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Abstract

We present an iterative-design approach for
reusable object-oriented software that aug-
ments existing design methods by incorporat-
ing iteration into the design methodology and
focuses on the set of problems within the do-
main, encouraging reuse of existing design in-
formation. The model has five separate stages
which are described, before an example design
is outlined using the model with sample code
constructs in C++. Our results have shown a
high degree of code reuse when using the mod-
el, directly attributable to two distinct design
stages. An analysis of these results is also pre-
sented.

1 Introduction

In this paper we present an iterative-design
model for reusable chject-oriented software
based on the experience of the authors in de-
signing code intended for reuse directly, as
compoutients, and indirectly, through extension
and modification. This approach is arrived
at after using existing object-oriented design
methods {3] [16] and finding that they do not
satisfy our needs on two fronts. They do not
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recognise the iterative nature of software devel-
opment. and hence fail to incorporate iteration
into their approach. They also do not address
the decisions faced when adding classes to an
existing hierarchy or when composing solutions
from both existing and new classes.

Tlese approaches must therefore be extend-
ed in two ways, to incorporate iteration into
the design approach where appropriate, and to
design code that is to be part of a hierarchy or
[ramework of classes for an application domain.

It should not be seen as a complete design al-
ternative to already accepted approaches, but
as an augmentation of those ideas that must
be made to cater for continual growth of ob-
Jects and methods within a hierarchy and for
addition of new levels of abstraction. The de-
sign strategy shifts the emphasis from address-
ing one particular problem or application to
focussing on the set of problems within the do-
main, hence concentrating on the reuse of do-
main concepts.

In section two we provide an overview of the
design model. followed by a more detailed ex-
amination of each stage and the processes in-
volved, aided by sample design scenarios. An
outline case study from the VLSI Routing do-
main is presented in section eight, with an
analysis of our findings using the design mod-
el, through measures of reusability and design
time in section nine.

2 Model Overview

There are five main stages to the design mod-
el, each of which has substages of varying com-
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plexity. A diagrammatic representation of the
model is shown in Figure 1. It is well suited to
the incremental development of object orient-
ed software systems placing emphasis on evolu-
tion and growth of software through continual
review and discussion of cach stage.

As we observe from Figure 1, three of the
stages take place within a component environ-
ment such as that provided by classes within an
existing domain-specific class hierarchy. This
is not such a clear-cut case if one is design-
ing classes without any domain-specific classes
available. The component environment is then
dependent only on existing component libraries
such as that of Smalltalk [7], or the NIH C++
library {8]. These libraries are general and ex-
press no concepts of the application domain.

McCain [15] proposes that there should be

“at least three different points of view other

than the component programmer” represented
at each review. Such an approach should be
followed in the iterative model, where the dif-
ferent perspectives to be considered are those
of the domain analyst (expert here), soft-
ware component engineer and component user.
These different views do not necessarily mean
three different people, as will be shown later.
The five main stages are:

o Domain Analysis: Essential features of the
domain are captured. Initial candidate
classes are identified.

o Abstraction: The creation of abstract class-
es from initial candidate classes.

o Specialization: Abstract features broken
down and used to derive the concrete class-
es of the domain.

¢ FEvaluation and Revision: Fine tuning of the
classes to be used to meet the needs of the
application.

o Implementation: Coding and use of the
classes to create solutions. Test at high
and low levels and reimplement where nec-
essary.

The outputs of each stage are shown in I'ig-
ure 2. Jt is important to point out that each
stage can highlight design drawbacks in any of
the previous stages and as such can mean iter-
ating back to the cause of the problem. This
is not unusual as a good design will take many
iterations. There is no such thing as an incor-
rect design, for all are correct if they accom-
plish their task, but some are more powerful
than others. It is these more powerful designs
that we strive for.

3 Domain Analysis

Domain Analysis (DA)[17] is an activity pri-
or to systems analysis that results in a do-
main model, describing the characteristics of
objects and operations common to all systeni-
s within the domain. Prieto-Diaz proposes a
formal method for DA which produces a col- .
lection of reusable components specific to the
problem domain i.e. candidates for the collec-
tion of classes.

Reusable components are difficult to obtaiu
first time around as good reusable design takes
many iterations [13], and so, in the iterative-
design model, not all of the DA process de-
scribed by Prieto-Diaz is required. We only re-
quire a modified, partial domain analysis activ-
ity. Thus, the context diagram for our modified
DA differs from the original, in that it incorpo-
rates feedback paths to allow for iteration and
produces different outputs.These outputs can
be seen as early versions of the output from
Prieto-Diaz’s DA. This is because the modified
DA has reduced the overall number of stages
from three to two, in order to allow for the fur-
ther steps needed to generate a class hierarchy.

Instead of a library of reusable components,
the modified DA process produces an initial set
of classes that are reflections of the main con-
ceptual entities within the domain aund as such
are tentative proposals for domain classes. The
software engineer gains valuable domain insight
through domain analysis and this can be used
when implementing further applications with-
in the domain, or if iterating through the DA
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Figure 2: Design stage outputs

DOMAIN
ANALYST

EXPERT

SYSTEMS
Figure 3: Context diagram for modified domain analysis

process once more.
The pre-DA activities proposed by Prieto-
Diaz comprise five stages :

e Defining the DA approach: A brief state-
ment of how the DA is to be undertaken.

¢ Bounding the domain: A definition of the
boundaries of the domain, limiting the type
of applications to be considered, and the
amount of information examined. Domain
Analysis for generic applications makes the
importance of DA more acute as this activ-
ity determines to a great extent the range
of applications that can be developed using
the class hierarchy. From this we can gauge
the domain range, a measure of the extent
of our analysis, and hence the type of ap-
plications that can be easily developed.

¢ Defining the domain: A formal statement
that clearly and unambiguously, defines the
domain.

e Selecting knowledge sources: Common
knowledge sources that can be used are do-
main experts, widely used literature on the
subject and current examples of existing
systems. It is important that the sources
provide a ‘balanced’ view of the domain.
The choices suggested here should, we be-
lieve, ensure such a balance and hopefully
eradicate any chance of a biased source of
knowledge. Such information is well docu-
mented from literature in the Artificial In-
telligence field [5].
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¢ Defining the DA requirements: A list of the
topics in the domain characterizing the do-
main and detailing the issues relevant to the
domain.

From here on the modified DA differs from
the original in both its goals and its methods.
Unlike the original approach which fosters the
belief that a set of reusable components can
be achieved through an analytic approach, our
belief is that reusable design is difficult to ob-
tain at the first attempt, and as such usually
involves numerous reviews, evaluations and re-
visions of classes. We feel that it also requires:

e insight
¢ experience
e discussion and review

e an iterative design approach

Insight and domain experience can be gained
only after working in that domain and after dis-
cussion with domain experts. Discussion and
review play an extensive part in any successful
attempt to generate reusable software and as
a result require an iterative design approach.
Experience in designing for reusability is also
an essential prerequisite for success.

The domain analysis is a relatively straight-
forward approach but can have limitless iter-
ations, depending on the discussions between
the software component engineer and domain
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Figure 4: Domain Analysis Process

expert. A data flow diagram type representa-
tion of this process is shown in Figure 4.

For example, in the account handling do-
main of a bank transaction handling system,
the stage outputs may be:

e (a) common features: opening/closing ac-
counts, transferring of monies, depositing
or withdrawing money, paying standing or-
ders, direct debit etc.

o (b) specific conceptual entities: different
types of customers/account holders, vary-
ing account types.

e (c) abstract entities: customer, current ac-
count, deposit account, higher-interest rate
deposit account.

e (d) general relationships: customer J.
Smith opens account number 10406654.

e (e) abstract relationships: customer has

name, account has number.

e (f) candidate classes: current account,
company account holder, personal account
holder, deposit account etc.

We have worked extensively on a VLSI rout-
ing system; the routing problem requires many
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point pairs on a surface to be optimally con-
nected together bypassing obstructions, using a
particular algorithm. Some of the common fea-
tures of this domain are areas, obstacles, cells
and points. We may have initial classes such
as wavefront, cell, single line, gridded area, un-
gridded area and multi-section line. Each of
these, as in the banking example, correspond
to a well-defined feature of the problem space
and may or may not warrant encapsulation in-
to components. They are merely a collection
of possibilities.

The designer may find it difficult to decide
whether or not a specific candidate class war-
rants encapsulation. This decision is depen-
dent upon the consideration of certain criteria,
which are beyond the scope of this paper. but
can be found in [3, 10, 14]. Such criteria in-
clude whether a candidate represents a mean-
ingful abstraction likely to be used effective-
ly, or whether it is representative of a domain-
world concept with real properties. Often such
decisions are dependent on the views of the de-
signer and domain expert who, using the guide-
lines in the literature and through discussion
and review, should determine the initial solu-
tion classes.

When proceeding through such stages. the
attributes and operations of an entity can also
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be identified providing useful discussion input
which can make relationships between classes
more apparent. Implementation decisions on
such features should be made at a later stage,
but it is useful to be aware of the existence of
the particular facets of an entity.

It is important to note that the DA phase of
design will be revisited during the evolution of
a system, as the domain extends, new applica-
tions are built and new solution methods are
created.

4 Abstraction

Abstract classes are determined from the com-
mon features, descriptions and relationships of
classes within the domain. They are repre-
sentative of the generic objects of the domain
and form the basis from which other classes
are derived. They must therefore, capture the
general behaviour of the domain and form the
templates for future class derivation [13]. This
stage of the design can thus be construed as
being the most crucial in the development of
any set of classes.

Finding abstract classes is not easy; it can,
and will probably require several iterations be-
fore a suitable abstract class can be deter-
mined. The abstraction process cannot really
be described by a data flow diagram type of di-
agram as decisions are made by the object de-
signer in consultation with the domain expert,
and as such take many random feedback paths
and cannot really be described as “structured”.
These decisions are therefore dependent on the
knowledge of the expert and intuitive skill of
the designer (gained through insight and expe-
rience). The existence of a component environ-
ment can aid the design process considerably,
both by setting examples of design and by pro-
viding useful classes upon which to build or
from which to abstract.

No methodology exists for finding them, and
as aresult we can only propose guidelines to aid
a programmer in determining an abstract class.
We must identify a cluster of classes sharing
one or more of the following properties:

¢ common fundamental identity
e cominon purpose

e common behaviour

e common approaches

The fundamental identity of a class cluster
is some feature that separates them from other
classes. e.g. current account, deposit account,
higher rate deposit account, and building soci-
ety account are all types of account: account is
their fundamental identity. Similarly, a volume
control or tuning button on a radio and bright-
ness knob on a screen are all types of control
knob: control knob is their fundamental iden-
tity.

The DA stage will identify many abstraction-
s which share a common purpose and funda-
mental identity. Their approaches may be rad-
ically different but they can still be considered
as candidates for sharing a common abstract
class. A truly abstract class is never instanti-
ated, its behaviour must be general to the ex-
treme and it should be defining only the outline
of a relationship with other abstract classes,
rather than in detail. Abstract classes do not
exist for all class clusters and it may be that the
most abstract representation of a class cluster
will be be “high up” in the inheritance tree i.c.
it is instantiated, but whose principal function
is still in outlining the general behaviour and
purpose of its subclasses. This should not be
seen as constituting a poor design, and a more
abstract class may become apparent at a later
stage.

An example of this is when designing an ab-
stract classes for different data representations
of a routing area. Each may segment its area
in very different ways and have different repre-
sentations for space, yet each is still a routing
area and can be identified as such. Each has
an area, distinct corners, and similar generic
properties. We can thus proceed to define a
high-level abstraction called RoutingSurface.
The details of such a design decision are dis-
cussed later.

The banking system discussed previously
may generate an abstract class for the different
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types of accounts. Such a general class accoun-
t would encapsulate the common behaviour of
all accounts, such as depositing and withdraw-
ing money. Its sub-classes would handle the
behaviour of specialized types of account.

Communication between abstractions, and
general operations for each abstract class,
should be determined at this stage. This will
provide for a high-level view of the objects in
the domain, their attributes and how they re-
late to each other.

Abstract classes are not always apparent at
this stage of the design, and may become visi-
ble at a later time in the cycle, so this stage is
frequently revisited.

It is important that the designer understand
the different mechanisms for abstraction pro-
vided by object-oriented programming. As well
as straightforward subclassing there is the use
of pluggability, and also the use of a hierar-
chy of function-like classes to provide opera-
tions [10]

5 Specialisation

Once the general abstract classes have been i-
dentified, we proceed to derive the classes of the
domain, the instances of which will be used in
any applications. The abstract classes serve to
provide an order to the domain, in that they
outline the more general concepts involved in
the solution space, and can thus provide a high
level understanding of important domain con-
cepts. The specialization stage requires that
each abstract class is progressively made more
concrete until classes are at a level satisfacto-
ry to the domain expert and domain analyst.
This means that as each successive specializa-
tion is complete, we have defined a less abstrac-
t version of a class, becoming more and more
specialised as we continue.

It is in this stage that previous object orient-
ed design methods can be utilised effectively.
As each stage of the specialization progresses,
the designer must evaluate design constraints,
operations, attributes and communication as-
pects of each class, as well as its relation with
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its base class. Such evaluations may, and of-
ten do, require a reiteration to the previous
design stage. The combination of abstraction /
specialization can be seen as constituting their
own sub-design cycle, as there is often a dis-
tinct interplay between the two stages.

It is here that we can now begin to formally
describe our classes and their relationships. A
suitable notation that we can use is one pro-
posed by Booch [4], which at this stage would
involve class diagrams of various forms express-
ing class relationships, cardinality of relation-
ships, and properties of classes. The attributes
and operations of a class, possibly apparent
from an earlier design stage, can now be firm-
ly decided upon by the domain expert and the
software designer.

The designer must also design for reusability
i.e. must cater for anticipated changes. Such
changes can only be highlighted by the domain
expert, confirming the importance of domain
knowledge in any successful reusable object-
oriented design. Although one cannot expect
to design components within a domain for reuse
outside that domain, the design, if carried out
carefully, with the aid of domain expertise, can
yield more reusable components. We discuss
elsewhere our experiences in designing for reuse
[1] [9] [10] {12].

LaLonde [2] advocates a name design stage
which is both difficult and crucial to the con-
struction of any abstraction. The domain ex-
perts knowledge should be used to assist in this
stage. Each abstraction in each layer should
have a meaningful name and behaviour rele-
vant to the domain concept it represents and
its position in the hierarchy. Each operation of
a class should also undergo a name checking.

Common pitfalls are sub-classing carelessly
and overspecialisation. The former leads to un-
balanced, wasteful designs, and can also result
in too many similar classes i.e. classes with
not enough difference in functionality. Over-
specialisation causes too detailed classes, for
the design of the main classes within a domain
requires generality to be preserved in all but
the lowest level of abstraction.

Returning to the banking example, the sub-
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classes of an abstract class account would be
decided here. Current account and deposit ac-
count are two possibilities which would be re-
sponsible for their own specialised behaviour.
A deposit account may require a minimum sum
invested in it. A further subclass of deposit
account could be a higher-rate deposit accoun-
t requiring notice be given before withdrawal,
and such a feature would be implemented in
this new subclass. As each layer is introduced
into a solution, we are providing further possi-
bilities of reuse, at different granularities.

At the end of this design stage, we should
have a set of classes that realistically match
conceptual objects in the problem space. Their
attributes and operations are well-defined and
the inter-class communication has been identi-

fied.

6 Evaluation and Revision

Now that the classes to be used within the do-
main have been identified, details must be s-
moothed out and revisions made to interfaces,
implementations, class structures, class compo-
sitions etc. These become apparent as classes
are tested by scenario, evaluated and then re-
visions made as required.

Classes at each level should be examined
in order to identify inter-class and intra-class
modifications.

¢ Inter-class modifications

1. Distribution of behaviour among class-
es. Classes should be examined so that
their behaviour can be verified with
what one would commonly associate
with objects of that class.

2. Classes that may be candidates for
merging. Two classes can sometimes
be performing very similar tasks, and
as such each may duplicate function-
ality found in the other. Two courses
of action are open, either merge the t-
wo classes into one new class, or make
the two existing classes siblings with

a common parent class providing the
shared functionality.

3. Classes requiring specialisation. A
class can require specialisation if be-
haviour is deemed too general for the
concept it aims to represent. This
change in functionality will require a
new class to replace the general func-
tionality of the original class. It is
important that the name for this new
general class is correct in its represen-
tation of the new concept.

4. Classes requiring generalisation. Gen-
eralisation is the opposite of speciali-
sation, and is used to generalise a class
that is seen to be too specific for the
concept to which it corresponds. This
means the behaviour for the class be-
comes more general and requires a new
class to fill the void left by the class
that is the focus for our change.

5. Conjunct classes requiring separation.
A class may sometimes be represent-
ing the behaviour of two or more con-
cepts, such a class should be separated
into two or more distinct classes. This
problem is also pointed out by [14].

¢ Intra-class alterations

1. Alteration of function parameters to a
class. Modification of class interfaces
leads to a change in parameters.

2. Addition of new private members of
a class. It is quite common that
as changes occur in the class hierar-
chy, and classes are redesigned, and
removed, new functionality associat-
ed with a class will require new pri-
vate members (and new private mem-
ber functions).

3. Removal of superfluous class member-
s. It is often the case that there are
items within a class that are unneces-
sary and can be removed or relocated
within another class.
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We will have to create objects in the solu-
tion space to encapsulate and abstract things
which are not concrete in the problem domain,
such as operations, transformations and inter-
faces; we refer to this process as objectifying
[2]. It may be that two classes share an inter-
face involving varying degrees of complexities
at different levels of abstraction; this interface
could be objectified and less complicated inter-
faces derived from it. Such cases should come
to light in this stage as the finer details of inter-
class relationships are ironed out.

When testing relationships between objects
in the solution space, we can identify special
cases such as lack of functionality in a sub-
class, an overly general class or indeed over-
specialisation. The detection of such errors
would necessitate a reiteration from the preced-
ing design stage, or any other previous design
stage where the error had originated.

[terations are not a sign of bad design and
should be regarded as a healthy process, by
which learning takes place. It will probably be
several iterations before the domain expert and
the software engineer are satisfied that a set of
meaningful abstractions have heen arrived at
whose behaviour is correct within the context
of the domain. It is important to instrument
the iteration process both to keep track of de-
cisions and to allow improvement of the design
process.

7 Implementation

The implementation of each class can and of-
ten will require many iterations, but these can
be minimised by carrying the preceding de-
sign stages carefully and logically. A difficulty
in implementation can signify erroneous judg-
ment in a previous design stage, requiring re-
iteration. The Implementation and Evalua-
tion and Revision stages are closely linked with
these two stages sharing the vast majority of it-
erating between them. Coding highlights main-
ly structural and behavioural problems both of
which are responsibilities of the previous stage.
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8 Design Example

We now present an outline design example from
the VLSI routing domain using the iterative-
design model.

Domain Analysis

The problem requires various point pairs on
a routing area to be optimally connected to-
gether bypassing obstructions using a particu-
lar algorithm. Some of the common features of
this domain are algorithms, areas, obstruction-
s, cells, points, lines, connections and nets.

Once these have been identified we can pro-
ceed to determine the conceptual entities of the
domain. In this example some of them could
be:

e gridded area - cell based
¢ routed connection

e point pair for routing

o gridless area

¢ unrouted connection

e obstruction

e wavefront

¢ gridded area - segment based

The general relationships between these
some of these concepts might be

¢ obstruction occupying location to location

e path on area from location to location to
location

¢ wavefront number 3 uses cells X, Y and Z.

Using the relationship descriptions to ab-
stract relationships, we can say that a wave-
front has an identity, wavefront contains cells,
path can contain two or more locations, etc.

At this stage we have acquired a set of gen-
eral concepts within the domain, whose main
properties and relationships we are familiar
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class RoutingSurface {
point topLeft;
poeint botRight;

public:
// ...constructors
virtual int size();
Y 2N
};

Figure 5: Definition of a high-level class

with. We must now make decisions on can-
didates for initial classes. For the routing do-
main, some of these classes could be wavefront,
obstruction, cell, point, gridded area, gridless
area etc. We should point out here that some of
these classes were not identified as conceptual
identities of the problem domain; this is not un-
usual as new possibilities for classes may arise
after examining relationships between complex
domain concepts. This once again stresses the

iterative nature of such object-oriented design.

Abstraction

Cousider the class candidates gridded area (cell
based), gridless area and gridded area (segment
based). They are all typical areas upon which
routing is carried out, having a common iden-
tity and common purpose. They all have dis-
tinct sizes, some may be regularly shaped and
some may be irregularly shaped, they can al-
| be described by at least two different points
(top-left and bottom-right in the case of a rect-
angular grid). It seems plausible therefore, to
assume that these points are common to al-
I routing areas we may encounter in this do-
main. We can then propose a high-level class
RoutingSurface which can be defined by two
points, in C++ this may look like the definition
in Figure 5.

Further classes derived
{rom RoutingSurface can redefine size if they
are not rectangular, add extra points to define
precisely their shapes and so on. As far as the
output of this stage is concerned, the general
outline of a routing area has been developed.
The class is not abstract but may become so at

class Router { // each subclass
// will be a
Router () // different
// type of
// algorithm
public:
virtual int routeIt();
virtual int successOrFail();
/7 ...
};

Figure 6: Definition of abstract class Router

a later stage of the design cycle.

Similarly for routing algorithms, we can con-
sider each algorithm to be a Router. All algo-
rithms have a common purpose, common iden-
tity, yet have differing approaches. This leads
us to define the abstract class Router (see Fig-
ure 6).

Specialisation

For the abstract class defined in the abstrac-
tion process, we can now decide on our initial
specialisations of RoutingSurface. We have t-
wo distinct types of areas, gridded and gridless,
our first step would be to have them as sepa-
rate subclasses of RoutingSurface. Then we
note that there are two types of gridded area,
cell based and segment based, each one per-
haps deserving a separate subclass of gridded
area. We say perhaps, as this is only the initial
class sub-hierarchy for RoutingSurface. It is
likely that it will change in the light of other
class definitions or as other design decisions are
made. We have our hierarchy as in Figure 7.

Our domain expert agrees that these names
are suitable and informs the designer of what
the expected functionality of each class. The
designer duly attempts to define the classes
accordingly, taking advantage of the features
available such as overloading of fuuctions, dy-
namic binding and inheritance.

The Grid knows about rows and columns but
nothing about what sort they are. As a result,
the first definition of Grid could be that in Fig-
ure 8. Its subclass, CellGrid, (see Figure 9)
will handle the details of rows and columns of
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class Grid : public RoutingSurface {

int rowCount;
int columnCount;
public:
Grid(int, int);
int columnSize();
int rowSize();
virtual int area();

};

Figure 8: First definition of Grid

class CellGrid : public Grid {
CellList * rows;
CellList * columns;
public:
CellGrid(int,int);
//.. other functions

};

Figure 9: Definition of a CellGrid

cells, with SegGrid doing likewise for segments.

We now have a set of classes that map the
concepts of the problem space to our solution.
As this is only the initial attempt at defining
a suitable hierarchy, it is unlikely to be in the
same format by the end of the design.

Similarly for our class Router, we may de-
cide upon a hierarchy of the form shown in Fig-
ure 10, where lee and line are different types of
routing algorithms, and WeightedLeeRouter
and VariableCostLeeRouter are successive
derivations of the general Lee algorithm. For-
tunately, this succession of derived algorithm-
s falls easily into a hierarchy and our domain
expert is quite satisfied with the result. Not
all sub-hierarchies are realised this easily and a
number of iterations might be required before
proceeding on to the next stage.

Evaluation and Revision

Once the classes have been defined we can now
proceed to refine and tune our classes as we
proceed to test by scenario, the features of each
individual class.

We may note that, when passing a particular
routing problem to an instance of a sub-class
router, we feel that there does not exist any
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firm way of encapsulating the information re-
quired for a routing problem. We decide on the
object task which will be used to ‘pass around’
information from router to router so each can
attempt a solution to the problem. This is not
a conceptual entity within the problem domain
but is a server class used to carry information.
It arises as a result of discovering inadequacies
in the solution space.

We will probably need different types of
tasks for different routers, as such we will go
back to the abstraction stage and decide on an
abstract class for our set of tasks, continuing
our iteration from there. Such a feedback will
result in the creation of a class, RoutingTask,
as in Figure 11.

class RoutingTask {

public:
virtual point% identifyStart();
virtual point& identifyEnd();
virtual void initialise();

};

Figure 11: Definition of class RoutingTask

Once the class RoutingTask has been creat-
ed, we can proceed to the specialization stage
where its sub-classes can be determined. For
the Lee routing algorithm we may declare a
class LeeTask, asshown in Figure 12. This pro-
cess is similarly repeated for subsequent sub-
classes of the RoutingTask.

class LeeTask {
point start;
point end;
leeParam specialLeeParameter;
public:
point& identifyStart();
point& identifyEnd();
void initialise();
leeParam getParam();
/...
}

Figure 12: Definition of class LeeTask
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Figure 7: Initial routing area hierarchy
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Figure 10: Initial Router hierarchy
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Implementation

Detailed implementation and testing of each
class will probably require many iterations to
the preceding stage as mentioned, as deficien-
cies in class definitions and implementations
become apparent.

9 Using The Model

The mode]l was conceived during the devel-
opment of a generic application for the VLSI
routing domain [11] and has since been used
to implement a number of applications, both
partly and wholly within the original analysis
domain. The basic functionality of two fun-
damental algorithms provide the skeleton up-
on which further related algorithms are hung
by augmenting existing classes and overriding
methods where necessary. The framework com-
prises approximately 90 classes and some 480
methods.

In all, four implementations of routing algo-
rithms are included in our results, which were
first or second order derivations of an existing
algorithm. The average (physical) time spen-
t on each stage in all four implementations is
also shown in Figure 13. The figures for time
spent on each stage are our best estimations.
but given the nature of the design process the
horders between stages are not distinct.

The initial design stages followed a rather
informal approach which can now be described
by our design model. Integration of addition-
al routing algorithms meant that the domain
analysis was only briefly encountered and the
bulk of the design began at the abstraction
stage within the component environment, as
Figure 13 shows.

Figure 14 displays an approximation of the
time spent on each stage of the design process
for the initial design and later integrations. It
show that for the initial design 68 percent of
the total effort was spent on design prior to any
code being written. This means that for the o-
riginal design of the hierarchy, some 32 percent
of the total time was expended on coding and
debugging.

ECOOP/OOPSLA '90 Proceedings

The decrease in coding time from 32 percent
to 20 percent is due to the ability to reuse code
rather than write new code.

The current system has greater capabilities
than the initial design, but the total time spent
on it was only 30 percent of that on the original.
Reuse is difficult to measure, but if we define a
reuse factor of an appllication A to be:

algorithm — specific code of A used by B
total algorithm — specific code of A

= 100

where A is the original algorithm application
and Bis the algorithm derived from A, then the
reuse factor is 76 percent [11].

We would like to be able to quantify the func-
tionality more precisely, but even without do-
ing that we can see that a large effort in design
will produce rapid implementation of applica-
tions through a high amount of reuse. We can
directly attribute the high reuse and low im-
plementation times to the abstraction and spe-
cialization stages as most of the reuse was due
to the amount of functionality encapsulated in
the classes and to the mechanisms of object
oriented programming.

10 Discussion

The scope of the domain considered at the out-
set of the design determines, to some extent,
the stability of our components. Any applica-
tion not taken into account when bounding the
domain will probably require an identification
of high-level constructs different to those al-
ready within the hierarchy and then a move to
integrate those into an existing hierarchy from
the specialization stage.

Since the conception of the model and the
implementations described herein we have suc-
cessfully implemented a hybrid routing algo-
rithm used for commercial PCB routing [6].
The algorithm was not considered at the ini-
tial design stages which meant expanding the
domain of the generic application requiring a
further analysis of the domain.

This implementation required a great deal
of effort in the abstraction and specialisation
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stages of the design where commonalities with
existing classes were explored, and subsequent-
Iy new classes were created — from both ab-
stract and concrete classes. The new appli-
cation introduced both new concepts, as well
as new routing solutions, into the domain. As
such the design effort was not a simple one and
required many iterations and re-evaluations of
existing structures. The iterative-design ap-
proach has, we feel, been validated to a large
extent by the ease with which the new applica-
tion was integrated into an existing hierarchy.

Our findings indicate a high proportion of
reuse made possible by a set of high-level class-
es reflecting the functionality of the domain.
The design of new classes has highlighted sever-
al potential drawbacks in the previous class hi-
erarchy requiring several attempts at reorgan-
ising its structure; this has allowed the frame-
work to evolve into a more powerful structure
than before. Details of the evolution of classes
and other points relating to object-oriented de-
velopment and reuse will be reported at a later
date,

We have only presented an overview of the
iterative-design model here, laying emphasis on
the iterative and evolutionary nature of soft-
ware systems, by incorporating such features
into its process. The model concentrates on the
set of problems within the domain rather than
one problem itself providing a more reusable set
of classes. Our experiences have shown that
a high proportion of time spent on detailed
design, namely the abstraction, specialisation
and evaluation and revision cycle, is rewarded
by high reuse of code and low implementation
times.
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