattern will feed back to the original pattern itself (we will
discuss this in Section 3.1 on the role of hypertext). It is the dual nature of a pattern —
generative and descriptive — that lets form follow content, and vice versa. Document-
ing with the pattern form helps justify one's design rationale to oneself and to others,
and might reveal design alternatives otherwise not taken into account.

1.3 Pattern Activities

How are design patterns related to the software development process? According to
our approach of documenting by designing, we can differentiate and localize the fol-
lowing main activities of applying design patterns to the development cycle (Fig. 2):

o Pattern Instantiation. This is standard

pattern practice: choosing a design pat- Pattern
tern to generate parts of a design (a M '"m""“um
process driven by analysis efforts). Pamm Candidate

Idon!iﬁcation

e Pattern Candidate Identification.
This is non-standard pattern practice: m _> -
locating a given class structure to insert
a design pattern instance for flexibility
reasons (a process initiated by design
walkthroughs, code inspections, or tation

changed requirements preparing the
ground for a framework development). Fig. 2. Pattern-related activities

515

A third pattern activity, not argued in this report, is loosely related to design but
closely related to documentation: Mature designs can be made more reusable and self-
explaining by documenting the patterns used. The popular InterViews framework [19]
for example, would be a worthwhile candidate for this activity of reverse document-
ing. It was designed with design patterns in mind’, their use and the resulting pattern
instances, however, have never been annotated in the documents (as far as we know).
In the following section, we will discuss the first two activities in the context of non-
trivial design examples.

2 Pattern-Oriented Design

In standard pattern texts, the authors unanimously point out that patterns alone do not
constitute a design method. Patterns are (mental) building blocks that support the de-
signer in certain phases of the software development cycle. They can, however, put
some of the decision processes in a concrete form, which would otherwise remain
vague and without guidance. In the following, we will demonstrate this guidance by
examples. We emphasize the less typical pattern practice, i.e. pattern candidate identi-
fication. Additionally, we argue that reducing a pattern’s original flexibility can be op-
portune in a particular design context.

2.1 The Evaluation Project

The aim of the project was to develop an object-oriented interface to interoperate be-
tween the SAP-R/3 Business Object Repository (BOR) and the Open Scripting Ar-
chitecture (OSA) from Apple/IBM. OSA is comparable to Microsoft OLE Automa-
tion. The Business Object Repository is the managing unit for Business Objects,
which are mainly used by the SAP Business Workflow. Business Objects allow an
object-oriented access to and modification of R/3 data. With the Business Object Re-
pository, a client can make up object types from data fields and ABAP functions (cor-
responding to the attributes and operations of a class). It was agreed from the
beginning of the project to apply patterns of the GoF form for both design and docu-
mentation. Fig. 3 illustrates the components designed in the project. Two of them, i.e.
“Storing Business Object Types" and "Process Control", will be taken as examples in
Sections 2.3 and 2.4.

OSA Server

OSA Subsystem
~ Interaction with-OSA Applications —>
— Decomposing and Composing Events

SAP Subsystem

— Interaction with SAP-R/3 Busi-
ness Object Repository.

- Process Control

—Storing Business Object Types

-~ Storing and Managing

Business Object Proxies

Data Transfer Framework

—Decoupling of Subsystems
—Data Conversion

Fig. 3. Components of the OSA server

3 This framework is often mentioned in the Known Uses section of the GoF form [15].

516

2.2 Steps for Instantiating and Identifying Patterns

In the previous section, we have differentiated between two main pattern activities: (1)
designing with patterns and (2) making a design more flexible through patterns. The
first one is standard practice, generally called "instantiating a pattern”. The second one
is non-standard practice that we call "identifying a pattern candidate" in a given class
structure. Both activities can be divided into four major steps. While the first two
steps refer to decision-making problems, the latter two refer to structural changes.
Nota bene: The steps are not meant to represent a design method — our intent is to
make the cognitive and technical processes of using patterns explicit.

Step 1: Searching and Choosing. The designer looks for a suitable design pattern in
a pattern catalogue, or tries to identify a candidate for a pattern in a given design. In-
stantiating a pattern takes place in the initial phase of a design, while identifying a
candidate follows first experiences with a prototype or working system. For example,
some features of a design component have proved to be insufficient and shall be made
more flexible by incorporating a pattern into the class structure. Both activities pre-
suppose a thorough knowledge of patterns. The more patterns a designer knows, the
more he will cover his design by instances of patterns; or in the case of a given design,
the more likely he will find a pattern that matches a problem identified in the class
structure. Generally, there will be several alternatives, so that the process of choosing
or identifying implies a decision-making problem. The Forces section of a design
pattern may function here as a first guidance.

Step 2: Planning and Allocating. The process of instantiating a pattern poses the fol-
lowing questions: What are the pattern's classes called in the problem domain? What
additional responsibilities must be assigned to the pattern's classes? Generally, the as-
signment will be complete since there is no fixed design to be taken into account. In
the case of identifying a pattern candidate, the questions are: Which roles do the given
classes, operations, and attributes play in the pattern? Do they all play a role? In this
case, the assignment will often be incomplete since some classes, operations, or attrib-
utes do not fit. This may lead to the question: Does the pattern really match at all? The
problems encountered should not be solved in this step, just properly documented.
The documentation of this planning stage will guide the next steps of structural
changes.

Step 3: Fitting. Instantiating a design pattern might involve changes to its original
structure. Sometimes, it can be appropriate to reduce the original flexibility of a pat-
tern by changing or dismissing classes (we give an example below). With the help of a
proper documentation of this pattern instance, the original flexibility can be restored,
should requirements change. In the case of inserting a pattern in a given design, it will
often be necessary to change a class' interface or to add new classes. These are likely
the pattern's abstract classes that carry the desired flexibility.

Step 4: Elaborating. Finally, technical classes complete the design. They won't add
any further semantics but separate the concerns of the problem domain from technical
issues and coding directives modelled so far in domain classes. Examples are con-
tainer classes like lists or sets from a class library. Additionally, an extension to a
class' interface might be necessary, e.g. to add dynamic type checking. It is up to the
designer to state the completion criteria.

517

_/ one | Abstract Class
e [ael
Abstract Operationj many Abstract Operation(}
e
i Association Association
A Protocol AL
Message Acquaintance
Connection
A
0.n: Instance L Concrete Subclass
Name Attribute Operation()
Operation Attribute

Fig. 4. Coad’s notation used in objectiF® vs. OMT used in the GoF book

Some remarks on the graphic notations: We have used a mix of Coad’s notation of
class diagrams [11] and the OMT-based notation as used in the GoF book [15]. Han-
dling different notations has two reasons:* First, the OMT notation of steps 1 and 2 is
used to keep the original association of the GoF pattern alive. This facilitates commu-
nication among designers: both pattern and field experts are able to judge the design
effort. Our extended OMT notation of step 2 also reflects the interfacing quality of the
diagram. The concepts of both domains are annotated to the classes, separated by a
colon (pattern concept : field concept). If an assignment is unclear or impossible, a
question mark is annotated. Elements not used at all are crossed out. The diagrams of
these steps can be freehand or drawn with the help of some semantic graphic editor.
The second reason for using different notations is to make the transition from planning
(steps 1 and 2) to developing (steps 3 and 4) explicitly clear. In the latter steps, a de-
velopment tool with a notation of its own is involved (in our examples, this is Coad’s
notation as used in objectiF” V 1.1 from microTOOL, Berlin, see Fig. 4).

Annotating a pattern’s instance is still an issue of debate. We have chosen the
"Pattern:Role" labelling of Gamma assigning the pattern’s name and its role names to
the corresponding classes. A Venn diagram, however, is more suitable when the inter-
play between several instances of different patterns is to be illustrated (for a first im-
pression, see Fig. 11). We argue against the current UML proposal (V.0.9) to annotate
a design pattern as a Jacobson’s Use Case, as this would lead to overloading both the
term and the graphic design representation.

2.3 Example of Instantiating a Pattern: "Storing Business Object Types"

Context: The object type (class) of a SAP Business Object is defined and maintained
in the Business Object Repository. The interface of such a class comprises a list of at-
tributes and operations. An operation, on the other hand, comprises a list of parame-

4 Admittedly, the pragmatic reason is sort of willy-nilly: At the time of the project, there were
three different notations, i.e. of Booch, Coad, and Rumbaugh, spread over the CASE tools we
had at our disposal.

518

ters. The problem is to develop a unit maintaining and storing the classes’ interfaces.
Solution: Regarding the hierarchical structure of the data, the Composite GoF pattern
is a likely choice. An intuitive instantiation of the pattern is shown in Fig. 5; for the
original GoF structure see Fig. 6, step 1.

Client: Typelnfo

Dependencies

Attribute: Name, Type

Parameter: Name, Type, IsOptional
Operation: Name, Type, Parameters

parameters

| Leaf: Attribute” Leaf: Parametarl |Composite: Operation®

Fig. 5. A first try with the Composite pattern

Forces: Considering the dependencies of the context, we modified our first try (see
step 2 of Fig. 6): a separation between attributes and parameters is not necessary. Be-
ing convinced that the Composite pattern will work, we transferred it into the design
(step 3). Further adapting the structure of the pattern, we realized that we could do
without a Leaf class at all. Hence, we changed the Component class from abstract to
concrete. By that, we somehow reduced the original flexibility of the Composite pat-
tern for reasons of simplicity. However, if requirements will change and we wish to
restore the pattern to its full potential, we can simply achieve this by inserting Leaf

" C <
|Cliant Comp T be [Client. Typelinfo }—+ p ?
o) 8pemlion{): getNam?)()
Opera)peration(): GetType
jAdd(Component) Operation(): IsOptional()
GetCh ild‘(inl) | Add{Component)
Remeve{Gomponent}
GetChitd(int)
children arameters
Leaf Composit f I C ltjo :
Operation() Operation() 0= = = forall g in children Le'a : Attribute omposite: Operation
Add(Component) (g-Operation(); Operation(): GetType() Operation(): GetType()
R ve(C Operation(}: I1sOpti) | | Add(Component): Append(Component)
GetChild(int) GetChild(int): GelParameter(String)

1. Searching and Choosing 2. Allocating and Planning

class

Composite: Component

Gothame Composite: Componant

g IsOptional | IsOptional
mp.g.idv.,b Compasite: Cliant GetType Composlte: Client GetType -
GetVerb HasParameter|

.n : paramgers. 1 iterator °™

Composite: Composie

parameters

GetType Compasite: Composite GetType
Append Append
GetF GetParameter
HasResutt HasResuit
.. IsVllldPanm‘ . !lVllldPnnm
3. Fitting iiitududl 4. Elaborating

Fig. 6. Steps of instantiating the Composite pattern

519

classes. This presupposes, of course, that the pattern instance is clearly annotated and
documented. Finally, the resulting design has to be elaborated upon to make it work.
Thus, the technical task of storing parameters is delegated to class templates, i.e. List
and Iterator, taken from a standard library (step 4).

2.4 Example of Identifying a Pattern Candidate: "Process Control"

Decoupling was an important goal in the development of the OSA server. The sub-
systems to be designed for interacting with SAP R/3 and OSA were to be strictly sepa-
rated from one another. The aim was to guarantee easy substitution of the interopera-
bility interface. Decoupling was to be achieved for the flow of both data and control.
In this example, we will concentrate on the control flow, i.e. the reaction to an OSA
event. Fig.7 (upper section) depicts the design fraction representing the general
problem: How is the control flow maintained between the receiver of an event (OSA-
Dispatch) and the class representing the BOR component of the SAP system? For an
orientation, we bring the motives behind the requirements to the fore:

e Early feedback from rapid prototyping: decoupling of subsystems; process control
between OSADispatch and BOR.

e A postponed requirement from analysis: The SAP subsystem represented by the
BOR class is considered not to be changed. OSADispatch should be easily substi-
tutable by another interoperability interface, e.g. OLE.

e An extension to prior requirements from analysis: one-to-many relationship be-
tween OSADispatch and BOR so that several SAP systems can be addressed si-
multaneously by a single OSA event.

In short, these requirements aim at improving the quality of the design by inserting
additional flexibility. With this aim in mind, there are initially several design patterns
at our disposal:

e Facade encapsulates a subsystem and defines a generalized interface to make the
subsystem easier to handle.

o Adapter converts the interface of a class into something a client expects.

e Chain of Responsibility chains several receiving objects to one sending object. A
request is passed along the chain of receivers until an object handles it.

e Observer defines a one-to-many dependency between a "Subject” and one or more
"Observers" ensuring that all Observers are notified when the Subject changes
state.

Choosing a pattern is the most important step as (a) all subsequent changes to the
given design and (b) the quality of result will depend on it. To make a choice, the de-
signer has to rely on his knowledge of design patterns and his understanding of the re-
quirements of the problem. A deep understanding of a pattern’s potential, its essence,
can only be gained through practising the pattern several times. The lower section of
Fig. 7 represents the essence of the Observer pattern:

520

Create
Delete

Invoke
OSAEvent Create
Delete

ﬁ Invoke

Does the Pattern match?

¥

Abstract Coupling
Subject ' Observer
Attach(Observer) 1 N Update(Subject)
Defach(Observer)
Notify()
observers
ConcreteSubject ConcreteObserver
GetState() N AttachTo(Subject)
Action() Update(Subiect)
subjectSlate observerSiate
concreleSubject

Decoupling of Components

Fig. 7. Step 1: In search of the right match

¢ Dividing the components’ interactions into two parts: an unchangeable abstract
coupling (upper part) and the specific request from a ConcreteObserver to a Con-
creteSubject (lower part).

¢ One-to-many relationship between a subject and its observers

o Intuitively, the proceeding is clockwise:
AttachTo() = Action() = Notify() = Update() = GetState().

Some remarks on our decision-making: Facade and Adapter are not suitable in our
context as they are primarily structural patterns. The behavioural aspect, i.e. the con-
trol flow between OSADispatch and BOR, is paramount. Chain of Responsibility does
not fit either: The essence of this pattern lies in the ability of objects to pass a request
along their class hierarchy. Incorporating a subsystem’s classes into an inheritance re-
lationship that is semantically not justifiable — just to insert a pattern in the design —
makes little sense. Finally, the Observer pattern seems most suitable. Its transfer into
the design will be discussed below.

We first examine the existing design (upper section of Fig. 7): After receiving an
event, the OSADispatch class passes the request to BOR's interface. Thus, BOR plays
the role of a server, while OSADispatch is the client. This approach turns out to be
disadvantageous as the responsibility lies with OSADispatch concerning control of
communication and the selection among several SAP systems. Additionally, a client
component is the easier to replace the leaner it is. By changing the roles of client and

521

server, the design becomes more flexible and is closer to the framework idea: "don't
call us, we'll call you". Thus, the flow of communication within the OSA-Server will
be reversed (see Fig. 10). OSADispatch now functions as a server. Having received an
event, it only forwards a message of notification (Notify()) saying that something has
changed. All SAP subsystems attached to Subject get an update message and can indi-
vidually decide which one is meant. Afterwards, additional information will be re-
quested from OSADispatch (GetCommand()).

In step 2 (see Fig. 8), it is obvious that the whole interface of the BOR class, i.e.
Create(), Delete(), and Invoke(), could not be allocated to the pattern’s functionality.
As a consequence, we changed BOR’s interface as shown in Fig. 9. Now, BOR’s pre-
vious functions cannot be called any longer by a client. They have become protected
member functions and are called via Update(). Thus, being notified, BOR itself will
take control of this function. Finally, in step 4 we have inserted technical classes, such
as List<Observer> and Iterator<Observer>.

Py __l, ” obsarvers > Observer
Attach(Observer) Update(Subject)
Detach(Observer) pdate(Sut}
Notify()
obsarvers

) S— 1

ConcreteSubject: | 052D8Path | concreteObserver:
OSA OSADispatch [BOR

GetState(): GetCmd() AttachTo(Subject): BOR(Subj.),
Action(): OSAEvent() Update{Subject)

7 : Creats(}
subjectState: command ? : Deleta()

7 : Invoke()

observerState

concreteSubject: osaDispatch

Fig. 8. Step 2: Allocating and Planning

1 1

Suibject s > Observer '
observers L—
Attach Update
Notity

dispatch Create
OSAEvent Observer: ConcreteObserver: {ypdate Delste

Invoke
GetCommand BOR
Observer: ConcreteSubject €

Fig. 9. Steps 3 and 4: Fitting and Elaborating

522

Taking this approach, the responsibility of process control is with the SAP sub-
system that has been considered fixed. Hence, as a by-product, the one-to-many rela-
tionship has come along by inserting the Observer pattern.

To fulfil the requirement of making OSADispatch easily replaceable, the instantia-
tion of the Observer pattern would have to be realized as a framework. For this, an ab-
stract message dispatcher (AbstractDispatch) would be inserted to define a protocol of
communication between BOR and AbstractDispatch. Before that, communication was
handled by the operation GetCommand(). With communication getting more complex,
GetCommand() would gain a symbolic meaning. A concrete dispatcher like OSADis-
patch would be derived from Subject and AbstractDispatch. For a translation of the
communication protocol, the Adapter pattern could be applied. The steps described
here clearly indicate that the original approach has been made more flexible and that a
shift of responsibility has taken place: a smooth transition to framework development
is mapped out (Fig. 10).

Attach

w S m dispatch Create
Event Updats Delate

BOR Invoks
P R— |

Create

Invoke

Fig. 10. Change of roles: Seamless transition to framework design

3 Pattern-Oriented Documentation

With software becoming a capital stock for many companies, two problems aggravate:

e How can a company’s design knowledge and experience be preserved in the face
of fluctuation (braindrain)?

e And how can we effectively integrate a newcomer into a design team, i.e. how can
the learning process be shortened?

It is well known that these problems are closely related to widespread negligence of
proper software documentation. In the following, we outline our approach to using de-
sign patterns for documentation. The aim is to document designs for better under-
standing and for identifying, evolving, and applying reusable components. From a
designer’s point of view, what is most needed for documenting a complex object-
oriented design is an abstract layer right above the class level (see Figures 11 and 12).
The components at this Pattern level meet a major requirement of design reuse: they
are large enough to make reuse economic, and small enough to stay in the realm of a
designer’s concerns. In addition, with a slight modification of the templates introduced
in Sections 3.2 and 3.3, domain components can be documented as well. In this case,
the annotation of patterns and domain components often will overlap.

523

Facade

Fig. 11. Reducing descriptive complexity by covering the design with pattern instances’

Our pattern-oriented approach to documentation concentrates on the reflective use
of (on-line) pattern texts, be they proprietary or standard. It does not aim at finding
and describing new design patterns. Pattern-oriented documenting logically continues
pattern-oriented designing: Covering a design partly by pattern instances (see Fig. 11,
which shows the project’s overall class structure), these instances simultaneously lay
the foundation for documenting the design. They structure the system under develop-
ment at a higher level of abstraction. Hence, the design is structured independently of
the problem domain, establishing a meta-level documentation: For those designers
who are not familiar with the problem domain, but familiar with design patterns, there
is a neutral access to understanding the system. Pattern-oriented documentation sup-
plies a link between the general description of design patterns and their instances in
the problem domain: This link documents why, in which context, and how a design
pattern has been instantiated — that is the rationale of a design decision. The most suit-
able technique for a pattern-oriented approach of documenting is hypertext. We will
discuss the tool aspect below.

5 Compare with Fig. 1: Imposing a Pattern level there could break the complexity barrier of un-
derstanding. Unfortunately, as far as we know, patterns were not used for the design of the
MFC framework.

524

System level] [
- Analysis decisions s | R
- Communication between components il N Kensditoon

Pattern level

- Design decisions (components)
- Communication between classes

<I> Composite

amm L
Class level ammt
- Design decisions (classes) e eter
- Protocols and services aeanc..
HasResult
$ GalType
try
Source-code level (oHTYPe = _boset>geobHandel >Getypa);
- Implementation decisions 5“"““""‘*“"“5“-#" X
- Data structures and algorithms heow CimteropExceptionl_FILE_, _LINE_);

Fig. 12. Levels of system description: A hierarchical hypertext

3.1 The Role of Hypertext

Recapitulating the interplay of a pattern’s form and content, what is needed for an effi-
cient and comfortable medium to quickly switch from one aspect to another is hyper-
text.® Fig. 12 illustrates the description levels we differentiated in our project. Both
aspects of system description, design and documentation, are accessible by hypertext
techniques. With the help of hypertext, the items of interest can be made sensitive for
design navigation, searching, filtering, and modification.

Consider this: The description of standard design patterns is available as hypertext.
You are in the process of instantiating a design pattern. The hypertext documentation
system will support you directly: It will generate a documentation frame to function as
a cardinal point for the emerging texts, graphics, even source code. While you are in-
stantiating design patterns or identifying pattern candidates — being involved in the
steps of searching and choosing, allocating and planning, fitting, and elaborating (see
Section 2.2) — the documentation evolves. Moreover, the content of a design pattern
may evolve, too. Take, for example, structural changes that you have found appropri-
ate and worthwhile in your current project. You probably will document these changes
in the Consequences, Applicability, or Implementation sections of the original pat-

¢ Authors of standard pattern texts have emphasized this point before [9, 15, 22}, but mainly
with regard to an on-line version of a pattern catalogue.

525

tern’s description. In fact, a new pattern might evolve. A pattern-driven design will

eventually lead the designer to unknown patterns of his problem domain, particularly
when his repertoire of patterns proves to be insufficient. If the items of design and
documentation are captured as a hypertext, some kind of yo-yo access is supported:
You can dive into the highest system description, inspect some component’s pattern

description by penetrating its class structure as deeply as to code fragments, and come
up to the system level again taking a changed perspective of the design under devel-
opment, and so forth.

For lack of space and because a linearized hypertext does not disclose its potential,
we would like to direct the reader’s interest to the on-line WinHelp version of the proj-
ect’s hypertext documentation.’

3.2 Template for Documenting Pattern Instances

In the following, we concentrate on the document’s structure at the Pattern level (see
Fig. 12). For our project, we found the following hypertext template appropriate for
documenting pattern instances. What is most important, is the consequent use of the
same template at a certain level of description. This will enhance the reader’s familiar-
ity with the documentation as a whole.

Overview. Give a reference to-a class diagram or produce some other kind of visuali-
zation for a first.orientation in the design context.

Intent. State the reason why you have instantiated just this design pattern.

Motivation. Describe the design context in more detail. Give a survey on the design
component. It is very useful to illustrate the design actions that have led to the actual
instantiation of the pattern:(as shown in the examples of Sections 2.3 and.2.4). If pos-
sible, state the references to documents from the analysis phase, e.g. the relationship to
analysis patterns of the problem domain [13].

Roles, Label the classes of the pattern instance with "Pattern:Role". This will quickly
inform the reader on the role-specific assignments. Briefly outline each role and how it
contributes to the pattern’s.essence.

Collaborations, Describe the interaction between the client and the pattetn instance.
Consequences. Argue the pros and cons, e.g: design issues like:extendibility, con-
trasting them with other design alternatives.

Implementation. Point out special-features of your implementation and make refer-
ences to the:corresponding sections of the source code.

3.3 Extended Template for Documenting Frameworks

The second main pattern activity that we exemplified in Section 2.4 supplies a further
argument for a pattern-oriented approach to documentation: The need to document
those parts of a design that have been made more flexible by inserting a pattern. This

7 http://www.ti.et-inf.uni-siegen.de/Entwurfsmuster/

526

is especially the case when flexibility is intended for framework development. We
took this argument into account by the following extension to the previous template:

Hot Spots vs. Frozen Spots. For the documentation of a framework, a detailed de-
scription of the parts not to be changed and the parts to be extended by the user is es-
sential [22, 24]. State clearly what degree of flexibility is offered and what the
conceptual constraints are.

Recipe. Sketch the use and adaptation of the framework in a cookbook style with an
example [16, 18]. If possible, give a ready-to-use example to test the framework by
running it. To enhance one’s practical understanding, a pre-configured debugger ses-
sion could help. If your framework is designed for a certain run-time environment
(e.g. an OLE component), consider an interactive on-line support (assistant or wizard)
for adaptation and use of your framework. This would be the optimum help for the
user.

Integration. State briefly (e.g. by making references to the corresponding locations in
design and implementation) which assumptions the would-be environment of the
framework has to fulfil.

Known Uses. List all successful uses (and typical misuses, too!), so that a prospect
can quickly assess the potential of the framework for his requirements.

Structural Extensions. Mention the aspects that you consider limiting the frame-
work’s current design and implementation. If you have any solutions or hints for fol-
low-up extensions, write them down. Localizing all relevant hot spots of a framework
requires several design cycles in (ideally) slightly different environments. This section
can document the history of these efforts.

Finally, some remarks on omissions: We have omitted here those links of the hy-
pertext template that refer to the library management of pattern texts. For lack of
space, we also left out the links to the information by whom and when the design pat-
tern was instantiated in the process model (aspects of version control and process
management). Similar templates for structuring documents can also be used at the
Class level (see Fig. 12) to document attributes and operations. We did this, too, in
our project [21].

4 Experiences Gained

Comparing our experiences with those from literature [4, 7, 8, 25, 26, 27], we can
name the following two categories: Category A for experiences gained in applying de-
sign patterns generatively (where ours are similar to those from literature) and cate-
gory B for experiences gained in applying a pattern’s form and content for "documen-
ting by designing”. Let us contrast A with B: Identifying a candidate class structure to
be merged with a design pattern for some flexibility reasons is harder than "just” in-
stantiating a design pattern. As Booch observed: "Identifying involves both discovery
and invention” [5]. In the case of "pattern instantiation", there is no fixed design con-
text the designer has to take into account. Especially, when it comes to allocating class

527

roles, the case of "candidate identification" leaves a couple of design decisions open
to the designer. For example: Which of the classes’ roles of the given design can be
matched by the abstract design pattern? Which new roles are there to be taken over
from the pattern? Finally, there are also synergetic experiences gained from both cate-
gories, A and B, confirming the principle of documenting by designing.

Category A: Using Patterns for Design

Cohesive and comprehensive documentation of design decisions (trade-offs,
forces, context, etc.).

Higher degree of reusability (making explicit the flexibility locations in a design
(hot spots according to Pree [22]), facilitating maintenance).

Potential pitfalls: patterns must have been internalized before they can be applied
effectively. A basic knowledge of design patterns is sufficient to understand exist-
ing designs that refer to these patterns. However, when software is to be designed
in the pattern fashion, design patterns must have been utterly understood and prac-
tised several times before.

Category B: Using Patterns for Documentation

A design covered with pattern instances is accessible for understanding from both
sides: (a) from an in-depth knowledge of the problem domain and (b) simply with
design patterns in mind. The pattern documentation functions as the "missing link"
between the meta-level of pattern annotations and the problem domain.

Systematic support of natural language documentation enhances the stimulus for
documenting in general.

Alleviation of descriptive complexity: documenting a complex design with pat-
terns draws one’s attention to the architectural structures of interest and, hence, fa-
cilitates one’s understanding of the design.

The design rationale (i.e. compensation of forces and fitting to the problem’s con-
text) is made explicit.

The guiding interplay of a pattern’s form and content animates documentation and
reduces the time spent for it.

Hypertext is the ideal medium to take full advantage of the dual nature of design
patterns: it facilitates navigation through design documents and is a guiding in-
strument during the design process.

Categories A and B: Using Patterns for Design & Documentation

Synergetic effect: Designers documenting their designs with the pattern form will
be more inclined to apply patterns, and vice versa.

Smooth transition to framework development: in contrast to prior experiences from
literature, this is a transition from a given design to a framework; other reports
stated a transition from scratch [3], or documented the framework’s rationale with
patterns afterwards [16].

528

¢ Improvement of software documentation: Instead of reverse documenting a design,
a design is documented while it evolves, that is, when design knowledge is at its
highest.

¢ Potential pitfall: if a design pattern has been changed structurally to make it fit to a
particular design context, all changes should be properly documented. Otherwise,
the pattern instance will be difficult to recognize and its potential flexibility may
not be seen any longer.

5 Concluding Remarks

Componentware, especially frameworks, will have a tremendous impact on software
engineering in the years to come. On the one hand, the development of complex appli-
cations will be accelerated by visually configuring standard components. On the other
hand, however, documenting the demanding design of such components will become a
crucial factor to realize their ilities: applicability, reusability, extendibility, maintain-
ability. We have tried, in this report, to show the correlation between design and
documentation. The pattern-related design activities sketched in Section 2.2 also pro-
duce parts of the design documentation. Such a documentation will show the path that
was followed from the initial design problem to its final solution: the design traps and
pitfalls, the trade-offs, and the final rationale of a design are documented in passing,
and, hence, can be easily traced back by another designer.

The spreading knowledge and acceptance of patterns will change our current cul-
ture of designing and documenting: There is a need to explicitly document the de-
signer’s patterns of thinking and doing. Eventually, this need will establish a new level
of abstraction, what we call the "Pattern level" (see Fig. 12). It helps to put design re-
use on a firm footing and will function as a meta model for documentation systems to
come.

The project’s results sketched in this experience report have encouraged us to keep
on using patterns for design and documentation. Currently, we are reverse document-
ing a mature manufacturing framework [24] in the hypertext fashion of Sections 3.2
and 3.3. Besides, we consequently follow our principle of "documenting by design-
ing" in a framework project for scheduling at universities [2].

Acknowledgements: We would like to thank the anonymous reviewers for their help-
ful suggestions and comments.

References

[1]1 Alexander, C., et al. 4 Pattern Language: Towns, Buildings, and Construction. Oxford
University Press, New York, 1977.

{21 Baumgart, M., Kunz, H.P., Meyer, S., and Quibeldey-Cirkel, K. Priority-driven Con-
straints Used for Scheduling at Universities. In Proc. of the 3 Int. Conf. on the Practical
Application of Constraint Technology, London, UK, 1997 (accepted for publication).

[31 Beck, K., and Johnson, R.E. Patterns Generate Architectures. In Proc. of ECOOP '94,
Bologna, Italy, 1994, 139-149.

529

[4] Beck, K., Coplien, J.O., Crocker, R., Dominick, L., Meszaros, G., Paulisch, F., and Vlis-
sides, J. Industrial Experience with Design Patterns. In Proc. of 18" Int. Conf. on Soft-
ware Engineering (ICSE '18), Berlin, Germany, 1996, 103-114.

[51 Booch, G. Object-Oriented Analysis and Design with Applications. Benjamin/Cummings,
Redwood City, CA, 1994. 2™ Edition.

[6] Brooks, F.P. No Silver Bullet: Essence and Accidents of Software Engineering. Computer
20, 4 (1987), 10-19.

[71 Brown, K. Using Patterns in Order Management Systems: A Design Patterns Experience
Report. Object Magazine, Jan. 1996.

[8] Budinsky, F.J., Finnie, M.A., Vlissides, J. M., and Yu, P.S. Automatic Code Generation
from Design Patterns. IBM Systems Journal 35, 2, 1996.

[91 Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. Pattern-Oriented
Software Architecture: A System of Patterns. Wiley, New York, 1996.

[10] Coad, P. Object-Oriented Patterns. CACM 35, 9 (Sep. 1992), 152-159.

[11] Coad, P., and Yourdon, E. Object-Oriented Analysis. Englewood Cliffs, Yourdon Press,
Prentice Hall, 1991.

[12] Coplien, J.0. Advanced C++ Programming Styles and Idioms. Addison-Wesley, Read-

ing, MA, 1992.
[13] Fowler, M. Analysis Patterns: Reusable Object Models. Addison-Wesley, Reading, MA,
1996.

[14] Gamma, E. Object-Oriented Software Development based on ET++: Design Patterns,
Class Library, Tools (in German). Ph.D. thesis, University of Zurich, 1991.

[15] Gamma, E., Helm, R., Johnson, R. E. and Vlissides, J. Design Patterns: Elements of Re-
usable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

[16] Johnson, R.E. Documenting Frameworks Using Patterns. In Proc. of OOPSLA '92, Van-
couver, BC, Canada, 1992, 63-76.

[17] Keller, R.K., and Lajoie, R. Design and Reuse in Object-Oriented Frameworks: Patterns,
Contracts, and Motifs in Concert. In Proc. of 62™ Congress of the Association Canadi-
enne Frangaise pour I'"Avancement des Sciences, Montreal, QC, Canada, 1994.

{18] Krasner, G.E., and Pope, S.T. A Cookbook for Using the Model-View-Controller User
Interface Paradigm in Smalltalk-80. JOOP 1, 3 (Aug./Sep. 1988), 26-49.

[19] Linton, M.A., and Calder, P.R. The Design and Implementation of InterViews. In Proc.
and Additional Papers, C++ Workshop, Santa Fe, NM, 1987. USENIX Association, El
Cerrito, CA, 1987, 256-268.

[20] Meyer, B. Object-Oriented Sofiware Construction. Series in Computer Science. Prentice
Hall, Englewood Cliffs, NJ, 1988.

[21] Odenthal, G. Design and Implementation of an Interface between the SAP-R/3 Business
Object Repository and the Open Scripting Architecture (OSA4) (in German). University of
Siegen, Master thesis, 1996.

[22] Pree, W. Design Patterns for Object-Oriented Software Development. Addison-Wesley,
Reading, MA, 1994.

[23] Quibeldey-Cirkel, K. The Object Paradigm in Computer Science (in German). Teubner,
Stuttgart, Germany, 1994.

[24] Schmid, H.A. Creating the Architecture of a Manufacturing Framework by Design Pat-
terns. In Proc. of OOPSLA '95, Austin, USA, 1995.

[25] Schmidt, D.C. Experience Using Design Patterns to Develop Reusable Object-Oriented
Communication Software. CACM 38, 10 (Oct. 1995), 65-74.

[26] Schmidt, D.C., and Stephenson, P. Experience Using Design Patterns to Evolve Commu-
nication Software Across Diverse OS Platforms. In Proc. of ECOOP '95, Aarhus, Den-
mark, 1995.

[27] Special issue on Software Patterns. CACM 39, 10 (Oct. 1996), 36-82.

