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Abstract

A number of denotational models have been proposed for object-oriented lan-
guages. Authors of more recent models have expressed dissatisfaction with the
lack of “abstractness” in earlier ones. They claim that these earlier models de-
scribe details of objects which are invisible to an external observer—in short, that
they are not fully abstract. In this paper, we present a formal characterization of
the visible behaviour of objects. We show that using a natural full abstractness
criterion based on this definition, even more recent models of object-oriented lan-
guages are unnecessarily “concrete.” We go on to present a semantics for a very
simple object-oriented language based on projections of state-transition graphs
for programs, and demonstrate that it is fully abstract.

1 INTRODUCTION

The use of object-oriented languages like Smalltalk-80, C++, CLOS and so on, has
grown markedly in recent years, and promises to become even more widespread
in future (Ren82]. The theoretical aspects of these languages have received rather
less attention. However, there have been three notable attempts to devise formal
denotational models for object-oriented languages.?

The earliest of these models, by Mario Wolczko [Wol87], draws heavily on the
operational definition of Smalltalk-80 given by the description of the “Smalltalk
Virtual Machine” in {GR83]. His model resembles the Virtual Machine in many
respects—for example, it replicates the message lookup mechanism used by the
machine to carry out message-passing. This makes it easy to verify its correctness,

~ but also means that it embodies more details of the machine implementation than
are strictly necessary to explain the semantics of the language. In fact, Wolczko

17This work supported by the S.E.R.C.

2The languages dealt with in this paper are all sequential. Concurrent object-oriented languages
and their semantics, as described in [ADKR86| for example, are beyond the scope of our discussion.
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makes only mild claims for the abstractness of his semantics, merely saying, for
example, that it “hides the garbage-collection strategy.”

In [Kam88], Samuel Kamin takes a rather stronger line on the issue of ab-
stractness. He shows in particular that it is possible to model message-passing
in Smalltalk without replicating the lookup mechanism.

To our knowledge, the most recent semantics for object-oriented languages is
given by Uday Reddy in {Red88]. Reddy points out that Kamin’s model is still
unnecessarily detailed. He 'demonstrates that the semantics he proposes is more
abstract than Kamin’s (and Wolczko’s, by implication).

Both Reddy and Kamin take the view that the denotations of objects should only
be as detailed as is necessary to explain their externally observable behaviour—a
property commonly known as full abstraction [Plo77] [Sto88] [BCL85] [Mey88].* The
semantics of Wolczko, Kamin and Reddy represent progress towards the fulfiliment
of this condition. However, none of them satisfy it entirely.

To show why this is, we will concentrate on Reddy’s semantics, which—as he
himself shows—is more abstract than Kamin or Wolczko’s. In the next section,
we will present a simple object-oriented language. Using the same methods used
by Reddy in his paper, we will produce a denotational model for this language.
Next, we will develop a formal condition which characterizes full abstractness in a
semantics, and show how Reddy’s semantics fails to satisfy this criterion. We will
then produce a fully abstract semantics based upon equivalence classes of terms,
formed using an “observational congruence” derived from Reddy’s semantics. Fi-
nally, using projections of state transition graphs for programs, we will construct a
model isomorphic to it, without recourse to such a congruence.

The example object-oriented language used in our discussion is very primitive.
It lacks many features commonly associated with “fully fledged” object-oriented
languages, such as recursion, parameter-passing, dynamic object creation, partial
operations and inheritance. However, it does embody three important aspects of
the object-based approach to programming:

¢ Entities in a system are represented by objects with state, referred to exclu-

sively by name. This latter feature means that objects may be shared by other
objects. .

¢ Some of the state of an object may be concealed, so that only partial informa-
tion concerning it is available to other objects.

o There are operations which change the state of objects. A direct consequence

of the previous point is that the effects of such an operation may only be partly
visible.

3The question of terminology in this area of programming language semantics is a little vexed.
In this paper, we will use nomenclature from [Sto88].
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Support for the view that these features are central to object-oriented program-
ming may be found in [GM87]. Since we can show that existing models fail to give
abstract representations to objects in this “minimalist” object-oriented language,
we can therefore claim that they will fail to be abstract for almost all languages
which purport to be object-oriented. Correspondingly, by showing how abstract
models may be produced for this language, we hope to lay the foundation for ab-
stract descriptions of more complex object-oriented programming languages.

2 A SIMPLE OBJECT-ORIENTED LANGUAGE

In the language introduced in this section, programs consist of a finite sequence of
object-definitions. Each object is defined individually—not indirectly, using classes,
as is the case with most object-oriented languages. Objects defined in a program
are indexed with successive natural numbers, starting with 1 at the beginning of
the program. Each object has a finite set of variables, which may contain one of

the boolean values true or false. They are initialized explicitly in the definition of
the object.

An object also has two finite sets of operations. Operations of the first kind
extract the value of a variable from an object. These operations are named after
the variable whose value they return, and they are listed as “extractors” in defini-
tions. It is important to note that not all the variables of an object need have a
corresponding extractor. The second kind of operation is used to cause the object
to change the contents of its variables. These operations are listed as “procedures,”

and their effects are defined by a finite sequence of statements. A statement may
either:

¢ Transfer the contents of one variable to another.

® Apply an extractor to an object with a given index, and store the result in a
variable. '

¢ Apply another procedure to an object whose index is given.

We use the notation ‘4.0p’ in a statement to apply a procedure or an extractor
named op to the object refered to by index 1. Such indices, occuring in the definition
of an object, must be strictly less than the object’s own sndez. This restriction
effectively bans cyclic chains of reference among objects.

Below is a formal syntax for the language. If  is an integer, then 1 will be its

numeral representation. In the same way, b stands for the written representation
of the boolean value b. :

teN —numerals

5eB . —booleans

v,e € Id, —variable identifiers
p€ld, —procedure identifiers
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program ::= object-definstion;...; object-definition
object-definition ::= object 1 has vars-list ezs-list procs-list
vars-list ::= variablesv=25,...,v =5

exs-list ::= extractorse,...,e

procs-list ::= procedures pis simt...p is stmt

stmti=v .« v|vete|ip| stmt;stmt

As an example of the use of this notation, the following program defines an
object which behaves like a switch. The switch may either be on (on = true), or
off (on = false). The state of the switch may be extracted, and a procedure flip is
provided to invert it. The switch starts in the off position.*

object 1 has
variables on = false
extractors on
procedures flip is on « not(on)

3 A SEMANTICS IN THE STYLE OF REDDY

The language defined in the previous section bears a great similarity to Reddy’s
“ObjectTalk,” as defined in [Red88]. In this section, we will use the techniques
Reddy uses for ObjectTalk to produce a denotational semantics for our language.

Since our language is much simpler than ObjectTalk, our treatment is correspond-
ingly less complex.

Because our language is incapable of expressing infinite or non-terminating com-
putations, and because all of the domain definitions we use may be solved in clas-
gical set-theory without problems of cardinality, we will use that as our semantical
framework, rather than using, say, Scott domains. -

We will use maps to represent many entities in the semantics. If 7 is such a map,
then we use the usual notation nlf1 + dy,...,in — d,] to produce a new map:

dyift =1,
(7][1'1 Q—dh-.-’inf—dﬂ])iz 'd.n.i,f{=¢",

nt otherwise

The notation ] will represent an “empty” map—that is one which returns some
“error” value when applied to any member of its domain. Its type will always be
determined by the context. We write [i; «— di,...,i, + d] instead of {[f&1 «
di,...,in + d,]. We use the notation < a,,...,a, > to denote the n-tuple with
elements a;,...,a,; m; will name the i-th projection on such a tuple. We will

*In this example, we assume the existence of a primitive operation not on boolean values. We
do not include ita formal definition—it is quite simple, but would clutter the exposition.
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omit injections and projections to and from disjoint sums. As usual, function-space
construction associates to the right, function application to the left.

A detailed explanation of the sematics may be found in [Red88).

Semantic Domains

1,7,n € N —the natural numbers
beB —the boolean values {tt, ff}
error ~—the error value '

n € Env=N — (Obj + {error})

o € State = (N x Id,) — (B + {error})
EMap = Id, — ((State — B) + {error})
PMap = Id, — ((State — State) + {error})
Obj = EMap x PMap

Semantic Functions

: program — (Env X State)

: object-definition — (Env x State) — (Env x State)
: vars-list = N — State — State

: ezxs-list = N — EMap

: procs-list &= N — Env— PMap

: stmt —+ N — Env — State — State

NnO <O

Semantic Equations
P [Lobject-definition,; . . . ; object-definition, ] = '
O [ object-definition, ] (... O Lobject-definition, ] < {},{] > ...)
O [object i has vars-list ezs-list procs-list] < n,o >=
< nli «~< Bl ezs-listDi, Q U procs-listDin >, V Lvars-listlic >
V [variables v; = by,...,v; = §;1i0 = o[< §,v1 > by,..., < 1,v; >+ b}
Bllextractors e,...,e;]i=[e1 + Ao. 0 < 4,61 >,...,64 +— Ao. 0 < 1,¢, >]

.Qprocedures p, is stmt;...p; is stmt;Bin =
[p1 + Xa. SMstmt1Dino,...,px — Ao. SEstmtTino]

S ILstmty; stmtyDino = 8 [stmty1in(S Lstmt, D ino)
Slv + v'Dino = o[< 1,v >0 < 1,0 >]

SIv « j.elino = 0[< 1,v >+ m(n])eo]
S1j.pDine = my(nj)po
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4 ON EXTERNALLY OBSERVABLE BEHAVIOUR
4.1 The Nature of Observation

In the introduction, we talked of Reddy’s semantics recording details which were
not germane to the “observable behaviour” of objects. To put our objections in
more precise terms, we must come to some rigorous definition of what we mean by
“observable behaviour” in the context of object-oriented languages. '

We begin by examining the concept of observation. It is helpful to bear in mind
three questions:

1. Who is making the observation?

2. What is being observed?

3. How is the observation carried out?

With more conventional languages, the answers to these questions are fairly
obvious. One observes the behaviour of a program, and to do this, one provides it
with input, runs it, and then takes a note of the output produced. The observer
is someone sitting at a computer terminal or similar peripheral. Most conventional
languages have fairly recognizable input/output statements, so it is easy to see
where interaction with the observer is taking place in a program.

The situation with object-oriented languages is not nearly so clear-cut. As Wol-
czko points out in his thesis [Wol88), input/output is not easily detected in most
object-oriented languages. Indeed, in the case of Smalltalk, it is impossible to tell
in general from the text of a program if it elicits any output at all.’ In addition,
a significant number of the class-definitions issued with every Smalltalk-80™ sys-
tem never call for any 1/0. So a notion of observation based upon I/O would be
inappropriate for object-oriented languages.

To find a more useful definition of observation, we must look at the concern
almost all object-oriented languages have with the re-use of software. Most propo-
nents of object-oriented languages lay great store by the fact that they support the
construction of self-contained, re-useable units of software [Cox83]. The standard
class-definitions of Smalltalk-80 mentioned in the previous paragraph are intended
to be incorporated by users of the system into their programs. In a very natural
sense, the observer of a piece of software in an object-oriented language is a person
who is writing another piece of software which makes use of it. Returning to the
language we defined in section 2, we can say that observations are carried out by
someone writing an object-definition. This answers the first of our questions.®

®1/O results as a side-effect of certain (dynamically-bound) messages sent to objects in the system.

®Readers familiar with the algebraic approach to concarrency will note the similarity between

our notions of observation and those used in the “testing equivalences” of Hennessy and DeNicola
[Hen88].
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Turning to question 2, we note that when writing the definition of a new object,
we are can elicit behaviour from any object which is accessible from it. Recall that
all references from one object to another stem from the use of object indices in
procedure statements, and that indices in procedures of object n + 1 are drawn
from the natural numbers 1 to n. So the writer is really observing a collection of
objects—those with indices 1...n. Henceforth, the term system will be used for
such a collection of objects; a system is a finite collection of objects indexed by
consecutive natural numbers, which includes an object with index 1. You will note
that the definition of a system coincides with that we gave of a program, and we will
use the semantic function P to compute the denotations of systems. The answer
to question 2, then, is that observations are carried out on systems.

To see how observations are made, we must consider what the writer of a new
object-definition can “see” directly, and how she or he might interact with the ob-
jects in a system. In our language, the writer cannot access the variables of other
objects, but does have direct access to the variables in the object being defined.
Their contents may be loaded explicitly by initialization, moved about by assign-
ments, and used to record result of applying observers to other objects, whose states
may themselves have been changed by the application of procedures. All these ac-

tions are carried out by executing statements. We can therefore use the following
definition of observation to answer question 3:

To observe a system from a new object, load all of the variables of
that object with a set of values, execute some sequence of statements, and
then take a note of the resulting contents of the variables.

We can summarize all the information needed for an observation as a triple
<< Voo yUm >, < Uyeiylm >,< 814...,84 >>, where < vy,...,U, > are the
names of the new object’s variables, < ly,...,l;n > are the values to be loaded into
them initially, and < 8;,...,8, > are the statements to be executed. Call such an
observation legal if the execution of its statements does not lead to an error.

Using the semantics of the previous section, we can now define the notion of
observation formally:

Definition 1 If § i3 a system containing definitions indezed 1...n, then the result
of applying a legal observation obs =<< vy,...,Um >, <l1yeeeylm >, < 810003 8n >,
written obs($), is @ sequence of values < 1i,...,I5 > such that:

I!=(S0s,...,3.0(n +1) <n,0l<n+1,v, > 1,
e €n+ L > ] >)<n+ 1,y >,

where 1 <1 < m, and < 5,0 > 15 the denotation of the system §S.



354 Yelland: Fully Abstract Semantics

4.2 Obsgervational Equivalence and Abstract Semantics

Now that we have fixed upon a definition for observation, we can say when two
systems have the same observable behaviour. This occurs when we cannot tell
them apart using observations:

Definition 2 Two systems S and S' are observationally equivalent, § =q, S', iff
for any observation obs legal on §, obs is legal on §' too, and obs(S) = obs($').

At last, we can formalize the condition for a semantics to be fully abstract:

Definition 3 A semantics with a semantic function P' on programs is fully ab-
stract iff for any two systems S;, S,:

81 =obe S iff P'IS,T = P'LS,1

Bear in mind that the notion of observational equivalence used on the left of the
bi-implication uses the semantic functions of Reddy’s semantics. If in their place
we were to use the functions from the semantics defining P, then we would admit
incorrect semantics,” such as one in which 5'Istmtl = Xi,n,0,< i,v > .tt and
P'[program] =< M. < Jeo.tt,Apo < i,v > & >,A < i,v > .tt >. By basing
our definition on Reddy’s semantics, we can ensure that the abstract semantics is

correct. Note that we assume that Reddy’s model is correct, even if it is not fully
abstract.

4.3 Abstractness in the First Semantics

We can now show why the semantics in the style of Reddy is not fully abstract.
Take the following two simple systems defining switches:

object 1 has
variables on = false
extractors on
procedures flip is on « not(on)

and

object 1 has

variables on = false, extraneous = false
extractors on

procedures flip is on +— not(on); eztraneous — true

"That is, one which contradicts our intuitive operational understanding of the language.
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It should be intuitively clear—and it is easy to show formally—that these two
systems are observationally equivalent. In both cases, only the variable on is visible,
and the only way to change the state of object 1 in both systems is by applying
flip. The value of on is identical in both systems after the application of any given
number of applications of flip. The variable eztraneous in the second definition is
to all intents and purposes invisible externally.

But if we work out the denotation of each system in the semantics given in
section 3, we have for the first case:

<[1 ~< [on + Ao. 0 < 1,0n >),|flip — Xo. 0[< 1,0n >+ not(c < 1,0n >)]] >,
[<1,0n > ff] >

But for the second case:

<[1 «<fon « Xo. 6 < 1,0n >, :

[ [flip + Ao. 0[< 1,0n > not(o < 1,0n >),< 1, extrancous >« #t]} >,
<1l,on >« ff,< 1,extraneous >+ ff| >

These quantities are not equal. Here is a case where two objects with the same
externally observable behaviour have different denotations. So the semantics is not
fully abstract, according to our definition.

5 A DERIVED FULLY ABSTRACT SEMANTICS

We have shown that Reddy’s semantics fails to be fully abstract. We can use
it, however, to derive a form of fully abstract semantics. To do this, we employ
the “final algebra” construction widely discussed in the theory algebraic specifica-
tions [Wan79]. We will use some very elementary concepts from universal algebra
[Coh85). Lack of space means we must omit the proofs of propositions.

In the following, assume § is a system, and that < 5,0 > is its denotation in the
first semantics. Let n be the index of the last object declared in S. Let vars(t, §)
be the names of variables declared for object § < n in §, ezs(¢, S) its extractors,
and proes(s, §) the procedures.

Define a set of terms, T's, the smallest set satisfying:
l.e €Ty,
2. pit€Ts, forteTs,1<i<n, p€ procs(t,$).
Next define a function ev: Ts — State:
1. eve =g,

2. evpit. =m3(ni)p(evt).
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Define a congruence =1 on Ts:

t=rt' if mni)e(evt) =m(ni)e(evt’), for 1 <i< n, e€ obsi,$), and
pit =1 pit, for 1 < i< n, p€ procs(s, §).

Let [t] denote the equivalence class of term ¢ wrt. =-.

Write out a heterogeneous signature Sigg as follows:®

sorts

Bool,P,...,P" E},..., E", State.

operators

e: E, for 1<i<n, ec enss,$),
p: P, for 1<i<n, p€ proes(i, §),
v : State,

B! : E! x State — Bool,...,f" : E* x State — Bool,
¢! : P! x State — State,...,¢" : P" X State — State.

Next, form a Sigs-algebra, T, such that we have:

carriers

BOO’T, = {t‘t!ﬁ.}’

E}, = ezs(1,S),..., B}, = ezs(n, $),
P;, = proes(l, S),..., PR, = procs(n, §),
Stater, = Ts/ =r.

operations

€Ts =6 for e ezs(i’ s)! 1< 'S n,

pr; =p, for p € procs(i,$), 1 < i<,

vry = [.]’

Br, = Ae,[t]lm(n1)e(eve),...,B7, = e, [t].m(nn)e(eve),
¢k, = Ap,[tl.[p11),..., 8%, = Ap,[tl.[pnt].

It is not difficult to demonstrate that T's is well-defined, and an induction on
observations produces the following:

8Note that P™ is simply the name of a set, and does not denote the n-th cartesian power of PL.
The use of such superscripts will make our notation clearer later on.
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Proposition 1 Let $ and $' be two systems defining objects indezed 1...n. Then
S =obs 8’ sff Ts = Tsr, where the algebra-isomorphism < is the identity on all sorts
ezcept State.

6 A NATURAL FULLY ABSTRACT SEMANTICS

From proposition 1, we might conclude that our quest for a fully abstract semantics
is complete; to compute the fully abstract denotation of a system §, one could
simply work out its denotation according to the semantics of section 3, and use it
to construct the algebra Tg as above.

There are two main objections to this approach:

¢ By this method, two systems which were behaviourally equivalent would only
get tsomorphic denotations (this is all that is guaranteed by proposition 1).
Although some branches of mathematics used in programming language se-

mantics usually characterize things only up to isomorphism, it would be nice
to give them equal meanings.

¢ Many researchers are unhappy with so-called “denotational” semantics which
result from taking quotients of terms, as we do in the construction of Tj.
In the context of programming languages, such models are considered to be

insufficiently “natural® to be generally useful in reasoning about programs
[BCLSS5].

In this section, we will produce a fully abstract semantics which answers these
objections. We will not abandon the construction of T's entirely, however, since we
can use it to show that our new semantics is indeed fully abstract. The techniques
we use in this section revolve around the construction of state-transition graphs for
systems, and have their roots in classical automata theory [Kams8g.

Consider using a tree to represent the states of a system. Each node in this
tree will correspond to possible configurations of the objects in the system, and
each edge will stand for the execution of a procedure in an object. We will label
nodes with functions which map pairs, consisting of the index of an object and an
extractor on that object, to the value returned when that extractor is applied to
that object in the state represented by the node. ‘

Emerging from each node will be a set of edges, and each such edge will be
labelled with another pair—the index of an object, and the name of a procedure on
that object. At the other end of that edge will be the node standing for the state

of the system which results from applying the procedure to the object in the state
at the first node.

For example, from the first definition of the switch system, we derive a very
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simple tree which looks (near the root) like:

(oo e [ ]S [,

A vital observation to make is that ezactly the same tree would result from

applying the same method to the second definition of the switch system (the one

-with the variable eztraneous). In other words, these trees are representations of
the external behaviour of modules. This is the basis for the abstract semantics.

In what follows, we will make use of finite sequences or strings over a set of
elements. We will use the symbol @ to denote an empty string, and the operator .’

to concatenate two strings. We will sometimes implicitly regard an element as its
corresponding one-element string.

We can represent our trees mathematically as collections of functions which map
finite strings of edge-labels to node-labels. As we apply procedures to objects in the
system, the state of the system will “move” from one node in the tree to the next.
We will have one function in the collection for each such position of the state.

To return to our example, the state at the root of the tree would correspond to
the function:

[@ < [< 1,0n >« ff],
<Lflip>+[<1,0n > tt],
<Lflip>.<1,flip>—[<1,0n > fi},.. ]

For the second node, we would have:

@~ [< 1,0n > tt],
<Lflip>«[< 1,0n >+ ff],
<LAip>.<1,flip>—[<1,0n >+ tt],...]

. This is just the function for the first node “shifted along by 1.” By shifting
repeatedly in this fashion, we can generate a function for each node in the tree.

We will use algebras, as in the last section, as the denotations of systems in the
abstract semantics. As before, let Sigs be the signature corresponding to a system
S. Let Sig(i) be set of all such signatures for systems defining 7 objects. A Sig(s)-
algebra is standard if its carrier for the sort Bool is the set {t, ff}, if the carriers of
sorts P1,... P* and BY,..., B' are finite subsets of the sets Id, and Id, respectively,
and its carrier for State is countable. Let Aj be the standard Sig(0)-algebra such
that States, = {error} and vs, = error. Let A be the union for finite § of the
sets of standard Sig(i)-algebras.

Now we can describe the sets and functions defining the semantics. We have

changed some of the syntactic domains in minor respects to make the second se-
mantics easier to write.
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Semantic Domains

e€ VMaep=1d, - B
Aec4
T € Statep

Semantic Functions

P': program — A
O' : object-definition - N — 4 — A
S': stmt -+ N — A — (VMap x Statep) — (VMap x Statep)

Semantic Equations
P'[[object 1 has object-definstion,,... ,object # has object-definition, ] =

O' Lobject-definition, ] n(... O Lobject-definition, N1 A, .. J)

O'Lvariables v; = by,...,v, = b,
extractors ey,..., ¢

procedures p; is stmty,...,p,, is stmt,JtA = A’ (defined below)
S'Istmty; stmt,NiA < e,7 > = S'[stmt,] tA(S'Istmt; N1A < e, 7 >)
S'lve—vIiA<er>=< €lv + ev'l,r >
S'lv « j.eliA < e,7 > = < €lv By (e, )], 7>
S'I7.pliA <e,7>=< ¢ (p7) >

We define the algebra A’ in the following manner:?

Let P* be the least set satisfying:
1. @€ P*,
2.p.<j,p>€ P*, for pE P, 1<j<i,pe P},
3. p.<i,p;>€ P*, for pe P*',1<j<m.

#: P* — (VMap X Statep) be a function defined inductively as follows:

M(LTJ) =< [vg & by,..., 0 «— bk],"A >,

#(p. < J,p >) =< my(u(p)), 4 (p, m2(u())) >, for 1<j<i, pe Py,

u(p. <i,p; >) = S'Istmt;DiAu(p), for 1<j <m.

The index 1, algebra A and such like are assumed to be those in the semantic equation defining
0.
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Let a: P* — ({e1,...,e} — B) be defined by

a(p) = [< j, e > B (e, ma(u(B))), < i,en > m(u(p))en), ‘
for1<j<i,ecF,,1<h<l.

Now define the carriers of A’ as follows:

BDO’A: = {tt,ﬁ.}, .
EIA, = E‘A"' . ,E'l-'1 = Exl,
Pi, =P, Pli=pi)
E:Ao = {61,. . ,Ck},

P_'Ar = {pls aee $pm}1

Statear = {Ap' € P*.a(p.p) | e P}

The operations of A': First, the operations to name extractors and procedures:

eEAr = &, foreEEi,,lSjSi,
Par = p, fOl'pEPA,, ].SjSi'.

To produce the initial state of the system:
var = Ap.a(p).
To apply extractors and procedures:

ﬂf:y =Xe,7r@ < j,e>, for 1<5<i,
¢ = Ap, 7. (AP E P'.a(< j,p> .p), for 1<j<i.

In order to see informally how the semantics works, let us look at the semantic
equations. The first is straightforward, building the denotation of a program (or a
system) from a sequence of object-definitions.

The second is more complex. In it, we take an object-definition, together with the
denotation A of a system, and produce a new algebra, A’. This is the denotation of

a system obtained by appending the object-definition to the old system. We derive
A’ in three steps:

The first involves generating all possible configurations of both the new object
and of the system on which it is defined. This is done using the function u, which
maps sequences of edge-labels to pairs. The first component of such a pair is a
function recording the values of the variables in the new object, and the second
component is a state of the system. The pair (@) has all the variables in the new
object set to their initial values, and the system in its initial state. To move to a new
configuration, we apply a procedure to an object indexed 1,...,¢. When applying
a procedure to objects 1,...,5 — 1, we leave the variables in object ¢ unchanged



Yelland: Fully Abstract Semantics 361

(since a procedure cannot cause the variables of an object defined later than it to
change), and compute the new state of the system using operations in A. To apply
a procedure to object #, we execute its definition using the semantic function S'.

The second stage of the process defines a function «, which computes the node-

labels in the tree for the new system, by sampling the values of extracted variables
as computed by u.

Finally, we can write out the definition of A’ directly. Operations in A' which
apply extractors merely “pull out” the first node label from a given state, and
apply it directly to an object-number/extractor-name pair. Procedure-applying

operations select a new function from State,: which represents the new state of the
prelude, using the “shifting” trick illustrated in the example.

It is easy to show that A’ is an algebra in 4. Furthermore

, we have finally found
what we are looking for: '

Proposition 2 For a system S, let Ts be the algebra representing S as derived

in section 5. Let Ag be the corresponding algebra constructed using the abstract

semantics given above. Then As = T, where = i3 the sdentity on all sorts except
State.

Proposition 3 For two algebras A5 and Ag which are denotations of systems

according to the abstract semanties, if Ag = As:, (where = is the identity on all
sorts except State), then Ag = Ag.

So, by proposition 1, we have:
Corollary 1 In the abstract semantics, for two systems S; and S,
P'ISD = P'IS:1 iff $) =obs S:

7 CONCLUSION

The corollary tells us that we have developed a fully abstract semantics, in the
sense that two systems with the same observable behaviour will be given equal
denotations. This has not been achieved in any previous semantics for object-
oriented languages. However, much remains to be done.

As we pointed out in the introduction, the language we used here is one of
the most basic object-oriented languages imaginable. Extending the treatment to

account for more complex notations is an obvious next step. We end with some
comments on such extensions:

* Allowing conditional and iterative constructs in statements (to make the lan-
guage computationally complete) is easy. One would simply make the carrier



362 Yelland: Fully Abstract Semantics

of sort State in the denotation of a system into a flat (Scott) domain. The
semantic function S’ would then be extended in the usual manner. This would
also allow one to account for partial operations and errors.

¢ Parameter-passing does not appear too difficult to describe. Certainly, passing
parameters of “base” type (booleans in our case) can be accomodated easily,
using techniques like those used for CCS [Mil80]. Passing reference parameters
does not seem to be much more difficult—but see the points below.

¢ Giving full abstract denotations to a system (i.e. a collection of objects) with

. cyclic chains of references between objects should not be too hard, provided all
the objects involved in cycles of reference occur in the system betng described.
We will see the reason for this caveat presently.

¢ Dynamic object-creation could be tackled using a form of “sharing semantics”
like that in [Bro85).

Another direction in which we might take our investigation involves Stoughton’s
concept of conteztual full abstraction. In the semantics in this paper, we gave full
abstract denotations to systems only. A contextually fully abstract semantics would
also give full abstract denotations to object-definitions.

In a language like ours, which disallows cyclic object-dependencies, this should
not be too onerous. The main problem lies in defining the semantic domains for
systems in a sufficiently precise fashion, so that all of their members may be pro-
duced as the denotations of some system definition in the language.’® Briefly, one
could define a succession of types of denotation, Ag, Ay, 4s, ..., corresponding to sys-
tems with 0,1,2,... objects. The meaning of an object-definition describing object
t would then be a function from denotations of type 4;_; to ones of type A;.

Unfortunately, once we allow cyclic chains of reference among objects, the con-
textual full abstraction problem becomes much more complicated. In this case,
one would need to represent object-definitions as members of recursively-defined
functional types. Producing “natural” fully abstract semantics for such functions
is known to be very difficult (at least in the case of sequential languages like the
one in this paper) [BCL85]. As far as we know, at the time of writing, no wholly
satisfactory way of producing such a semantics exists.

Though we have good reason to believe that the speculations in this section are
correct, they have not been verified in detail. Work is underway at the moment to

substantiate the above suppositions, and we hope to report on progress in the near
future.

The presentation here has been one of “small beginnings.” We would like to
believe that we have delineated some salient aspects of the semantics of object-

oriented languages, and that we have provided at least a modest foundation for
future developments in the field.

!9The definition of A used in this paper is intended only to ensure a) that the operations carried
out on A in defining A’ are defined, and b) that A is a well-defined in classical set theory.
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