Graphical Specification of Object Oriented Systems

Stephen Bear, Phillip Allen
Derek Coleman, Fiona Hayes

Hewlett Packard Laboratories, Bristol.

Abstract

The graphical notation Objectcharts, introduced in
this paper, allows a developer to precisely spec-
ify the behaviour of object classes and to reason
about the behaviour of particular configurations of
objects.

Objectcharts combine object oriented analysis
and design techniques and Harel’s statecharts to
give a diagrammatic specification technique for ob-
ject oriented systems.

1 Introduction

The use of objects provides a flexible and produc-
tive approach to software development. However it
is difficult to abstractly describe the structure and
behaviour of object systems. In practice the lack
of a “big picture” description means that it can be
difficult to control the development process and to
provide documentation for maintenance.

In this paper we present graphical techniques
for representing system structure and behaviour.
Structure is described by configuration diagrams
which show class instances and their communica-
tion. Objectcharts define the behaviour of classes
as extended state machines.

Jackson [4] points out that there are two com-
plementary views of a system. The data view re-
gards a system as operations acting on states. The
process view focuses on sequences of events. Ob-
jectcharts use statecharts [2] in order to capture the

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

€ 1990 ACM 089791-411-2/90/0010-0028...$1.50

28 ECOOP/QOOPSLA '90 Proceedings

process, or “lifecycle”, view of object classes and
firing-post conditions to define how class methods
affect state.

Objectcharts describe system components whilst
the configuration diagram defines the system struc-
ture. From these descriptions it is possible to rea-
son about overall system behaviour.

The paper first reviews our basic notions of ob-
ject oriented software. Configuration diagrams and
Objectcharts are developed through the use of a
simple example in section three. Section four is
more formal and outlines a trace semantics for rea-
soning about system behaviour.

2 Objects and Classes

An object has encapsulated state that persists over
time. Statically, an object is characterised by the
set of services that it provides and the set of ser-
vices that it requires of other objects; its behaviour
is characterised by the set of possible sequences of
service requests which it could receive or generate.

In order to request a service a client must identify
the object to perform it. Thus every object has
a unique identifier that allows it to be referenced
unambiguously.

A service is an abstraction of a method in ob-
ject oriented programming, or a task entry in Ada.
Each service has a signature which determines the
number and type of the service arguments. The
set of signatures of the provided services consti-
tutes the client interface of the object. Similarly
the required interface of an object comprises the
signatures of its required services.

An attribute is a component of the state of an ob-
ject. Encapsulation means that outside an object

October 21-25, 1990

the values of its attributes may only be changed or
observed through the use of services. The objects
that are used by a given object may be thought of
as object valued attributes.

A class is a template for objects. The interfaces
of an object and its behaviour are derived from its
class and the environment of other objects with
which it will interact.

These notions of object and class are quite con-
ventional. They do not commit the design to a
particular implementation language; in particular
objects may be mapped onto passive encapsulated
data types or active processes.

3 System Descriptions

In order to specify an object oriented system a
number of views are required. We describe the
objects in a system and their intercommunication
by means of a configuration diagram (Section 3.1).
Classes are specified by means of Objectcharts (Sec-
tion 3.2). The overall behaviour of a system of ob-
jects is defined by the configuration diagram and
the set of Objectcharts (Section 4).

3.1 Configuration Diagram

An object presents a set of services which can be
used by other objects in its environment. The set
of these services forms the provided interface of the
object. The required interface of an object is the set
of services that it needs other objects to provide.

A configuration diagram shows the objects in
a system and their intercommunication. Objects
are represented by boxes containing their instance
identifiers and the class to which they belong, solid
lines represent provided services and dashed lines
represent required services. A solid line joining a
dashed line shows possible communication between
objects in the system. A trailing line shows possi-
ble communication between an object and the en-
vironment of the system. Configuration diagrams
are similar to the Object Communication Model
used in Shlaer and Mellor’s object oriented systems
analysis [5].

As an example, consider an alarm clock applica-
tion which uses a window system. When the alarm
‘rings’ it opens a window. When the alarm is not
ringing the window is closed (iconised). There are

October 21-25, 1990

three objects: an alarm, a bell and a clock as seen
in figure 1. The alarm, belonging to class Alarm
Clock, allows the alarm to be set or cancelled. Once
ringing, the alarm can be stopped. The alarm also
shows the time of day and, if set, the alarm time.
The alarm can open and close the bell window.
The alarm (periodically) requests the clock, be-
longing to the class System Clock, for the actual
time. When the alarm time is reached, the alarm
causes the bell window to open. If the alarm is
not stopped, the bell window is closed after a fixed
duration.

The object configuration diagram partially de-
fines the overall pattern of communication in the
system. It shows the interfaces for each object and
defines which objects request services from others.
The object configuration diagram does not define
particular control or scheduling structures. For ex-
ample, it does not determine which objects are to
be implemented as active objects (e.g. Ada tasks),
nor which are to be implemented as passive objects.

Consider the alarm clock example described
above. We know that the alarm object requires
services from the bell object and the clock object,
and not the other way around. We also know that
the alarm provides a number of services: set, can-
cel, etc to an undefined environment (or main pro-
gram).

One way to implement this configuration would
be to make the alarm an active object communicat-
ing with an active environment and passive window
and system clock.

Another approach would be to make all the ob-
jects passive. If the interface provided by the clock
object was extended, then the environment could
periodically prompt the alarm to send service re-
quests to the other objects.

3.2 Extending Statecharts to Specify
Object Classes

In this section we introduce Objectcharts incre-
mentally via the alarm clock example. First we
show how statecharts can capture some aspects of
class behaviour. We then extend statecharts by
augmenting states with attribute information. Ob-
jectcharts are extended statecharts in which the ef-
fect of state transitions on attributes are specified.

Objects have a lifecycle in which they change

ECOOP/OOPSLA %0 Proceedings 29

set alarm :
Alarm Clock

cancel

stop

time of day

alarm time

bell :
open window Window

close window

clock :
SystemClock

Figure 1: Alarm Clock Configuration Diagram

state as a result of providing services for clients and
requiring services from other objects. The lifecycle
behaviour of an object class may be expressed as a
statechart.

The states of the statechart represent the var-
ious stages that an object of a class may go
through. The transitions are labelled with either
state changing services provided by the class or ser-
vices required of other objects.

A service required of another object is prefixed
by a formal name for an object providing the ser-
vice. The name of the actual object is provided
by the configuration diagram. If two services re-
quests are prefixed by the same formal name then
they will be sent to the same object. If two ser-
vice request are prefixed by different formal names

then, depending on the actual configuration, they
may—or may not—be sent to different objects.

In the example the provided services set and can-
cel can change the state of an Alarm Clock. This
gives the statechart in figure 2 which approximates
the lifecycle of the instances of the Alarm Clock
class.

The alarm is initially off and can be set. Once
set it may be cancelled. The transition on the
timeupdate state indicates that the required service
C.time? is requested approximately every second.
(In the statechart we write /C.time?. The prefix
%’ is just a reminder that C.time? is a required
service.)

The Alarm Clock is a Harel AND-composition,
so time polling happens irrespective of whether the

30 ECOOP/OOPSLA '90 Proceedings October 21-25, 1990

[ALARMCLOCK i)

i a
|
: (alarmoff
: L
!
!

/C.time? :

. X

in timeupdate [0.5,1.5] sec : @ncel > cet
i
: (alarmon R
|

timeupdate :

!
|
1
|
|
t
i
I
I
'
'
|
-)
: J

Figure 2: Alarm Clock statechart

alarm is on or off. The alarm-on state can be re-
fined to show how an Alarm Clock interacts with
other objects.

In figure 3, the alarmon state is refined into two
states, quiet and ringing. In order to move from
quiet to ringing the openwindow service must be
requested from some object W. In the configuration
of the example, W is the bell window. The tran-
sition only occurs when the alarmtime is reached,
but we cannot specify that yet.

In the ringing state the window is closed after a
fixed duration or when the user stops it. The alarm
must be in the quiet state before an alarm setting
can be cancelled.

Not all services change the state of an object,
some just report on the value of attributes. These
services are called observers. In general requests
for observers, like any service, may not be allowed
in all states. For example we can only request the
top of a stack when it is non-empty. We enhance
statecharts to carry more information by adding
the name and types of the allowable observers to
each state of the statechart.

We also add the necessary arguments to services;

Qctober 21-25, 1990

ECOOP/OOPSLA '90 Proceedings

for example set(t:time) indicates the time, t, at
which the alarm must ring. Parameters are par-
titioned into input and output parameters. Input
parameters of a service may only be read by the
object providing the service. Qutput parameters
may only be updated by the providing object. We
indicate all the output parameters of a service by
listing them after a “|”. Thus C.time?(] t:time) has
an output parameter, ¢, and the value of ¢ is set by
the object C that provides the service time?.

Not all the attributes of an object need be visible.
However a complete specification may be impossi-
ble without them, so we treat-hidden attributes like
observers and add them to states, but indicate that
they are hidden by writing them in square brackets.

The enhanced statechart for the alarm clock is
shown in figure 4.

The alarm clock uses the C.time? to define
the timeofday. The attribute alarmtime is only in
scope when the alarm is set. The timed transition
from ringing to quiet is replaced by introducing a
hidden attribute, finish, which characterises how
long the bell window is open before it closes itself.
The brackets around finish indicate that it is is not

K}

ALARMCLOCK

(alarmoff

L

/C.time?

)cancel

in timeupdate [0.5,1.5] sec s

alarmon

timeupdate

/W.openwindow

ringing

_

/W.closewindow in ringing 60 sec

Figure 3: Refined Alarm Clock statechart

visible outside the alarm clock.

Above, we have extended statecharts with at-
tributes and observers. The extra information al-
lows the transitions of the machine to be specified.

A transition specification comprises the initial
and final state names of the transition and the ser-
vice name for the transition, together with a firing
condition and a post-condition. A transition spec-
ification should be given for each arc in the state-
chart.

A firing condition describes restrictions on a
transition imposed in terms of the attributes and
observers of the class. The firing condition is a
predicate which may mention attributes and ob-
servers. Where a service is provided which involves
input parameters from the environment, the firing
condition cannot mention the values of the parame-
ters, because this might involve rejecting a commu-
nication on the basis of the values communicated.

Any attribute, observer or state name may be
used in the firing conditions. Because attributes
and observers exist only for certain states of the
object, we use the logic of partial functions from

VDM [1].

32 ECOOP/QOOPSLA '90 Proceedings

A post-condition for a transition is a predicate
on the initial and final values of attributes and ob-
servers which characterises the effect of the transi-
tion. The initial value of some observer or attribute
s is written s . Each transition specification has
the frame-condition that any attribute or observer
that is not mentioned in a post-condition is unaf-
fected by the transition.

The transitions of the alarm clock are:

¢ timeupdate — timeupdate:
{true} /C.time?(|t) {timeofday =t }

e — timeupdate: {timeofday = 0}

¢ alarm off — alarm on:
{true} set(t) {alarmtime = t}

e alarm on — alarm off: {true} cancel {}

¢ quiet — ringing:
{alarmtime < timeofday < alarmtime + 1.5 }
/W.openwindow {finish = timeofday +60 }

e ringing — quiet:
{timeofday > finish } /W.closewindow {}

October 21-25, 1990

)cancd

ALARMCLOCK
(alarmoﬂ'
/C.time?
in timeupdate [0.5,1.5] sec r
alarmon

timeupdate

/W.openwindow

ringing

timeofday:
time

\ alarmtime:time

[finish:fime]

/W .closewindow

Figure 4: Alarm Clock enhanced statechart

e ringing — quiet:
{true} stop /W.closewindow {}

When interpreting the transition specifications
remember that the frame-condition ensures that
the only affected attributes are those that are men-
tioned. The request for time? updates the time-
ofday, alone. When an Alarmclock object is ini-
tialised the timeofday is set to an arbitrary value,
0. The transition from quiet to ringing sets the
bell window to be open for 60 seconds. The tran-
sition from ringing to quiet occurs when timeofday
reaches finish or when the alarm is stopped, in both
cases no observers or attributes are affected.

Some observers or attributes of a class may be
redundant, i.e. can be derived from others. The de-
rived observers and attributes can be specified as
invariant relations on the observers and attributes
used to annotate the states. An invariant specifica-
tion comprises a state name and the relation which
holds in that state.

For example an Alarm Clock may have an ob-
server, timetoaglarm which returns the length of
time before the bell window opens; timetoalarm is
only allowed in the quiet state, i.e. when the alarm

October 21-25, 1990

is set but not ringing. It would be specified by

quiet:
{timetoalarm = alarmtime - timeofday}

Informally we define an Objectchart specification of
an object class as a statechart together with a set
of transition specifications and a set of invariant
specifications.

3.3 Window Class and System Clock
Class

We now give an Objectchart specification of a sim-
ple text window class. For a window to be used in
the Alarm Clock application it has to provide only
the services openwindow and closewindow. To give
more examples of the Objectchart notation we con-
sider the following services

e move: ‘change window position on screen’

e openwindow:
iconise)’

‘display text on screen (de-

o closewindow: ‘iconise window’

ECOOP/QOPSLA '90 Proceedings 33

e type: ‘add a character to text contents’
e posn: ‘position of window on screen’

e area: ‘size of window’

The move operation only affects where the win-
dow is positioned on the screen. Typing is only per-
mitted when the window is open. Closing a window
reduces its size to a minimum and causes an icon
to be displayed. Typing a character only changes
the window contents. The Objectchart in figure 5
specifies this behaviour.

The attribute display represents the bit-mapped
display and holds the information that appears on
the physical screen. The transition specifications
are as follows.

e — location: {posn = origin }

e location — location:
{true} move(newposn) {posn = newposn}

o —closed: {contents = nil A area = minsize}

e open— closed:
{true} closewindow
{display = icontezt A area = minsize}

e closed— open:
{true} openwindow
{display = contents A area = mazsize}

s open— open:
{true} type(c)
{contents = contents . ¢ A display = contents}

The value origin determines the default position
for the window; mazsize and minsize are the areas
of open windows and closed windows respectively;
and icontert determines the text displayed in an
closed window. The infix “.” operator denotes
right concatenation.

When in the closed state the display shows an
iconic value. In the open state, the value of
the display must be updated whenever contents is
changed. This is ensured by the post-condition of
the openwindow and type transitions.

The System Clock class has very simple be-
haviour. It provides a single service time? and it is
always willing to accept a request for this service.

34 ECOOP/OOPSLA '30 Proceedings

4 System Behaviour

In the previous section we gave graphical descrip-
tions of classes and of configurations of particular
instances. These descriptions were easy to under-
stand and we exploited this to give informal ex-
planations of the behaviour of the alarm clock sys-
tem. However we did not discuss the relationship
between classes and objects, and we did not explain
how objects interact with each other. These issues
are addressed now.

In general this is a difficult problem. In this sec-
tion we show how Objectchart descriptions allow
us to relate system behaviour to the behaviour of
component objects.

There are two stages: first, the behaviours of
individual objects are defined and then these are
combined to define the behaviour of the overall sys-
tem. The approach in this section is more formal
than the rest of the paper, and could be omitted
on a first reading.

4.1 Object Interaction

Statecharts already provide a communication
mechanism, ([3]), but this is based on broadcast
communication which is not a good model of ob-
Jject interaction.

Objects in a system interact by generating and
receiving service requests. In an interaction, a
client object generates a service request to a named
server object. A client may send a request to many
server objects, and a server may receive a request
from many clients, but these interactions happen
one at a time. Our model of communication re-
flects this directly.

Formally, we define a service request to be a
triple comprising an identifier for the object which
generated the request, the name of the service re-
quest with any input or output argument values,
and an identifier for the object which received the
request. For example, a service request s generated
by object a and sent to the object b, is the triple

<a, s, b>

We model behaviour as the set of possible se-
quences of service requests. In this model only one
interaction takes place at a time, and each interac-
tion is completed before the next begins. We start

October 21-25, 1990

| T

WINDOW !
: display:text
|
| areareal
|
| contents:text
| s
I

move(newposn:coord) E ﬁ:losed
' L
i
'
. i
location : openwindow
posn:coord : closewindow
'
: (‘open
I
: L
I
|
|
|
| type(c:char) Q
|
' J

Figure 5: Window Class Objectchart

with the behaviour of a class and explain how to
derive the behaviour of an individual instance.

4.2 Class Behaviour

A class definition uses formal names rather than
actual object names. Target objects are indicated
by the formal names introduced by the Objectchart
and similarly, the class being defined is indicated by
the name self. For example, the openwindow ser-
vice request generated by the alarm self and sent
to the bell window object W is the triple

< self, openwindow, W>

Requests for provided services are generated by
anonymous clients; such clients are indicated by
the symbol ‘*’. For example the cancel request
received by the alarm clock is the triple

<* cancel, self>

An Objectchart definition of a class introduces
the services provided and required by the class, and
defines—by the underlying state machine and the
transition specifications—which sequences of ser-
vice requests are possible, and which are not.

We call this set of possible sequences, the traces
of the class. For a class X we write 7.(X) and think
of it as the ‘behaviour’ of the class.

As examples, consider the following traces in
T.(ALARMCLOCK) where the alarm is set to ring
after one second. In the first trace the alarm is
stopped as soon as it starts to ring:

<* set(12:00:00), self>

< self, time?(11:59:59), C>
< self, time?(12:00:00), C>
< self, openwindow, W>
<* stop, self>

< self, closewindow, W>

In the second trace the alarm is allowed to ring for
one minute before it stops itself:

<* set(12:00:00), self>
<self, time?(11:59:59), C>
< self, time?(12:00:00), C>
< self, openwindow, W>
< self, time?(12:00:01), C>

< self, time?(12:01:00), C>
< self, closewindow, W>

Oclober 21-25, 1990 ECOOP/OOPSLA '90 Proceedings 35

4.3 Object Behaviour

The behaviour of a class is a template for the be-
haviour of an instance of the class. More precisely,
the traces of a class are templates for the ways in
which an instance of the class might communicate
with other objects in its environment.

The traces of a class contain formal names for
objects which receive requests generated by in-
stances of the class. The configuration diagram
provides the actual names of these objects.

The traces of an object O, 7,(0), are derived
from the traces of its class by replacing formal ob-
Ject names with the corresponding actual object
names.

In the alarmclock example, the traces of the class
refer to the formal objects C and W. The config-
uration diagram provides the actual object names
clock and bell, respectively. For example the traces
from 7.,(ALARMCLOCK) given above, generate
the following traces of 7,(alarm).

<* set(12:00:00), self>
<self, time?(11:59:59), clock>
<self, time?(12:00:00), clock>
< self, openwindow, bell>

<* stop, self>

< self, closewindow, bell>

and

<* set(12:00:00), self>
<self, time?(11:59:59), clock>
<self, time?(12:00:00), clock>
< self, openwindow, bell>
<self, time?(12:00:01), clock>

<self, time?(12:01:00), clock>
< self, closewindow, bell>

4.4 System Behaviour

A system is a particular configuration of objects.
The behaviour of the system depends on the be-
haviour of all the component objects.

We model the behaviour of a system as a set
of traces of service requests received or generated
by the objects comprising the system. Roughly
speaking, it is the set of all system traces such that
each trace is ‘possible’ from the point of view of
each component object.

36 ECOOP/OOPSLA '90 Proceedings

We now give a more detailed explanation. Con-
sider a candidate trace ¢r and some object 0. We
must define what it means for the trace to be pos-
sible from the object’s point of view. First of all,
only part of ¢r is relevant to O, this is

treo O

the subtrace of service requests which are received
or generated by O. Other requests in the trace
are not even noticed by O. So, we have to check
whether or not the subtrace ¢tr > O is a possible
trace of O.

In order to check whether or not ¢r > O is a possi-
ble trace of O, we have to deal with some technical
details: tr > O uses actual names for all the objects
in the system. We derive a ‘localised’ trace, which
uses the special symbols self and *, as follows

e in each request, the actual object name O, is
replaced by the special object name self;

e in each request received by O, the name of the
object generating the request is replaced by
the special symbol *’.

We can now state that the system trace ir is
possible from O’s point of view if and only if the
localised trace local(tr > O) is in 7,(0).

The behaviour of a system S = {Oy,...,0,} is
defined to be

7,(S) = {tr | Vo € S-local(trvo) € T,(0)}

the set of traces which are possible from the point
of view of all the objects of the system.
From this definition, we have the following result:

For a system S composed of a finite num-
ber of objects, and a trace tr of service
requests, it is decidable whether the trace
is a possible behaviour of S.

As an example, consider the following trace of
the alarm clock system

ir =
<*, set(12:00:00), alarm>
<alarm, time?(11:59:59), clock>
<alarm, time?(12:00:00), clock>
<alarm, openwindow, bell>
<*, stop, alarm>
<alarm, closewindow, bell>

October 21-25, 1990

The subtraces of tr relevant the component objects
are

tr> alarm =
<* set(12:00:00), alarm>
<alarm, time?(11:59:59), clock>
<alarm, time?(12:00:00), clock>
< alarm, openwindow, bell>
<* stop, alarm>
<alarm, closewindow, bell>

tro bell =
< alarm, openwindow, bell>
<alarm, closewindow, bell>

tr o clock =
<alarm, time?(11:59:59), clock>
<alarm, time?(12:00:00), clock>

The localised versions are

local(tr > alarm) =
< ¥, set(12:00:00), self>
<self, time?(11:59:59), clock>
< self, time?(12:00:00), clock>
< self, openwindow, bell>
< * stop, self>
< self, closewindow, bell>

which is in 7,(alarm),

local(tr > bell) =
< ¥, openwindow, self>
<*, closewindow, self>

which is in 7,(bell) and
local(tr > clock) =
< ¥ time?(11:59:59), self>
< ¥ time?(12:00:00), self>

which is in 7,(clock). It follows that ¢r is a pos-
sible trace of the alarm clock system.

5 Conclusion

This paper has extended the statechart notation to
deal with object oriented software. The resulting
notation, Objectcharts, is an extended state ma-
chine specification technique which

e combines lifecycle behaviour of object classes
with a declarative specification of their pro-
vided services;

October 21-25, 1990

ECOOP/OOPSLA '90 Proceedings

o provides a basis for reasoning about system
behaviour from component specifications.

Communication in Objectcharts is based on ser-
vice request which is quite different from the broad-
cast mechanism provided by statecharts [3]. Our
approach is to define communication using simple
traces. In this paper we have outlined a semantics
and a formalisation is in preparation.

The example in this paper is a simple one-level
static system of objects and thus avoids dynamic
object creation and deletion and aliasing. The de-
sign, efficient implementation and documentation
of the dynamic systems can cause severe prob-
lems for OO development teams. Extending Ob-
jectcharts to deal with this is the subject of current
research.

References

[1] Jones C.B. Systematic Software Development
Using VDM. Prentice-Hall, 1986.

[2] Harel D. Statecharts: A visual formalism for
complex systems. Science of Computer Pro-
gramming, 8:231-274, 1987.

[3] Harel D., Pnueli A., Pruzan-Schmidt J., and
Sherman R. On the formal semantics of state-
charts. In Proceedings of the Second IEEFE Sym-
posium on Logic in Computer Science, pages
54-64, 1987.

[4] Jackson D. Composing data and process de-
scriptions in the design of software systems.
Master’s thesis, MIT, 1988.

[5] Mellor S.J. and Shlaer S. Object Oriented Sys-
tems Analysis: Modelling the world in data.
Prentice-Hall, 1988.

37

