The Past, Present, and Future of Smalltalk
L. PETER DEUTSCH

Chief Scientist, ParcPlace Systems

1 ABSTRACT

Smalltalk has firmly established itself as a contributor to software technology, a
practically useful application development environment, and a participant in the

commercial marketplace. This paper reviews its evolution, surveys its current roles,
and offers some opinions about its future.

2 INTRODUCTION

There are few programming languages in existence today that have made major
contributions to software technology, have evolved through multiple generations of
implementation and engineering, and are living and flourishing in the marketplace. This
author believes that Smalltalk has firmly established itself as a member of this select

group, along with the venerable FORTRAN, Lisp, and Algol/Pascal. The intent of the
present paper is to:

* Review and evaluate in some detail the technical evolution of Smalltalk, specifically
with respect to the emergence of those concepts that are now recognized as
fundamental to object-oriented software design, and the user interface innovations
that have inspired so many later systems.

* Survey the present role of Smalltalk in the marketplace and in research, as a
language, a development environment, and a basis for applications.

» Offer a number of opinions about the technical challenges for Smalltalk in the future,
and also a few comments about its competitive future.

For the purposes of this paper, the watershed of Smalltalk history — the transition from
a widely discussed but practically inaccessible set of experiments, to a technology
available to researchers and later vendors — is the publication of the three Addison-
Wesley Smalltalk books by Xerox authors in 1983. I have chosen to call the pre-1983
evolution of Smalltalk within Xerox the "past,” and the developments since then the



14 Deutsch: Past, Present and Future of Smalltalk

"present.”

3 THE PAST

3.1 Ancestry and Initial Concepts

The original goals for Smalltalk were described by Alan Kay in the early 1970s. The
initial sketches that formed the basis for Smalltalk were heavily influenced by the idea
of classes as an organizing principle (taken from Simula-67), of turtle graphics (taken
from the LOGO project at MIT), and of what is now called "direct manipulation"
interfaces (inspired by the Sketchpad drawing system, developed by Ivan Sutherland at

MIT Lincoln Laboratories in the early 1960s, and by Kay’s Ph.D. thesis on the FLEX
Machine).

Kay sometimes referred to Smalltalk as a language and system for "children of all
ages". The connotations of this vision included the desire to make "simple things
VERY simple, and complex things VERY possible." In the early years of Smalltalk
development at Xerox PARC, the vision of the individual "playing" with a relatively
simple system dominated the evolution of the language and environment, and the

research projects tended to be small, self-contained, and heavily oriented toward the
interactive.

3.2 Smalltalk-72

Between 1971 and 1975, Kay’s group at PARC designed and implemented the first real

Smalltalk language, environment, and applications. This system included a remarkable
number of technical innovations:

* The language was based entirely on the Simula concepts of class and message.
There were no built-in operations, only predefined (machine coded) procedures that
were invoked in the same way as user-written procedures. Even the initialization
of objects at creation time, which is often implemented specially in object-oriented
languages, was handled with a special init message. (Hewitt’s work on Actors
began around the same time, but Smalltalk-72 was the first usable, running system
based on this approach.) This characteristic has remained one of the halimarks of
Smalitalk even today, and distinguishes Smalltalk from all other object-oriented
languages in widespread or commercial use.

*

The language had no fixed syntax. Each class was responsible not only for its own
behavior and state definition, but even for parsing the token stream that followed a
mention of an instance. This made it easy for a programmer to create a syntactic
style of his/her choosing, but very difficult for anyone other than the author to read
and understand a program. We can see this as an example of the project’s bias
toward the single-user, user-as-author paradigm.

* Originally, Smalltalk was even closer to Actors in that Kay intended that each object



Deutsch: Past, Present and Future of Smalltalk 75

have its own control state, and that function-like as well as physical-object-like
objects would be supported. While some control structures were actually
implemented that way, objects did not, in fact, have a useful control state, and the
idea was abandoned in later Smalltalk systems.

The innovations in the environment were equally radical. Kay originally envisioned a
portable machine with a flat-panel display, but this display technology did not exist ‘at
the time; indeed, bitmapped displays were considered expensive and arcane.
Nevertheless, in 1971-72, PARC took the daring position (to a considerable extent at
Kay’s urging) that their research hardware would use bitmapped (CRT) displays. This

daring step enabled Kay, Dan Ingalls, and the other members of what was then called
the Learning Research Group (LRG) to implement:

* Bitmap-based text in multiple sizes and styles, with user-editable fonts: until
recently, this was the state of the art in interactive systems, only now being
superseded by outline- or stroke-based font descriptions and smart renderers.

-

“Turtle" graphics as the basic paradigm for creating pictures: this was the first good
example of linking algorithmic activity directly to a visual display, and has proven
excellent for introducing young students to graphics, but quickly falls short as one
wants to produce more interesting visual displays.

Later, the BitBlt (also known as RasterOp) function as a fundamental primitive for
bitmap graphics: this is still the basis of all commercial Smalltalk graphics, and an

important component of all bitmap-based graphics models such as that of X
Windows.

* A multi-window environment, including a class library that provided window
capability to any application: the concepts have taken root in the industry, although
the original implementation had serious problems (for example, it provided
structurally for neither tiled nor overlapping windows).

The Smalltalk-72 system further took the point of view that there was no reason for a
separate operating system, since the object paradigm could manage all hardware
resources at least as easily as any other approach. (Subsequent evolution of both
Smalltalk and operating systems has, in this author’s opinion, strongly validated this
belief, modulo issues of protection and of controllable resource allocation.)
Consequently, not only the display, mouse, and keyboard handlers (down to a very low

level), but even the file system and (later) network protocols were implemented in
Smalltalk.

In addition to the innovations in language and environment, the Smalltalk-72 system
was the arena for many interesting application experiments:



76

Deutsch: Past, Present and Future of Smalltalk

» Multiple-object, real-time animation;

+ Simulation, both real-time and traditional, including dynamic (animated) display;

+ Several different forms of music input and (both visual and audible) output;

+ Several different painting and drawing programs.

vi

In retrospect, Smalltalk-72 did a remarkable job of capturing many aspects of Kay’s

sions, in both its strengths (near-instantaneous interaction, personal control, a media-

oriented system, a simple and powerful programming paradigm) and its weaknesses
(primarily a heavy orientation toward a single, isolated user who creates the
applications him/herself, and toward toy-size, non-combinable applications).

3.

3 Smalltalk-76

By 1975-76, it had become clear that the lack of attention to issues of performance and
scaling were hampering further investigation of the vision of personal computing that

W,

as driving the Smalltalk effort. Kay’s group proceeded with a major redesign of all

aspects of the Smalltalk system. In the language area:

* The idea of inheritance and a subclass hierarchy, which had been added to Simula,
was also incorporated into Smalltalk. This hierarchy was used both for inheriting
specification (e.g., Integer as a subclass of Number) and for inheriting
implementation (e.g., Dictionary as a subclass of Set). Subsequent experience has
confirmed that the former is both theoretically and practically valuable, while the

latter tends to create difficulties in subsequent evolution and often reflects
insufficient understanding,

The syntax of the language was fixed. This enabled compilation into an efficiently
interpretable, compact (bytecoded) instruction set. Given that the only machines of
interest to the group were high-speed, microcoded engines with relatively small
memories, this was an excellent choice at the time. While bytecode interpretation
remains a viable implementation choice for Smalltalk on today’s fast
microprocessors, it is being complemented and perhaps superseded by various
forms of compilation (more on this subject below).

There were also three important innovations in the underlying language implementation:

* In order to make most efficient use of the limited memory of the Alto hardware
(128K bytes, of which 60K were taken up by the display frame buffer), Smalltalk-76
incorporated a novel object-oriented virtual memory system called OOZE (Object-
Oriented Zoned Environment). It relied heavily on the speed of microcode (it
required a hash table lookup for every reference to an object!), but it did an excellent

Job of packing a useful working set of objects into a small memory. Indeed,



Deutsch: Past, Present and Future of Smalltalk 77

subsequent experience has confirmed that paging is practically useless for Smalltalk
systems, whereas OOZE was highly practical. OOZE also included a clever
mechanism for efficiently making an automatic checkpoint of the virtual memory
roughly every 30 seconds, which provided a crude but sometimes very useful way to
recover from fatal (user or system) errors. The checkpoint mechanism gave the
group a strong appreciation for the value of a stable (disk-based) record for disaster
recovery: this was provided through a different and more robust mechanism (stable
logging of source code changes) in later Smalltalk systems.

Not only classes and compiled code, but Contexts (stack frames) were made into
first-class objects. While this was a step away from Kay’s original idea that every
object carried its own control state, it suited the new compilation approach better,
and it provided exactly the appropriate hook for the new debugger (see below).

Explicit multiprocessing was added to the system, in the form of Process and
Semaphore classes. Again, this was a step away from distributed control. In
retrospect, concurrency has always been a problematic area in Smalltalk, and none
of the subsequent experiments in this area have been entirely satisfactory. It would
be interesting to build a Smalltalk system with the extreme concurrency
opportunities that characterize Actors or Concurrent Prolog, but to the author’s
knowledge this has not yet occurred.

Smalltalk-76 enabled LRG researchers to break the size barrier, and a large part of this
was due to the creation of the Browser by Larry Tesler. The Browser is a five-paned
window that provides a view of a four-level tree structure. The first and third levels,
called "category" levels, provide a user-specified organization of, respectively, classes
and messages within a class; the second and fourth levels reflect the language entities
of classes and messages respectively. Each level is represented by a scrollable list of
names: simply selecting a name with the mouse brings up the selected subtree in the
next pane. The fifth, large pane displays and allows editing of the selected leaf (method
within a class). The Browser was a startling innovation at the time, and is still superior
to the macro-scale navigation facilities in most environments.

The other major environmental innovation was the development of a user interface class
library that included multi-paned windows, scroll bars, pop-up menus, scrollable and
selectable lists, and a multi-font text editor. These components were all reusable
through subclassing.

Smalltalk-76 also introduced a manager for overlapping windows. An interesting
aspect of this window manager, which it shared with Smalltalk-72, is that control
responsibility was completely distributed: each window decided when to give up the
(single thread of) control, and was responsible for making sure it only displayed within
its assigned boundaries. In retrospect, this feature, while consistent with a pure object-
orie.ntcd philosophy, tumed out to create major debugging problems. We see this as a
particular case of the problem, alluded to earlier, of replacing an operating system with



78 Deutsch: Past, Present and Future of Smalltalk

an object-oriented application structure: there is no responsible entity that can make
any guarantees about resource allocation.

As with Smalltalk-72, Smalltalk-76 spawned several interesting research applications:

* A constraint-based language and constraint satisfaction system, called ThingLab,
that was the most sophisticated effort of its kind for many years following.

* A completely visual programming environment, designed for = constructing
educational software, called Programming By Rehearsal.

"+ A simulation kit, including visual animation and the ability to restrict users of the kit
to a "filtered" subset of the system classes.

* An experimental "dynamic book,” based on an information retrieval systern called
Findlt, that foreshadowed many later hypertext systems.

* Additional experiments in animation, including 2-dimensional with collision
detection and 3-dimensional wire-frame.

3.4 Smalitalk-78

By 1977-78, LRG saw that microprocessor technology was reaching the point where it
might be possible to realize another part of the original vision, namely, the creation of (a
more realistic prototype of) a portable, relatively affordable personal computing system.,
This led to a combined hardware/software project called the NoteTaker. Based on dual
Intel 8086 processors with a custom display, bus, and package, it executed a variant of
Smalltalk-76 called Smalltalk-78, implemented primarily by Bruce Hom and Ted
Kaehler. Performance was sluggish, and various non-technical difficulties led to the
project’s cancellation after only 10 systems had been built, but it was a persuasive

demonstration that it would very soon be possible to implement Smalltalk on a
conventional processor.

Aside from the hardware, the interesting technical innovation in Smalltalk-78 was a
compromise on the first-class objecthood of Contexts: Smalltalk-78 used a linear stack,
one per process, with a consequent danger of dangling references. This tension
between the desire for clean object semantics for Contexts, and the desire for the

efficiency of a linear stack, was only resolved two implementation generations later (in
PS, described below).

3.5 Smalitalk-80

In 1979-80, partly in the wake of the NoteTaker project, the attention of LRG was
increasingly drawn to the possibility of propagating Smalltalk beyond PARC. The group
designed and implemented yet another generation of Smalltalk systems, this time with
some changes specifically aimed at leveraging the progress occurring in the hardware



Deutsch: Past, Present and Future of Smalltalk 79

and software worlds outside Xerox:

* The Smalltalk-76 character set included quite a number of special characters, some
of them left over from Smalltalk-72. The Smalitalk-80 system used the ASCII
character set (actually, the Teletype character set; the small but significant
difference has been a source of annoyance ever since). This decision met with

heated opposition within the group at the time, but has turned out to be essential for
the acceptance of the system in the world.

The Smalltalk-76 primitive methods included the ability to directly access any
memory location in the machine, and used this ability for some miscellaneous
functions like reading the mouse position, setting the cursor coordinates, and
reading the calendar clock. The Smalltalk-80 system removed this ability, adding
half a dozen new primitive methods for the necessary system functions. Again, this
was a key decision in the move towards system portability.

The Smalltalk-80 language introduced the concept of metaclass, to provide a way of
talking about behavior (messages) that were specific to an individual class.
Motivated primarily by the desire to have class-specific creation messages that did
not require making up a "blank” instance and then initializing it, metaclasses have

proven confusing to many users, and perhaps in the balance more confusing than
valuable.

The Smalltalk-80 language also made blocks (isolated pieces of functionality
supplied as the arguments for enumerators) first-class objects. In retrospect, this
proliferation of different kinds of instantiation and scoping was probably a bad idea: a
simpler lexical scoping story, as in Scheme, or a dynamic lookup arrangement, as in
Self, would have been easier to explain, and might have been no harder to implement.

Even though metaclasses and blocks complicated the language model, they helped
complete the object-oriented "story," in that there was now no data structure visible in
any way to the programmer that was not a first-class object. '

Besides the changes in the language and the primitive methods, the Smalltalk-80
system introduced a new architecture for interactive applications, called Model-View-
Controlier (MVC). This architecture calls for completely separating the Model (the
data, often persistent, that represent the state of a simulation or other application), the
View (the algorithms and formatting for mapping the Model to the scréen), and the
Controller (the algorithms and tables that map user actions into editing operations on
the Model): the purpose of this separation is to enable the development of
independently reusable Model, View, and Controller components. While MVYC has
proven somewhat difficult for application writers to master, and while it has certain
limitations (e.g., it does require a certain amount of cooperation from the Model to make

viewing possible at all), it has been recognized as a profound improvement over most of
1ts predecessors and many of its successors.



80 Deutsch: Past, Present and Future of Smalltalk

New experimental applications developed in Smalltalk-80 at PARC included:

» The Galley Editor: a document editor that allowed mixing text paragraphs, paint-
style graphics, and animations. Besides numerous features characteristic of today’s
desktop publishing systems, the ability to include dynamic images set the Galley
Editor ahead of most systems developed since then.

» The Alternate Reality Kit: a simulation of physical reality, complete with friction and
gravity forces, that evolved into a complete visual programming environment,

3.6 Publication

By 1981, a significant number of Smalltalk researchers at PARC felt it was important to
take direct action to propagate Smalltalk beyond PARC. Adele Goldberg, who had
replaced Alan Kay as head of the group, and Dave Robson, a long-time group member
and major technical contributor, decided to write a series of books about Smalltalk, of
which the first would describe the Smalltalk-80 system architecture in sufficient detail
that others could implement the Virtual Machine (instruction set executer, memory
manager, and primitive methods) on their own hardware. Goldberg contracted with a
number of hardware vendors for them to receive pre-publication drafts of the book, in
exchange for which they promised to actually implement the Virtual Machine and report
all problems they encountered. This unusual experiment produced four completed
Virtual Machine implementations (by DEC, Apple, Hewlett-Packard, and Tektronix),
and a book which numerous others have used to implement the Smalltalk-80 Virtual
Machine since that time. (The book, Smalltalk-80: The Language and its
Implementation, was published by Addison-Wesley in 1983 and is often referred to in
the Smalltalk community simply as the Blue Book.)

One of the immediate benefits of publication was the inception of a research project at
Berkeley, under the direction of Prof. David Patterson, which produced two interesting
new pieces of Smalltalk-relevant technology:

» David Ungar, one of Patterson’s students, created a new memory management
technique called generation scavenging. Based on some published but
unimplemented work by Hewitt and Lieberman at MIT, generation scavenging
proved to have better pragmatic properties than any of its competitors (reference
counting, garbage collection, or semispace copying), and is now used in all
commercial Smalltalk systems.

« Based partly on results from the PS research at PARC (described in the next
section), Patterson’s group designed, fabricated, and largely debugged a VLSI RISC
processor, called SOAR, that was designed for efficient Smalltalk execution. Even
though the SOAR system never reached full operation, simulations and

measurements had a significant effect on subsequent hardware, specifically the Sun
SPARC processor.



Deutsch: Past, Present and Future of Smalltalk 81

4 THE PRESENT

Since Smalltalk emerged from its Xerox nursery, it has spawned a wide variety of
technical and business activities. I would characterize the former as composed of:

* Engineering work to discover how to make Smalltalk systems more competitive
with other languages on standard platforms;

* Research to explore design extensions and alternatives;

* Development of libraries and applications, both for commercial purposes and to
further understanding of the benefits and limitations of the object-oriented approach.

4.1 Engineering

As mentioned earlier, the first major step towards a usable Smalltalk on standard
platforms was taken at Xerox PARC starting around 1978, with the development of an
experimental implementation using the Intel 8086 processor. The first Smalltalk system
running entirely on stock hardware was also developed at PARC, starting in 1981 and
essentially completed by 1984. This implementation, known as PS (for Portable
Smalltalk), was an implementation of the Smalltalk-80 Virtual Machine in MC68000-
family macroassembler language. Key technical advances included:

* The development of an entire macroassembler language programming environment,
in Smalltalk. This environment included an incremental assembler and linker and a
symbolic debugger, but it used the Smalltalk Browser and change management
facilities. This development was a dramatic example of the easy reusability that can
result from thorough use of object-oriented design: in effect, a very large part of an
entire environment was reused in conjunction with a very different language. (The
assembly language environment was never released or demonstrated outside
Xerox, but it is mentioned in Biggerstaff’s recent book on software reusability.)

3

The development of a new implementation technique, called dynamic translation,
that combined the conceptual simplicity of bytecode interpretation with some of the
speed of compilation. The key idea is to represent both code and stack frames
(Context objects) in two different forms, and to convert between them automatically
as needed. One form is execution-oriented: code is machine code, and stack frames
are in the form most natural for the machine (similar to what C might use). The
other form is access-oriented: both code and frames are represented like other
objects. These ideas were presented in a paper in the January 1984 ACM Principles
of Programming Languages conference.

Dynamic translation continues to be the leading implementation technology for high-
performance Smalltalk systems. In 1987, ParcPlace Systems created a retargetable
dynamic translator, written in C, which today generates code for products running on the



82 Deutsch: Past, Present and Future of Smalltalk

MC68000 family, the Intel 80386, the Sun SPARC, and the MIPS R2000, and, on an
experimental (not product) basis, the DEC VAX.

The other branch of Smalitalk engineering is represented by Smalltalk/V, a highly tuned
bytecode interpreter running on the IBM PC and compatibles, and recently
reimplemented for the Apple Macintosh. Smalltalk/V carefully selects a large subset of

the original published Xerox Smalltalk functionality, adds user interface classes, and
makes it available to low-budget users.

4.2 Research

Quite a number of languages, of varying degrees of public visibility, owe their conceptual
origins to Smalitalk. A group at Tektronix, concerned about the apparent impossibility
of disentangling a Smalltalk application from the development environment, proposed
and implemented a good deal of a language called Modular Smalltalk, which adds
module facilities and some other more stringent visibility and access mechanisms. Two
groups, one at MIT and one in Japan, have developed languages they call Concurrent
Smalltalk, which add explicit concurrency constructs to the Smalltalk-80 language.
Objective-C, a commercial product, adds Smalltalk-style classes (with inheritance) and
messages on top of C, as does another product called Complete C. In this author’s
opinion, the most interestiffg language descendent is Self, developed at Stanford. Self
has multiple inheritance, but uses prototypes rather than classes, and is considered by

many in the academic community to be a simpler and more powerful (albeit less
structured) language than Smalltalk.

Two research groups are focusing on issues of implementation performance. The Self
research group at Stanford has developed a sophisticated dynamic translator. Their
current system runs about twice as fast as the best Smalltalk implementation on the
same hardware, and promises to come within a factor of 2 or 3 of the performance of C
within the next year. Another group, at the University of Illinois, is working on an
optimizing compiler based on type declarations, for a dialect called Typed Smalltalk.

Numerous groups are engaged in research using Smalltalk as a base technology. Some
of the longer-established projects include work on industrial (including real-time)
applications at Carleton University in Canada, work on constraint programming at the
University of Washington, and work on hypertext at Tektronix.

4.3 Commercial Activity

As of this writing, the author knows of two flourishing vendors of Smalltalk
implementations in the U.S. (ParcPlace Systems, offering the Smalltalk-80 system, and
Digitalk, offering Smalltalk/V); two in Europe (Smalitalk Express in the UK, offering a
Smalltalk-80 system with their own VM, and Georg Heeg in Germany, with Smalltalk-
80 systems on several platforms in addition to those supported by ParcPlace); and
several in Japan (Fuji Xerox, Sony, and NEC). A number of companies (generally small
ones) are offering library packages or development tools that extend the base systems,



Deutsch: Past, Present and Future of Smalltalk 83

and there is a growing list of application products that use Smalltalk as the underlying
technology, but where the Smalitalk language and development environment are not
visible to the end user. These applications span a wide variety of domains:

* CASE (process management, group coordination, code generation, version
management);

» Data base interface;
+ Simulation;
« Music;

and many more.

5 THE FUTURE

5.1 Application Platform Issues

Now that Smalltalk implementations are available on relatively affordable platforms
with subjectively acceptable performance, third party application developers are starting
to use it as the base for their products. Issues that Smalltalk vendors will have to
address to satisfy these developers include:

» Space: even Smalltalk/V, the most compact of the commercial Smalltalk systems,
takes over 300K bytes of RAM; Smalltalk-80, with its more comprehensive
facilities, requires around 2M bytes. Both general engineering and modularization of
the class library are likely to be required to make the space consumption competitive
with C-based solutions.

* Speed: even the ParcPlace Smalltalk-80 implementations, the fastest available, are
typically a factor of 5 or more slower than C on computation-intensive problems
(although the graphics and interaction performance are perceived by users as
competitive). If Smalltalk is to become a serious application delivery environment,
better compilation techniques will be required. :

* Stability: Smalltalk systems are so malleable, and commercial software
environments are evolving so rapidly, that vendors both can and feel a need to
improve their offerings frequently. However, application developers want stability in
their technology base. Reconciling these two desires will be an important issue.

* Closed delivery: Smalltalk systems currently provide no boundary between the
development tools and any kind of runtime class library, and assume that the source
code for the entire application is available for inspection and modification.

Developers want only a library, and need to be able to protect their code. Some



84 Deutsch: Past, Present and Future of Smalltalk

work has been done in these directions, but more is required, especially to support
applications that may still provide the user with some controlled way to write
Smalltalk code. Smalltalk also offers the potential, now just starting to be realized
in other environments, of dynamically loading multiple applications that can share
their data in a natural way; understanding how to resolve clashes of symbolic
names, and to represent code in a protected format that can still be integrated into a
running system, are open questions.

5.2 CASE and Groupware Issues

As both developers and researchers create more ambitious applications using
Smalltalk, issues of scale and process management become relevant, as they have been
for some time in other language environments. Smalltalk offers some potential leverage
in this area, not because of any special properties of the language, but because the
Smalltalk environments already make it natural to think of source code, object code,
users, files, etc. as objects that programs can manipulate.

5.3 Language Issues

The Smalltalk-80 language, as defined by the Blue Book, is a de facto standard.
However, both Digitalk and ParcPlace have made minor modifications, and there is
some feeling that the language is too complex in some areas (different kinds of name
scopes and lifetimes) and too weak in some others (modularization, concurrency), and

that developers’ and customers’ interests might be served by some form of
standardization.

5.4 Competition

As Smalltalk has moved further into the commercial arena, it has encountered
competition in all three of its traditional areas (language, environment, and application).

¢ In the language arena, the chief competitor is C++, which offers more familiar
syntax, efficiency closer to that attainable by assembly code, and static type
checking (generally considered, even by many Smalltalk devotees, to be a feature,
rather than a drawback, for applications). Smalltalk offers much simpler syntax and
semantics, and automatic storage management; in this author’s opinion, the latter
provides tremendous productivity leverage. The next few years are likely to see
each language adopt some of the best features of the other.

Several class libraries for C++ and other object-oriented hybrids have appeared on
the market. The most successful of these is probably MacApp, which is
nevertheless tied to a single vendor (Apple) and hardware platform (Macintosh).
The promise of reusability still seems to be more fully realized in the Smalltalk
world than in others, perhaps because its environment makes it easier to restructure
classes in the face of new understanding, and because (unlike C++) programs do not

have to commit themselves by declaring the names of the superclasses for their
object references.



Deutsch: Past, Present and Future of Smalltalk 85

* The Smalltalk development environment is still unmatched, especially given that it
is fully portable between different machine architectures and operating systems.
However, other environments have adopted variants of the Browser, and the
Smalltalk environment is still very strongly oriented towards single-person use.
Moving beyond this orientation is the most important challenge that vendors of
Smalltalk development environments will have to face. There are some research

results and a couple of third-party products in this area, but much more remains to
be explored.

Besides these obvious competitors, a new kind of software environment has emerged in
the market, exemplified by Apple’s HyperCard. These products allow rapid
construction of visually appealing applications with limited semantic breadth
(HyperCard, for example, only provides a single very simple data structure) by people -
without training in traditional concepts of programming. Another important challenge
facing Smalltalk vendors is understanding how to combine this kind of ease of

development for simple applications with the more sophisticated power of full Smalltalk
for more experienced developers.

5.5 Cohabitation with Platform Window Systems

The Smalltalk-80 user interface classes were based on a single graphics primitive,
BitBlt, that directly modified the display hardware frame buffer. Today, industry
standard operating systems require applications to use a graphics library and a window
system provided by the platform, often with very large space and time overheads. (The
X Window System, for example, typically requires 1M bytes of address space and
imposes a minimum time overhead of several thousand machine instructions for the
simplest request.) In this author’s opinion, these systems are a giant step in the wrong
direction for personal computers and workstations, but they represent the state of the

market, and Smalltalk must adapt to them to be successful. Technical issues to be
resolved include:

* The definition of an appropriate object-oriented API (application program interface)
to window systems and graphics libraries: there are a large number of alternatives
in each area, and the choices in the latter (e.g., bitmap-oriented, device-independent

stencil/paint, display lists, or hierarchical structures) have a profound effect on
application structure.

The issue of control flow: Smalltalk assumes it has full control of the CPU, and
implements input by polling the keyboard and mouse, but window systems use a
variety of models (asynchronous interrupts, asynchronous call-back, or polling), and
it seems very likely that Smalltalk will have to change its input model to some form
of event-driven or call-back structure.

* The nature of graphical objects, specifically explicit bitmaps: X Windows, for

example, may be able to do operations on bitmaps stored in the window server an



86 Deutsch: Past, Present and Future of Smalltalk

order of magnitude more efficiently than on bitmaps that must be passed to it from
the client, but a server may have space limits, and it may not offer specialized image
operations (such as seed fill, rotation, or dithering) that a client could do efficiently.
Understanding how to share or trade these responsibilities, while not unduly
compromising a pure object-oriented information model, is likely to be a challenge.

5.6 Collaboration with Other Languages

Just as in the area of window systems, Smalltalk must evolve to allow its application
developers to take advantage of the enormous body of valuable software that is
available in other languages, primarily C. Data base, communications, and high-quality
graphics functionality are all available, and they must be made accessible. Again, there
are a number of challenging technical issues:

* Different languages have different representations for the same data types. For
example, Smalltalk systems often use tag bits to distinguish integers from other
data types. Conversion between representations must be nearly automatic, if inter-
language communication is to be practical.

+ Smalltalk represents control (Contexts and Processes) very differently from C.
Simply keeping track of calls from Smalltalk to C and back raises significant

implementation questions. Similar issues arise with respect to interrupts,
exceptions, and blocking.

* C and Smalltalk have totally different approaches to storage management: C is
manual, with no assistance from the language or library, whereas Smalltalk is
automatic, but requires a more structured environment in which all references can be

found. (C++ takes a middle position.) Bridging the gap in a safe and efficient
manner will be another key challenge.

6 CONCLUSION

Smalltalk has grown and thrived in many environments, and has shown little sign of
exhausting its potential. We look forward to the coming years with confidence that
Smalltalk will continue to contribute to the software world in creative and valuable ways.

7 ACKNOWLEDGEMENTS

The Smalltalk community has grown tremendously, especially in the past five years, and
the names and contributions of the original principals are well known by now. I would
especially like to acknowledge Adele Goldberg for her assistance and support, as
research lab manager, as company president, and as indefatigable proofreader.

7.1 Trademark Notices

Smalltalk-80 is a trademark of ParcPlace Systems, Inc. Smalltalk/V is trademark of



Deutsch: Past, Present and Future of Smalltalk 87

Digitalk, Inc. HyperCard is a trademark of Apple Computer, Inc. Macintosh is a
trademark of McIntosh Laboratory Inc., licensed to Apple Computer, Inc. The X
Window System is a trademark of the Massachusetts Institute of Technology.

8 REFERENCES

In addition to the specific references listed below, several of the Xerox PARC research
projects are documented in technical notes (available to the public): FindIt (Steve

Weyer), Programming By Rehearsal (Laura Gould, William Finzer), and ThingLab
(Alan Borning).

Goldberg, A. Smalltalk-80: The Interactive Programming Environment. Addison-
Wesley, 1984,

Goldberg, A., and Robson, D. Smalltalk-80; The Language and its Implementation.
Addison-Wesley, 1983,

Krasner, G., ed. Smalltalk-80: Bits of History, Words of Advice. Addison-Wesley,
1983.

BYTE magazine, August 1981 and August 1986 issues.

Proceedings of OOPSLA '86 (Portland, Oregon), '87 (Orlando, Florida), and '88 (San
Diego, California). Association for Computing Machinery, New York.

Ungar, D. "The Design and Evaluation of a High Performance Smalltalk System."

Ph.D. thesis, University of California, Berkeley, 1986. Also published by MIT Press in
the ACM Distinguished Dissertation series.

Scheifler, R. W., Gettys, J., and Newman, R. X Window System C Library and Protocol
Reference. Digital Press, 1988,



