The Design of the C++ Booch Components

Grady Booch
Wizard Software
2171 South Parfet Court Lakewood, CO 80227
gbooch@ajpo.sei.cmu.edu
(303)986-2405

Michael Vilot
ObjectWare, Inc.
16 Warton Road Nashua, NH 03062
mjveéobjects.mv.com
(603)888-4729

ABSTRACT

This paper describes design issues encountered
developing a reusable component library. The
design applied encapsulation, inheritance,
composition, and type parameterization. The
implementation uses various C++ mechanisms,
including: virtual and static member functions,
templates, and exceptions.

The resulting library contains about 500
components (mostly template classes and
functions) and an optional utility for instantiating
templates. The components provide variations of
basic collection/container abstractions with
various time and space complexities.

A key insight gained from this project: the
design process centered on developing a
“template for the templates” — designing a
component framework and orderly process for
generating the template classes.

1 Introduction

The purpose of this project was to translate “The
Ada Booch Components”® to C++ (going from
an object-based to an object-oriented
implementation). It is worth noting that this was
not a research effort. The resulting library is a
software product intended for use in commercial
settings.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.
© 1990 ACM 089791-411-2/30/0010-0001...$1.50

October 21-25, 1990

This project provided an opportunity to
investigate both the OOD method [Booch90] and
the C++ language [ATT89] in the context of
designing reusable component libraries. We
learned an important lesson about designing with
multiple class lattices: the tradeoffs of various
inheritance structures turned out to be a
fundamental design issue.

The library focuses on providing a number of
core data structures. A key feature of the library
is that each data structure is implemented several
ways (each exhibiting different, but well-defined
time/space complexity). This provides the library
user with the flexibility to select the most
appropriate implementation. Another distinctive
feature is support for concurrent access to the
library.

As part of the implementation in C++, we provide
mechanisms to support the key abstractions
(including utilities for an early implementation of
the template facility and scaffolding for the
exception handling proposed for the language).

1.1 Goals of the Project

The main goal of the library is to provide a
carefully designed collection of useful data
structures. The implementation in C++ included
four additional goals:

Efficiency: Our goal was to provide easily
assembled components (efficient in compilation
resources), which impose minimal runtime and
memory overhead (efficient in execution

ECOOP/OOPSLA '90 Proceedings 1

resources), and are more reliable than hand-built
mechanisms (efficient in developer resources).

Ease of Use: A clear and consistent organization
should make it easy to identify and select
appropriate forms of data structures. Providing
nearly independent parts simplifies combining
components to create instantiations.

Extensibility: 1t should be possible to add new
data structures and new storage mechanisms.
Using inheritance, these changes should be
expressible as incremental extensions.

Adaptability: The library’s environment-specific
aspects should be clearly identified, and packaged
in a way that local substitutions for these aspects
are possible.

1.2 Scope of the Project

Our primary concentration was on data structures
similar to the “Collections” of the NIH class
library [Gorlen87] or the “Containers” of
libg++ [Lea88].

The library also has some notable differences:
Unlike NIH, we did not wish to emulate the
Smalltalk environment. Therefore, we do not
explicitly address nor model “metaclasses.”
Unlike 1ibg++, we did not wish to provide
duplicate, alternative versions of “standard” C++
libraries (for example, the streams classes).
Unlike InterViews [Linton87], or Iris
[Gansner88], we did not provide classes for
windows-based libraries. We consider this an
advantage — clients can easily combine the two
kinds of libraries within the same application.

A notable feature of this library is its support for
concurrency. We provide implementations of
data structures that perform correctly in the
presence of both multi-threaded and multi-
process use. This reflects our experience on
larger projects, where multiple processes are
routinely applied to meet performance and/or
distribution requirements. It also reflects the

growing trend toward multiprocessing
architectures, operating systems, and
applications.

) ECOOP/COPSLA '90 Proceedings

1.3 Overview of the Paper

The rest of this paper discusses the important
design issues we encountered. Section 2
introduces the Booch components library.
Section 3 discusses the key abstractions we found
important in shaping the design. Section 4
discusses the mechanisms used in the
implementation of those abstractions — it
highlights the C++ language features which
proved effective supporting the mechanisms.

2 Background — The Booch Components

[Booch87] describes the original Ada
components, which were implemented as 501
packages and subprograms. Figure 1 provides a
top-level class diagram,! and shows that the C++
library contains five class categories:
» Core Data Structures
members include List, Set, Bag, etc.
« Storage Managers
members include Bounded, Unbounded,
Managed, Controlled
 Concurrency Managers
members include Semaphore,Monitor
« Exceptions
members include Overflow, Underflow,
Null, Position_Error, Unbound, etc.
« Tools
members include pipes, filters, sorts,
searches, etc. and class utilities

Data Storage
Structures > Managers

1 '

Concurrency
Managers

Tools

Exceptions
global

Figure 1
Booch Components Class Categories

1The boxes represent groups of related classes, while the
arrows represent uses relations.

October 21-25, 1990

Storage Managers
Data Structures Bounded Unmanaged Managed Controlled
Stack S,GCM S,G,CM S.GCM S
List S S S S
Double List S S S S
String S,G,C.M S,G.CM S,G,CM S
Queue S,G,C,M S,G,C,M S,G,CM S
Priority Queue S,G,CM S,G.CM S.G,.CM S
Balking Queue S,G,CM S,G,CM S$.G,CM S
Balking Priority Queue S,.G,CM S,GCM S,GCM S
Deque $,G,C,M S.G.CM S,GCM S
Priority Deque S,G,CM S,.G,CM S.G.CM S
Balking Deque S,G.CM S.G,CM S$,G,CM S
Balking Priority Deque S,G,CM S,G,CM S,G,CM S
Ring S,G,C,M S5,G,CM S,G,CM S
Map S.G,CM S,G.CM S.G.CM S
Cached Map S.G,CM S.G.CM S,G.CM S
Discrete Map S,G,CM S,GCM S,G,CM S
Set S,G,CM S,G.CM S,G.CM S
Discrete Set S,G,CM S,GCM S,G,CM S
Bag §$,G,CM S,GCM S,G,CM S
Discrete Bag S,G,CM S,G,CM S$,G,CM S
Binary Tree (single) S S S S
Arbitrary Tree (single) S S S S
Binary Tree (double) S S S S
Arbitrary Tree {(double) S S S S
Graph S S S S
Undirected Graph S S S S
Table 1

Core Data Structures Class Category

The Exceptions class category is global to all
others, since they are the library’s single error
reporting mechanism.

The Data Structures are the core of the library.
Note that each data structure is not a class, but
rather a template for a class (parameterized by
type). The data structures combine with various
storage and concurrency management forms into
components.

Table 1 summarizes these components: the

columns indicate the various combinations of
data structures with storage managers. Each
entry has letter(s) denoting the concurrency
manager(s). For example, the Controlled forms
only require Sequential implementations — the

.others have more entries.

Tools are clients of the components defined in the
library. Many of these are parameterized
functions. They are layered upon the core data
structures to provide useful services to library
users. Table 2 lists the tools provided. Note that

Utilities Filters & Pipes Sorting Searching Pattern Matching |
character input straight insertion sequential simple
string output binary insertion ordered sequential Knuth Morris Pratt
integer translate shell binary Boyer Moore
floating point expand bubble list regular expression
calendar compress shaker binary tree
quick arbitrary tree
list (single) bounded pipe radix graph (bounded)
list (double) unmanaged pipe straight selection graph (unmanaged)
binary tree (single) managed pipe heap graph (managed)
binary tree (double) natural merge graph (controlled)
arbitrary tree (single) polyphase
arbitrary tree (double) topological (bounded)
graph topological (unmanaged)
undirected graph topological (managed)
topological (controlled)

October 21-25, 1990

Table 2
Tools Class Category

ECOOP/OOPSLA '90 Proceedings

several of the Utilities classes directly support
classes in the Data Structures class category.

Each core data structure primarily describes
behavior. To provide the variety of time/space
performance, each data structure uses different

representations. The choice of representation
implies different Storage Management
implementations.

The Storage Manager classes describe strategies
for managing storage for a given choice of
representation:

* Bounded storage management preallocates a
fixed amount of storage (trading space
flexibility for time efficiency). The other
storage managers all deal with unbounded
storage.

» Unmanaged forms disregard the details of
storage management.

* Managed forms are careful to allocate and
deallocate each Node from a free list.

« Controlled forms support concurrent storage
management.

Managed and Controlled forms use the Storage
Managers. The key to these forms is active
management of free lists of Nodes. The
Bounded and Unmanaged forms do not use
storage managers. Bounded forms do not create
garbage, and using an Unmanaged form relies
on the primitive new and delete operations.

The Guarded, Concurrent, and Multiple forms
of the components provide varying degrees of
‘manual’ and ‘automatic’ concurrency control
(Multiple forms provide for multiple readers and
single writers),

The key thing to notice about the organization of
the core data structures is the regular structure.
Each entry in Table 1 is an instance of a tuple of
the form:

<Data Structure, Storage Mgr, Concurrency Mgr>

These define the key abstractions of the library.
The main design activity was devising
appropriate mechanisms to reflect clearly this
organization, and to provide convenient and
effective ways for clients to combine and use
selected components.

4 ECOOP/OOPSLA '90 Proceedings

3 Design — Key Abstractions

In the design of the library’s key abstractions, we
addressed four fundamental issues:

» How to use inheritance

* Whether and how to use parameterized types

» How to provide a uniform and flexible error
reporting

* How to provide concurrent forms

3.1 Using Inheritance

A drawback to the Ada design was redundancy:
significant portions of the library had similar, but
slightly different implementations. This made it
an obvious candidate for implementation in an
object-oriented programming language.

The use of inheritance was the most significant
change in going from an object-based design to
an object-oriented one. The main issue was
whether or not to be “completely object-oriented”
or just apply it where it proved to be useful and
effective. We chose a “forest” approach over a
“tree” approach for three reasons:

* it accurately reflected the regular structure of
the component forms

* it involved less complexity and overhead
when selecting one

» it avoided the endless ontological debates
engendered by a “completely object-oriented”
approach.2

We found the following uses for inheritance:

« layering abstractions and code reuse

¢ polymorphism

* design structure

« implementing (some) composition
relationships

Layering abstractions: [Booch87] (Section 11.3)
discusses the implementation of layers of
abstractions, building on the most primitive
classes.

2For example, is a Binary_Tree a special case of an
arbitrary Tree, or is an arbitrary Tree a kind of tree with
more than the default number of Nodes? There are
advantages to structuring the hierarchy either way.

October 21-25, 1990

For example, a Priority_Queue ora
Balking_Queue can be built from a base
Queue class. Figure 2 is an OOD Class diagram
which illustrates how we were able to use
inheritance to express this notion.

Priority
Queus

Priority

Balking

Qugue
Figure 2

Inheritance and Layered Abstractions

Polymorphism: (the “usual” use of inheritance)
is more useful in contents, especially in passive
iterators. We actually faced a dilemma, trying to
decide whether the data structures should store
items by reference or by value.

In the end, we decided to leave the decision in the
hands of the library’s clients. The templates
appear to pass items by value. However, simply
instantiating them with reference or pointer
arguments allows clients to use the
complementary scheme.

Capturing design intent: We found “abstract
classes” useful. Clients cannot create instances
of abstract classes: their purpose is to express the
common aspects of derived classes — providing
a way to explicitly record design structuring
decisions.

As an example, the three classes List, Tree,
and Graph can be abstract bases for the classes
Single_List,Double_List, Binary_
Tree,Arbitrary_Tree,Undirected_
Graph, and Directed_Graph (respectively),
since the latter differ mainly in their choice of

3The arrows represent the inherits relationship, pointing
from the derived to the base classes involved

October 21-25, 1990

representation. Figure 3 illustrates the case for
the List classes.

Double
List

Figure 3
Inheritance and Representation

Composition: We found composition to be as
useful as inheritance. For example, a Guarded
form uses a Semaphore, but is not a kind of
Semaphore. As another example, a Managed
form uses a Storage Manager, but is not a kind of
Storage Manager. Figure 4 illustrates how we
structured the combination of core data structures
and concurrency classes.4

Guarded

Figure 4
Inheritance and Composition

The concurrent forms are derived from the
sequential form, which reflects the design intent
(for example, 2 Guarded_Queue is a kind of

4The lines with circles represent the yses relationship (with
the circle a the client’s end). An unfilled circle indicates
the relationship is visible in the client’s declaration, a filled
circle indicates it is private to the client’s definition.

ECOOP/OOPSLA '90 Proceedings 5

Queue that supports concurrent access). In this
particular case, inheritance also achieves code
sharing, because the concurrent forms are
incremental extensions of the sequential forms.>

3.2 Using Type Parameterization

Inheritance is certainly the most visible (and
popular) aspect of object-oriented design. But it
is not the only structuring principle. Type
parameterization is central to the design of a
simple and effective scheme for combining data
structures with various storage managers.

Depending on a mechanism supporting this
abstraction was essentially a question of timing
(of C++ language release). In the end, we
decided to provide an early implementation of the
“template” mechanism [Stroustrup88] as an
interim measure.

Figure 4 shows the recursive application of the
instantiates relationship. These are simply
different binding times: classes are instantiated at
compile time, objects are created at run time.

. Instantiation

“A

*~_ Construction

N

Figure 4
Templates ~> Classes => Objects

This approach eliminates a level of indirection by
providing the opportunity to bind certain
decisions at compile time rather than at run time.
Template arguments are per-class variables (such

5 Also, note that abstractions use storage managers, and that
storage managers use abstractions (especially Lists). See
[Booch87], p. 427, for a comment on this circularity. At
the base of this recursion is an abstraction which uses the
built-in storage management provided by the language and
its runtime environment.

6 ECOOP/OOPSLA '90 Proceedings

as the choice of Storage Manager), while
constructor arguments are per-object variables.
For example, library clients can choose to create
a second kind of Bounded storage management
which is stack-based. [Stroustrup86] (Section
5.5.8) discusses the strategy we used in the
library’s default heap-based Bounded form:
objects have part of their state allocated in the
heap (the maximum size is an argument to the
constructor).

Using template parameters, clients could extend
the library to provide completely stack-based
objects which do not use free store management.
The cost is that the size is fixed for all objects of
the given class (due to the earlier binding time).
However, since clients can easily make different
instantiations with different sizes, it is not any
harder to produce a variety of forms.

Clients can also avoid the overhead of indirect
function calls in cases where such performance
issues are important. This exploits the difference
between in-line expansion during template
compilation, and passing function pointers in
constructors during object creation.

3.3 Error Reporting

When using library functions, there are basically
two categories of errors:

» non-fatal usage errors
« fatal resource and/or corruption errors

For non-fatal errors, each data structure provides
selector member functions which report the state
of a class instance. Clients can call these
functions to detect invalid conditions before
invoking the modifier function which would
Teport an error.

However, this is not sufficient to handle other
kinds of errors. We considered the following
issues when designing the error abstractions:

« the type and amount of information required
to describe an error

» client-provided definitions of errors and what
to do about them

« communication between the library and its
environment

October 21-25, 1990

Exceptions are an effective mechanism for
communicating problems from the library to the
environment. We adopted a variation of the
exception reporting mechanism of [Stroustrup90]
as the library’s error reporting mechanism.

One aspect of exceptions in C++ not present in
Ada is the opportunity to combine them with
inheritance. This provides a natural classification
mechanism (and the corresponding extensibility
and flexibility to clients).

We generalized the notion of exceptions, and
separated them from the mechanisms involved in
reporting them. In this library, we provide
classes describing exceptions, and a simple
mechanism for creating instances and reporting
them to library users. This approach is simple,
extensible, and adaptable to the proposed C++
language mechanism.6

3.4 Concurrent Forms

A purely sequential version of the library could
be made to work in a concurrent environment (for
example, client applications which manually
guard every call to any library operation). The
Guarded forms support this approach.

However, besides being tedious and error-prone,
such an approach can be inefficient. Certain
operations (especially in complex components)
are more effective when implemented at the finer
granularity available to the library’s implementor.
The Concurrent, Multiple, and Controlled forms
provide the required flexibility.

An important part of the original library is
support for concurrent uses of the data structures.
In Ada, it is possible to implement these forms in
a portable manner: concurrency is part of the
language. When designing the C++ version, we
made the following assumption: those
environments that care will have ported or
implemented at least a Semaphore class.
Others will not care and will appreciate not
having to pay any overhead.

6A key advantage of the proposed addition of exceptions to
C++ is their integration into the type system. We see this
as a significant advantage over Ada’s exceptions.

October 21-25, 1990

4 Implementation — Mechanisms in C++

C++ provides many features that are helpful to
those implementing software intended for reuse.
Indeed, much recent activity in evolving the
language has been specifically geared towards
supporting library development. Our design
relied on several important abstraction concepts:
encapsulation, inheritance, composition, type
parameterization, exceptions, and concurrency.

We found the following mechanisms to be most
significant from a design perspective:

» classes (especially inheritance)

- templates (type parameterization)

« exceptions (as a uniform error reporting
mechanism)

« the task library (as a concurrency control
mechanism)

The existing (2.1) version of C++ provides
mechanisms supporting the first concept, future
versions will support the next two, and an
existing library supports the last.

4.1 Classes

The library’s design relies heavily on four aspects
of C++’s class mechanism:

» Access specifications (including friends)

« Constructors and destructors

« Class-specific operators new and delete

« Inheritance (including private derivation and
multiple inheritance)

Access and friends: The C++ friend
mechanism is useful as a way to record design
decisions regarding visibility and access control.
The library provides both “active” and “passive”
iterators (using the terms of [Booch87]).” The
iterators are friend classes, as in Sections 6.8
and 7.3 of [Stroustrup86]. Passive iterators take
the form of applicators, after the fashion of
Section 4.5 of [Dewhurst89].

71t is too early to tell which form clients will prefer — the
passive form adheres to the original Ada design, while the
active form is popular in the C++ community.

ECOOP/OOPSLA '90 Proceedings 7

Constructors and destructors provide the
obvious hooks for the Managed forms to do
their work. The various approaches to storage
management discussed in [Stroustrup86] are all
applicable. An important feature added in 2.0
C++ is the ability to redefine the new and
delete operators for certain classes

New and Delete: The C++ semantics of class-
specific operators new and delete are as static
member functions. There is one storage manager
per class — providing one free list per class
(instantiation) rather than one per container
object.® This exactly matched our needs for the
Managed and Controlled forms.

The library provides various default kinds of
Nodes . For Managed forms, the default Node
classes use Sequential storage management. For
Controlled forms, the default Node classes use a
Concurrent storage manager.

The data structure classes simply invoke new and
delete operations as required. This turned out
to be far simpler than the original Ada design,
which required a completely different syntax
when using the library’s Storage Manager instead
of the predefined free store operators.

Inheritance: C++ provides a unique feature for
turning services (the uses relationship) into sub-
objects (“contains,” the part of relationship): it is
possible to use private derivation (a kind of
inheritance) as a way to implement a uses
relationship. Private derivation ensures that the
implicit conversion rules (that is, using a derived
object as a base object) do not apply, but make
the private base object a part of the object.

We used public derivation to express the
relationships between the data structures. We
also used private derivation to implement using
relationships between the data structures and the
storage manages. Thus, we found multiple
inheritance to be a straightforward and effective
way to realize the design.

8 Also possible: one pool of Nodes shared by several
classes. Clients simply instantiate them with the same
Node class which has definitions of new and delete
providing common free list management.

8 ECOOP/OOPSLA '90 Proceedings

4.2 Templates

Because type parameterization is central to the
design of the library, Ada’s generic facility was
widely used in the original version. We
considered using the macro pre-processing
approach to implementing parameterized types.
The apparent advantage of using them
(portability) is deceptive — there are significant
variations between “standard” preprocessors.
While the various forms of “name pasting” and
“stringitization” can be accommodated, the
restrictions on macro size and (generated) line
length proved to be too troublesome.’

We decided, instead, to built a filter which
accepted the proposed C++ template mechanism.
There are two parts to the mechanism:
instantiating a new class declaration, which
happens upon encountering a declarative use; and
instantiating the class definition, which is done
by hand. Figure 11 illustrates how the template
utility fits into the compilation environment.

emplate
filter

processor

1 ’1 7
Warning/Error A
messages

v

[N
~

~

Figure 11
Template Filter and Environment

Using such a filter allows the resulting output to
match the multiple-line format of the input. It is
also possible to provide scoping of template
argument names. This significantly improves
error message clarity and source-level debugging.

9Using preprocessor macros, the resulting output must fit
on one line — large macros generate long lines. These long
lines can exceed the capacity of underlying tools (most
notably, the file system).

October 21-25, 1990

4.3 Exceptions

It tums out to be considerably easier to use the
exception mechanism proposed for C++ than to
actually implement one outside the language (see,
for example, [Miller88]), This is because error
reporting (in the library) is easier than error
handling (in the client application). Therefore,
we do not implement an exception handling
mechanism in the library. Instead, we simulate a
throw-expression with calls to a _catch ()
function.10

Exception objects record the operation that
caused them and the condition violated. The
default _catch () action is to report the
Exception's parameters and then to invoke the
library function terminate () (whose default
action is to exit the process). Clients can provide
an alternative action by invoking the
set_terminate () library function.

This approach achieves the goal of error
notification, but does not pretend to provide
robust error handling (that is, it does not unwind
the stack and invoke the “appropriate” destructors
automatically). Our design is compatible with a
language implementation: using the same (or
similar) syntax, it preserves evolution to future
language implementations.

4.4 Tasking

Although concurrency is not part of the language,
it is available in library form [Stroustrup87]
[Beck90]. Its use is optional, built as a
straightforward extension to the sequential forms
of the components.

We assume clients using this library in C++
environments supporting concurrency will follow
an approach similar to the AT&T task library.
Our design assumes an implementation of a

10cfront reserves the catch keyword with a “Sorry, not
implemented” message, denying us the most. obvious
candidate function name. Note that this is simply a
modified form of the approach used in Section 7.3.4 of
[Stroustrup86]. However, instead of using arbitrary names
for the functions, we use the name of the mechanism that
will eventually appear in the language.

October 21-25, 1990

Semaphore class as described in [Shopiro87].
Any similar class with wait () and signal ()
members can be substituted.

Note that we do not implement tasking as part of
this library (the default Semaphore class is
simply a place holder for the linker). We decided
to structure the concurrent forms as an optional,
layered part of library, and to rely on local
implementations of concurrency mechanisms.
The classes Semaphore and Monitor provide
the connection to the local mechanism.

Our design provides a simple way to incorporate
the components into an environment which
provides concurrency. If the environment
supplies an implementation that supports
concurrency, then the library can take full
advantage of it.

While reviewing the exception handling proposal
in [Stroustrup89], we noticed the ‘resource
acquisition is initialization’ model is an ideal
match to the needs of the library’s Concurrent
and Multiple forms. Building on the
Semaphore and Monitor classes, we added
the classes Lock,Read_Lock,; and
Write_Lock. Their constructors and
destructors provide a simple and reliable
mechanism for correctly implementing
concurrency semantics — even in the presence of
exceptions.

5 Summary
The design of this library focused on:

« external interface (behavior) of the key
abstractions

« ways to structure and combine forms into
templates

» effective implementation (C++ language
features) of the mechanisms (made easier
with the addition of specific support)

The central design activity was careful
consideration of the basic “building block”
components (the core data structures, the storage
managers). The key insight was designing a
simple way of composing them into the various
templates in the library.

ECOOP/OOPSLA '90 Proceedings 9

5.1 Results
We feel this project met all of its goals:

Efficiency: Using a component from this library
incurs little overhead beyond “hand coded”
versions — increasing the likelihood of reuse.
Purely sequential environments and applications
pay no overhead (time or space) for not using the
concurrent forms — they are strictly optional.

Ease of Use: The time/space variety of the key
data structures provides a clear organization for
the library. The template mechanism provides a
convenient way to combine forms,

Extensibility: The library is extensible through
the application of inheritance. The design for this
library achieves an appealing orthogonality — it
is possible to extend the library with new data
structures, new storage managers, or both.

Adaptability: The library is adaptable through
explicit connections to the (user-controlled)
environment:
» underlying (global) storage management
« compilation environment (template
expansion)
+ default implementation for exceptions and
concurrency

The storage management approach is extensible
with new kinds of Nodes, independent of
extensions to data structure classes. For example,
some clients may wish to extend this library to
accommodate persistent storage in databases.

The library’s template utility program can
become a routine part of C++ compilation, run by
hand as a separate program, or avoided entirely
(in those environments that already support
templates).1!

Library clients can control the basic error
handling mechanism: the library provides default
versions of the _catch () function (taking a

11 Another advantage to discarding the template utility is
that, with proper template expansion built into the compiler,
the programmer need never manipulate files containing the
generated source text.

10 ECOOP/OOPSLA '90 Proceedings

reference to an Exception object). It is
possible to replace this with functions to call, for
example, longjmp () .12 C++ environments
directly supporting throw-clauses can omit the
_catch() functions entirely.

Allowing local tailoring also meets the special
needs of specific environments that have already
invested in mechanisms similar to the ones we
used (for example, concurrent runtime libraries
on multiprocessor platforms).

5.2 Conclusions

We found that the concepts of inheritance,
composition, and type parameterization were
equally valuable aids in structuring the design.
From a design perspective, inheritance is as
useful for expressing existing commonality as for
achieving code reuse. It is also important as a
way to “design in” extensibility.

It is nearly impossible to design a useful library
of collection/container data structures without
using type parameterization. Implementing the
template scheme proposed for C++ seems to have
been a reasonable investment for the resulting
leverage gained for this library.

C++ proved to be an effective language for
implementing an object-oriented design. The
existing and planned features of C++ (especially
templates and exceptions) are indeed useful for
library design. By conforming to the existing
(and proposed) “standard C++” techniques, and
adding a little support for features that are not yet
generally available, we were able to implement
our design in C++.

The resulting library components provide a
variety of important data structures which users
can apply to many different uses. The variety
and extensibility of the storage management,
concurrency control, and error reporting
mechanisms provide a great deal of flexibility.
We expect these components to be as applicable
to small, embedded applications as they are to
large, distributed, multi-person projects.

12 Assuming that such clients also have solutions to the
stack unwinding/destructor invocation issues involved,

October 21-25, 1990

REFERENCES

[ATT89] C++ Language System Release 2.0
Product Reference Manual, AT&T Select Code
307-146, June 1989,

[Beck90] Beck, B., “Shared-Memory Parallel
Programming in C++,” IEEE Software, 7(4), July
1990.

[Boechm88] Boehm, H.-J., and Weiser, M.
“Garbage Collection in an Uncooperative
Environment,” Software — Practice and
Experience, 18(9): pp. 807-820, September 1988.

[Booch87] Booch, G., Software Components with
Ada, Benjamin/Cummings, Reading MA, 1987.

[Booch90] Booch, G., Object Oriented Design
with Applications, Benjamin/Cummings, Reading
MA, 1990 .

[Gansner88] Gansner, E.R., “Iris: A Class-Based
Window Library,” C++ Conference, USENIX
Association, Denver CO, October 1988.

[Gorlen87] Gorlen, K., “An Object-Oriented
Class Library for C++,” C++ Workshop,
USENIX Association, Santa Fe NM, November
1987.

[Lea88] Lea, D., “libg++, the GNU C++
Library,” C++ Conference, USENIX
Association, Denver CO, October 1988.

[Miller88] Miller, W.M., “Exception Handling
Without Language Extensions,” C + +
Conference, USENIX Association, Denver CO,
October 1988.

[Shopiro87] Shopiro, J., “Extending the C++
Task System for Real-Time Control,” C+ +
Workshop, USENIX Association, Santa Fe NM,
November 1987.

[Stroustrup86] Stroustrup, B., The C++
Programming Language, Addison-Wesley,
Reading MA, 1986.

[Stroustrup87] Stroustrup, B., and Shopiro, J., “A
Set of C++ Classes for Co-routine Style

October 21-25, 1990

Programming,” C++ Workshop, USENIX
Association, Santa Fe NM, November 1987.

[Stroustrup88] Stroustrup, B., “Parameterized
Types for C++,” C++ Conference, USENIX
Association, Denver CO, October 1988.

[Stroustrup89] Stroustrup, B., “Exception
Handling for C++,” C++ at Work, Tyngsboro
MA, November 1989.

[Stroustrup90] Stroustrup, B., “Exception
Handling for C++ (revised),” C++ Conference,
USENIX Association, San Fransico CA, April
1990.

ECOOP/OOPSLA 90 Proceedings 11

