Viewing Objects as

Patterns of Communicating Agents

Oscar Nierstrasz
Michael Papathomas

Université de Genéve
Centre Universitaire d’Informatique
12 rue du Lac, CH-1207 Geneva, Switzerland
E-mail: {oscar,michael}@cui.unige.ch, oscar@cgeuge51.biet
Tel: +41 (22) 787.65.80, Fax: +41 (22) 735.39.05

Abstract

Following our own experience developing a concurrent object-oriented language as well of that of other researchers, we
have identified several key problems in the design of a concurrency model compatible with the mechanisms of object-
oriented programming. We propose an approach to language design in which an executable notation describing the be-
haviour of communicating agents is extended by syntactic patterns that encapsulate language constructs. We indicate how
various language models can be accommodated, and how mechanisms such as inheritance can be modeled. Finally, we
introduce a new notion of types that characterizes concurrent objects in terms of their externally visible behaviour.

1. Introduction

The message-passing model of communication in object-oriented
languages appears to naturally support concurrent execution of au-
tonomous objects. This fact has led many researchers to try to ex-
ploit this autonomy in developing concurrent object-oriented lan-
guages [2], [15], [17], [22], [23], [30], [32]. Various forms of active,
message-passing objects, and passive, lockable objects have been
proposed and implemented. Unfortunately none of these approaches
has yet succeeded in resolving basic conflicts between concurrency
mechanisms and the encapsulation that is needed for the safe use and
reuse of object-oriented code [6], [14], [26], [27], [28].

We claim that the difficulty of the language design problem is due
largely to the lack of:

* widely accepted and well-understood models of concurrency
* good tools for prototyping languages

* a good understanding of reuse criteria for encapsulated soft-
ware

We propose a practical approach to the design of concurrent object-
oriented languages using a well-defined computational model of
communicating agents based on Milner's CCS [20) and Hoare's
CSP [13]. A compact executable notation called Abacus [24]) char-
acterizes the behaviour of agents in terms of possible communica-
tions with other agents. Various object models can be easily cap-
tured by varying the mapping between objects and agents, and by
varying the communication patterns that may take place. Program-
ming language constructs are designed by mapping syntactic pat-
terns to behavioural patterns. Since these mappings are straightfor-
ward translations to an executable notation, this can lead to a rapid
prototype of a language interpreter.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1990 ACM 089791-411-2/90/0010-0038...$1.50

38 ECOOP/OOPSLA '90 Proceedincs

In the following sections we will introduce our notation and out-
line how objects may be modeled. We shall then describe the design
space for approaches to object-oriented concurrency, detailing some
specific requirements for a consistent model of concurrent objects.
We then show how classes, inheritance and genericity can be mod-
elled as patterns of behaviour, and we argue the need for explicit re-
use criteria to be associated with concurrent objects. Finally, we
demonstrate that signatures are inadequate to express the valid use
and reuse of concurrent objects, and we propose a new approach that
views types and subtypes as partial specifications of the externally
visible behaviour of objects.

2. Viewing Objects as Communicating Agents

We take the position that objects, whether they be “active” or “pas-
sive,” and regardless of the particular object model of a language,
are naturally modeled as communicating agents. An agent is an en-
tity that may change state when it communicates with another agent.
Complex agents that encapsulate a collection of cooperating agents
may also change state due to hidden internal communications. Com-
munication is synchronous, occurring only if there exist matching
input and output offers to communicate between two agents. Con-
currency and reactive behaviour are easily captured in such a model.
The model is fully abstract in the sense that agents with the same ex-
ternal behaviour can be viewed as equivalent [20).

We have designed and implemented (in Prolog) an executable no-
tation called Abacus [24], modelled closely after CCS [20] and CSP
{13]. A behaviour expression specifies the behaviour of an agent or
of a system of agents by indicating the current input and output of-
fers of each agent, and the replacement behaviour of the agent
should the offer be accepted. A behaviour expression consists of
event names and agent names composed as follows:

e!p offer output e with replacement behaviour p

e ?p offer input e with replacement p

p+q behave like either p or q (exclusive choice)

p&q pandqmay communicate (concurrent composition)
nil make no offers

Additionally there are several operators that help to encapsulate sys-
tems of cooperating agents. These include restriction and relabel-
ling to hide or relabel selected offers, and label prefixing and filter-

October 21-25, 1990

ing to define scopes beyond which only “prefixed” offers are visible
(for details see [24]). Event names only appear in the context of in-
put and output offers. Wherever an agent name appears in the above,
a behaviour expression may be used instead. Finally:

p = behaviour-expression .

binds the name p to the expression that follows. The operators ! and
? have the highest precedence, and are followed, in order, by +, &
and :=. A formal semantics of Abacus is easily specified by a set of
transition rules [24]). These rules are implemented in a straightfor-
ward way in Prolog, specifying for any given behaviour expression
what events may take place, and what the replacement expression
will be. We further exploit Prolog in the examples that follow by us-
ing functors as agent names and lists and tuples as event names.

A trivial example of a behaviour expression is:
e?nil & elnil

This permits the communication event e to take place between the
agents specified by e?nil and elnil, with the net replacement:

ni} & nil
Note that nil & nil is equivalent to nil, as nothing further can happen.

In order to define a programming language, we map language
constructs to behavioural patterns in a denotational fashion [12]. We
use the term pattern to refer to any function that evaluates to Abacus
agents. The arguments may be arbitrary values, agents or syntactic
patterns of the language being defined. To give a flavour of the ap-
proach, we provide a few short examples of defining the semantics
of statements for a programming language. The stmt pattern takes
two arguments: a statement, and the continuation, that is the agent
that will perform the rest of the computation. For example, a skip
statement does nothing, so the semantics of skip is simply that of the
continuation:

stmt(skip,Cont) := Cont.

(We follow the Prolog convention of indicating variables by identi-
fiers with a leading upper-case character.) The semi-colon is a state-
ment separator. The interpretation of $1;S2 is simply an agent that
interprets S1 with the continuation being the agent that interprets S2:

stmt((S1;S2),Cont) .= stmt{S1,stmt(S2,Cont)).

Suppose that Boolean expressions are computed by agents that
terminate with an output offer of either true or false. We could then
specify an if command as follows:

stmt(if Bool then S1 else S2,Cont) = expr(Bool} &
true?stmt(S1,Cont) + false?stmt(S2,Cont).

In this example, the first agent expr(Bool) evaluates the expression
Bool and outputs either the value true or false. The second agent con-
sumes the value and becomes the agent that selectively evaluates the
appropriate clause of the if command.

For a more complete illustration of the approach, we refer the
reader to the Abacus specification of SAL [24], Agha’s Simple Ac-
tor Language developed to explain the actor model [1].

Within this framework, it is relatively straightforward to express
a variety of object models. To this end, it is convenient to model
messages as compound events, expressed as lists or tuples. As aref-
erence model, let us consider the following restrictions:

+ An object is an agent with a unique identity. It communicates
with other objects by sending call or reply messages, which are
compound events with the receiver explicitly identified.

+ call messages from a client object with identity Client to a serv-
er object with identity Server are of the form [Server,Msg,Cli-
ent].

Oclober 21-25, 1990

» reply messages to a client with identity Client are of the form
[Client,Reply].

An object with identity Id is characterized by the behavioural pattern
accept(ld):

accept(ld) := [Id,Msg,Client]} ? (call(ld,Client) + reply(ld,Client}) .

call(ld,Client) := [Server,Msg,|d] { wait(Id,Client) .

wait(ld,Client) := [Id,Reply] ? (cali(ld,Client) + reply(Id,Client)) .

reply(ld,Client) := [Client,Reply] | accept(Id) .

That is, object |d can accept a request from a Client, issue requests to
other Server objects, and eventually reply to Client. The pattern ac-
cept(ld) is a partial specification of behaviour, since it says nothing
about the contents of messages or the other objects used as servers.
It only guarantees that no new requests will be accepted while there
is a pending request.

A thread of control can be seen as a trace of call and reply events,
with the control at any point being with the object in one of the ab-
stract states call, or reply. Note that the idea of defining objects as
agents that conform to certain patterns of behaviour is similar to
Minsky's approach of characterizing behaviour by a set of laws [21].
By introducing variations in accept(/d) (i.e., by considering different
sets of laws), we can express the behaviour of both active and pas-
sive objects, multi-threaded objects, asynchronously communicat-
ing objects, and objects that make use of a variety of concurrency
control mechanisms.

3. A Design Space for Concurrent Object
Models

Although encapsulation of single-threaded, passive objects is rea-
sonably well-understood, the same is not true of concurrent objects.
Depending on the way that concurrency is handled in a language, en-
capsulation may be violated in a number of ways. In the simplest
case, if we take an object designed for use in a single-threaded ap-
plication and expose it to multiple concurrent clients, the concurrent
execution of methods can compromise the object’s internal consis-
tency.

On the other hand, even when an object is able to protect itself
from concurrent requests, it may be necessary to expose implemen-
tation details in order to protect the integrity of its clients (for exam-
ple, to avoid deadlock). For a language design to offer a reasonable
encapsulation model for concurrent objects, we suggest that at least
the following minimal set of criteria should be met:

*» Protection: all objects should be guaranteed of their internal
comsistency independently of their environment or the presence
of multiple threads.

» Scheduling: an object must be able to selectively refuse or de-
lay certain requests not only on the basis of its internal state, but
also depending on the contents of the request message [18].

o Interleaving: the desired external behaviour of an object
should not over-constrain its internal behaviour, for example,
internal concurrency should be permitted, as should multiple
“readers” for methods that do not cause state changes. Mecha-
nisms for suspending and interleaving threads must not com-
promise the consistency of “nearby” objects (e.g., enclosing
objects, subclass instances).

Protection and scheduling are naturally modeled by agents, as they
exercise complete control at all times over the messages they accept.
For example, a single-slot buffer with identity b can be trivially
specified as:

ECOOP/OOPSLA '90 Proceedings a9

buf = [b,(put,Value),Prod] ? [Prod,ok] !
[b,get,Cons] ? [Cons,Value] ! buf .

A producer p would send [b,(put,Value),p] messages, waiting for the
[p.ok] response, and a consumer ¢ would send [b,get,c] messages,
picking up the [c,Value] response. More elaborate scheduling of re-
quests can be effected by the use of internal message queues.

Interleaving of threads can be modeled by relaxing the restriction
that objects respond before accepting new requests. Internal concur-
rency is straightforward to model, as we can view complex agents as
being composed of more primitive agents.

With these criteria in mind, we may now consider our design
space according to following language classes {26], [27]:

1. The Orthogonal approach: objects and concurrency constructs
are independent, as in Smalltalk-80[11], Emerald [4] or Trellis/
Owl [22]. Semaphores, locks or monitors must be judiciously
utilized to achieve object protection.

2. The Heterogeneous approach: both data objects similar to
those found in sequential languages and protected “concurrent”
objects are supported. The protection of concurrent objects may
be accomplished by transactions, as in PAL [3], or by consid-
ering such objects as being active, as in the following approach.

3. The Homogeneous approach: threads are explicitly associated
with objects, instead of being an independent programming
construct. Hybrid [23], POOL-T [2] and ABCL/1 [32] fall into
this category.

Objects conforming to any one of these language classes can be eas-
ily modeled by communicating agents simply by varying the syn-
chronization policies observed. For example, objects of the orthog-
onal class would accept any request at any time, creating an internal
agent to perform the method associated with the request. The meth-
od agents synchronize by consulting semaphore or lock agents, such
as:

lock(Name) := [acquire,Name] ? [release,Name] ? lock(Name) .

Scheduling and interleaving of threads can be facilitated by intro-
ducing asynchrony while either sending or accepting either calls or
replies, resulting in a variety of communication styles:

* Asynchronous call: the client object creates a messenger agent
that delivers the message; the client is free to continue some
other activity.

* Message queues: the server object contains an autonomous
queue agent that filters and queues requests; the server can
schedule multiple requests.

* Asynchronous reply: the server object creates a messenger to
deliver the reply; the server can immediately switch to another
Tequest.

» Futures: instead of the actual client accepting the reply, it is
picked up by a future agent [1}, which saves the reply until it is
needed; if the client asks for the reply before the future has re-
ceived it, it will block.

These language classes and concurrency mechanisms may be tech-
nically equivalent in terms of expressive power, but there are pro-
found differences in terms of convenience when packaging objects
for re-use. As a concrete example, the first version of ConcurrentS-
malltalk [30] did not support satisfactory mechanisms for schedul-
ing and interleaving concurrent threads. As a result, the implemen-
tation given of a bounded buffer has a more complex interface than
the usual put and get operations: the producer and consumer are re-
quired to check the return value of put and get in order to find out
whether the buffer is empty or full, and suspend their own activity,

40 ECOOP/OOPSLA '90 Proceedings

if necessary. A wake-up method to be invoked asynchronously by
the buffer must also be supplied. This problem was corrected in a lat-
er version of ConcurrentSmalltalk [31] by providing a monitor-like
synchronization mechanism which enabled the buffer itself to sus-
pend client threads when the buffer is empty or full. In this way the
integrity of the buffer does not depend on whether its clients are
well-behaved.

4. Software Composition with Reusable
Patterns

The three mechanisms most notably responsible for the reusability
of object-oriented software are object classes, class inheritance and
genericity:
* Classes: all objects are instances of an object class, a template
for objects that share the same internal structure and the same
methods for responding to clients’ requests.

¢ Class inheritance: subclasses can be defined as incremental
modifications [29] of superclasses, with which they share some
structure and some methods.

* Genericity: a generic class is a template for an object class, pa-
rameterized by the names of other object classes used within its
specification.

Each of these mechanisms can be viewed as a means to reusing a be-
havioural pattern encapsulated as a parameterized syntactic pattern.
Object classes are templates for objects parameterized by initializa-
tion values: an object instance is generated by calling a constructor
for the class, optionally supplying values used to initialize the new
object. Generic classes are a straightforward extension of this idea,
with the main difference being that the parameters may be object
classes rather than just values. A generic “container” class, such as
a list, can be used to generate, for example, a list of integers as well
as a list of windows.

We can view inheritance in the same way, by distinguishing be-
tween the two different ways in which a class may be used, namely
to generate objects or to generate subclasses. Let us consider, for ex-
ample, an object model in which each object consists of a control
agent implementing the methods, and a hidden set of concurrent
agents implementing the instance variables. A class might be de-
fined by a pattern, as follows:

classA(ld) := aMethods(Id) & aVars .

We shall ignore, for the sake of brevity, initialization of variables,
and how the object can protect its instance variables from being ac-
cessed by other objects. (This can be done either by using the restric-
tion operator mentioned earlier to hide communication offers in-
volving instance variables [20], or one may use filtering to hide all
but selected offers to communicate with the outside world [24].)

The pattern classA(Id) can only be used to generate objects. In or-
der to define a subclass, we need the concept of a generator, which
is a template for a class, parameterized by additional behaviour (i.e.,
methods and instance variables):

genA(ld,MRest,VRest) := aMethods(ld) + MRest & aVars & VRest.

A class is instantiated from its generator by binding the “additional”
behaviour to nil:

classA(ld) ;= genA(ld,nil,nil) .
A subclass, on the other hand, could be created by supplying as pa-

rameters the behaviour of the additional instance variables and
methods. To permit further subclassing, however, we should first

October 21-25, 1990

create a subclass generator, adding the new behaviour and possibly
introducing new parameters:
genB(ld,MRest,VRes?) := genA(ld, bMethods(id)+MRest,
bVars & VRest) .
classB(ld) := genB(id,nil,nil) .
The subclass pattern classB(ld) then results as if it had been directly
defined by:

classB(ld) := aMethods(Id) + bMethods(id) & aVars & bVars .

Overriding of inherited methods and instance variables could be
handled in the same way that constructors permit default initializa-
tion of instance variables to be overridden: if the default behaviour
of amethod or instance variable is not what is desired, it can be sim-
ply re-assigned. (At present we support no means to do this in Aba-
cus; “overriding” and name-conflict resolution for multiple inherit-
ance is only possible by explicitly stating what to inherit.)

Note that our approach resembles somewhat that of Cook [9] who
uses both *“generators” and *“wrappers” to develop a denotational se-
mantics for functional objects. Functional objects, however, are pure
values, and thus cannot be used to directly model side effects or re-
active behaviour, in contrast to the case where communicating
agents are used as a semarntic target.

Although we do not argue that inheritance in object-oriented lan-
guages should be subsumed by parameterized software templates,
we feel that modeling inheritance in terms of incremental modifica-
tions in the behaviour of communicating agents helps to expose se-
mantic confusion in the design of an inheritance mechanism for a
language, and thus leads to more robust language design.

5. Viewing Types as Partial Specifications of
Behaviour

The key problem in designing a concurrency model consistent with
the principles of object-oriented programming is how to package
concurrent objects so that instantiation and inheritance can be safely
applicd without violating encapsulation [6], [14], [26], [28]. Signa-
tures provide an abstract view of objects hiding implementation de-
tails, and thus furnish useful notions of substitutability, subtyping
and type-checking. Unfortunately signatures fail to provide enough
information about the externally visible behaviour of objects to
guarantee valid use. We propose a new notion of types as partial
specifications of external behaviour that extends substitutability and
subtyping to concurrent objects.

A signature is a list of the operations (messages) understood by
the object, together with their argument and return types; a subtype
may add operations, permit existing operations to accept a wider
range of argument types, or restrict the range of values returned by
operations [8]. Signatures are inadequate to describe the possible in-
teractions between concurrent objects and their clients, primarily be-
cause they do not take into account variations in behaviour over
time:

« Mutability: an operation that allows one to set the state of an
object, taking as an argument the “value” to be set, cannot be
included in a subtype signature if the subtype refines the value
space, since the more specific arguments required can put a cli-
ent in error (see the discussion on “aging functions” in {10]).

* Changing roles: an object that presently conforms to a type
specification may no longer conform in the future: teenager can
therefore not be viewed as a subtype of person, even though the
former may be signature compatible to the latter.

October 21-25, 1990

» Scheduling: concurrent objects exhibit non-uniform service
availability as they attempt to schedule requests. Although a
bounded buffer may support a read operation, there is no guar-
antee the request will return if no matching write has been is-
sued.

o Interleaving: signatures in no way capture the interactions be-
tween an object and multiple concurrent clients.

From the client’s point of view, a type should specify just enough in-
formation about an object to express the valid patterns of communi-
cation. We can interpret this in our context as meaning that (1) nei-
ther the client nor the server sends any inappropriate messages (i.e.,
safety), and (2) requests will be serviced (i.e., liveness).

It is convenient to think of types and subtypes in terms of partial
specifications of behaviour and substitutability. In this view, to say
that object x is of type t is the same as saying that t(x) is true. Further-
more, if s is also a type, and we know that all objects that satisfy s
also satisfy t, then we say that s is a subtype of t. In effect, a type de-
scribes a “‘software contract” [19] between an object and its clients:
a subtype is simply a stronger contract. For a client that expects an
object of type t, we may substitute any object of subtype s.

In the domain of communicating agents, a concurrent type partial-
ly specifies the possible interactions between an agent and its peers.
Consider, for example, the following partial specification of single-
slot buffers:

buf0(id) := [Id,{put,X),Prod] ? [Prod,ok] ! bufi(ld) .

buf1(ld) := [Id,get,Cons] ? [Cons, Y] ! bufO(ld) .

This says that buf0 alternately accepts requests from producers and
consumers, but says nothing about the values that will be returned to
the consumer (since Y is unbound). The implementation of the sin-
gle-slot buffer buf given earlier satisfies this specification in the
sense that producers and consumers that expect an object of type
buf0 will be satisfied with buf. Note that bufO can equivalently be
viewed as a specification of a non-deterministic agent that provides
random values to consumers. In this sense, buf is simply more deter-
ministic than bufo.

Interestingly, signatures are completely subsumed by this view of
types:

bufsig(ld) :=[Id,(put,X),Prod] ? [Prod,ok] ! bufsig(ld)

+ [id,get,Cons] ? [Cons, Y] ! bufsig(id) .

bufsig is a partial specification of an unbounded buffer, since there
is no limit to the number of put requests that can be made. It also per-
mits the buffer to return arbitrary values, even when the buffer is
empty. Note that bufsig can be viewed as a subtype of buf0, since any
object that satisfies bufsig can be safely used where an object of type
buf0 is expected.

We would like to define a subtype relation, s:<t, where s is a sub-
type of t, with the following properties:

1. s accepts at least the input offers of t
2. s presents at most the output offers of t

3. if s makes some input or output offer e with replacement sr,
where e is an offer also made by t (thus expected by clients),
then there is a replacement tr of t upon event e such that sr:<tr

4. if t makes some offer, then s must make at least one offer that t
does

These criteria apply only to computation paths reachable by commu-
nications with the client. For example, the second condition doesn’t
apply to responses that s would make to a request that the client will
not make (i.e., because t does not permit it).

ECOCP/OOPSLA '90 Proceedings 41

According to these criteria, we can conclude that bufsig(ld):<-
bufo(ld). Note that we treat input and output offers asymmetrically,
in contrast to e.g., observation equivalence [20]. We justify this view
by noting that input offers correspond to safety conditions (i.e., what
messages the client can safely send), whereas output offers corre-
spond to liveness conditions (i.e., the range of possible values the
client can expect as a reply).

Unfortunately, our conditions appear to be necessary, but not suf-
ficient. For example, consider an agent funnybuf that behaves just
like buf, except that it blocks if a consumer tries to get a value before
the producer puts anything, i.e.,

funnybuf := buf + [b,get,Cons]?nil .

This agent would conform to buf0 according to our requirements, but
would non-deterministically deadlock in the presence of concurrent
producers and consumers. Further constraints on the “services”
specified by types and subtypes appear to be necessary to resolve
this problem.

Within this framework for understanding concurrent types, we
plan to investigate precisely which kinds of specifications will be
useful for characterizing reuse criteria, and under which the circum-
stances type-checking will be feasible and practical. (If types are al-
lowed to specify too much, “type-checking” becomes equivalent to
program verification!) We have not attempted to unify object types
and message types, since objects are agents, but messages (events)
are pure values. In particular, an object cannot be sent as part of the
contents of a message, since objects are not values: one may send an
object id, or a value representing the state of the object, or even a val-
ue representing the behaviour of the object, but not the object itself.
Since message contents are values, type-checking of communica-
tions can be handled in a more traditional way [8].

Two promising directions for further work are (1) to reconsider
path expressions [7] as a means to describe abstract behaviour, per-
haps along the lines of Procol [5], and (2) to use a restricted form of
temporal logic [16] using abstract states to express the external be-
haviour of an object in terms of liveness and safety conditions, We
are presently investigating the properties of interaction conform-
ance, which characterizes agents in terms of their possible interac-
tions with a set of observers [25].

6. Concluding Remarks

The clean integration of concurrency features into object-oriented
languages is still an open problem. We have proposed a reference
model for the design of concurrent object-oriented languages based
on communicating agents, and we have presented a compact execut-
able notation which can be used as a semantic target for language
specification.

Although a large variety of powerful and expressive mechanisms
have been proposed and included in various languages, it has proved
difficult to devise an approach that is at once sufficiently powerful
1o easily express solutions to standard concurrency problems, and
also minimizes the difficulties of reusing concurrent objects, wheth-
er by inheritance, or by other mechanisms for software composition.
We claim that the majority of these problems result not so much
from a particular choice of concurrency mechanisms as from a lack
of good methods for encapsulating objects and specifying reuse cri-
teria. To rectify this situation, we propose a new notion of object
type that characterizes concurrent objects in terms of their externally
visible behaviour.

We are working towards the design of a new generation of con-
current object-oriented language by:

42 ECOOP/OOPSLA '90 Proceedings

» Identifying and attempting to resolve the key conflicts between
concurrency and object-oriented software composition [26],
[27].

« Continuing to use Abacus as a platform for exploring various
models of concurrent objects [24].

* Developing a pattern language that will permit syntactic pat-
temns to be bound to behavioural patterns in Abacus.

* Developing a polymorphic type model for concurrent objects
that partially specifies the behaviour of objects in terms of safe-
ty and liveness conditions over interactions with clients [25].

References

[1] G.A. Agha, ACTORS: A Model of Concurrent Computation in
Distributed Systems, The MIT Press, Cambridge,
Massachusetts, 1986.

[2] P.America, “POOL-T: A Parallel Object-Oriented Language,”
in Object-Oriented Concurrent Programming, ed. A.
Yonezawa, M. Tokoro, pp. 199-220, The MIT Press,
Cambridge, Massachusetts, 1987.

[3] A.Bjomerstedt and S. Britts, “AVANCE: An Object
Management System,” ACM SIGPLAN Notices, Proceedings
OOPSLA 88, vol. 23, no. 11, pp. 206-221, Nov 1988,

[4] A.Black, N. Hutchinson, E. Jul, H. Levy and L. Carter,
“Distribution and Abstract Data Types in Emerald,” IEEE
Transactions on Software Engineering, vol. SE-13, no. 1, pp.
65-76, Jan 1987.

{51 J.vandenBos, “PROCOL -- A Parallel Object Language with
Protocols,” ACM SIGPLAN Notices, Proceedings OOPSLA
’89, vol. 24, no. 10, pp. 95-102, Oct 1989.

[6] J-P.Briotand A. Yonezawa, “Inheritance and Synchronization
in Concurrent OOP,” Proceedings of the European Conference
on Object-oriented Programming, pp. 35-43, Paris, France,
June 15-17, 1987.

[7] R.H. Campbell and AN. Habermann, “The Specification of
Process Synchronization by Path Expressions,” in Operating
Systems, International Symposium, ed. E. Gelenbe, C. Kaiser,

Lecture Notes in Computer Science 16, pp. 89-102, Springer-
Verlag, 1974.

[8] L.Cardelli and P. Wegner, “On Understanding Types, Data
Abstraction, and Polymorphism,” ACM Computing Surveys,
vol. 17, no. 4, pp. 471-522, Dec 1985.

{91 Wm. Cook, “A Denotational Semantics of Inheritance,” ACM
SIGPLAN Notices, Proceedings OOPSLA 89, vol. 24, no. 10,
pp. 433-443, Oct 1989.

[10] S. Danforth and C. Tomlinson, “Type Theories and Object-
Oriented Programming,” ACM Computing Surveys, vol. 20,
no. 1, pp. 29-72, March 1988.

[11} A. Goldberg and D. Robson, Smalltalk 80. the Language and
its Implementation, Addison-Wesley, May 1983.

(12] M.J.C. Gordon, The Denotational Description of Programming
Languages, Springer-Verlag, 1979.

[13] C.A.R. Hoare, Communicating Sequential Processes, Prentice-
Hall, 1985.

October 21-25, 1990

[14] D.G. Kafura and K.H. Lee, “Inheritance in Actor Based
Concurrent Object-Oriented Languages,” Proceedings of the
Third European Conference on Object-oriented Programming,
pp- 131-145, Cambridge University Press, Nottingham, July
10-14, 1989.

[15] B.B. Kristensen, O.L. Madsen, B. Mgller-Pedersen and K.
Nygaard, “The BETA Programming Language,” in Research
Directions in Object-Oriented Programming, ed. B. Shriver, P.
Wegner, pp. 7-48, The MIT Press, Cambridge, Massachusetts,
1987.

[16] L. Lamport, “Specifying Concurrent Program Modules,” ACM
TOPLAS, vol. 5, no. 2, pp. 190-222, April 1983.

[17] H. Lieberman, “Concurrent Object-Oriented Programming in
Act 1,” in Object-Oriented Concurrent Programming, ed. A.
Yonezawa, M. Tokoro, pp. 9-36, The MIT Press, Cambridge,
Massachusetts, 1987.

[18] B. Liskov, M. Herlihy and L. Gilbert, “Limitations of
Synchronous Communication with Static process Structure in
Languages for Distributed Computing,” 13th Symposium on
Principles of Programming Languages, St. Petersburg Beach,
Florida, Jan 13-15, 1986.

{19] B. Meyer, Object-oriented Software Construction, Prentice
Hall, 1988.

[20] R. Milner, Communication and Concurrency, Prentice-Hall,
1989.

[21] N.H. Minsky and D. Rozenshtein, “A Law-Based Approach to
Object-Oriented Programming,” ACM SIGPLAN Notices,
Proceedings OOPSLA 87, vol. 22, no. 12, pp. 482493, Dec
1987.

[22] J.E.B. Moss and W.H. Kohler, “Concurrency Features for the
Trellis/Owl Language,” Proceedings of the European
Conference on Object-oriented Programming, pp. 223-232,
Paris, France, June 15-17, 1987.

[23] O.M. Nierstrasz, *“Active Objects in Hybrid,” ACM SIGPLAN
Notices, Proceedings OOPSLA ’87, vol. 22, no. 12, pp. 243-
253, Dec 1987.

October 21-25, 1990

[24] O.M. Nierstrasz, ““A Guide to Specifying Concurrent
Behaviour with Abacus,” in Object Management, ed. D.C.
Tsichritzis, Centre Universitaire d'Informatique, University of
Geneva, July 1990, (To be submitted for publication).

[25] O.M. Nierstrasz and M. Papathomas, *“Towards a Type Theory
for Active Objects,” in Object Management, ed. D.C.
Tsichritzis, Centre Universitaire d'Informatique, University of
Geneva, July 1990, (Working Paper).

[26] M. Papathomas, “Concurrency Issues in Object-Oriented
Programming Languages,” in Object Oriented Development,
ed. D.C. Tsichritzis, pp. 207-245, Centre Universitaire
d'Informatique, University of Geneva, July 1989,

[27] M. Papathomas and D. Konstantas, “Integrating Concurrency
and Object-Oriented Programming — An Evaluation of Hybrid”
in Object Management, ed. D.C. Tsichritzis, Centre
Universitaire d'Informatique, University of Geneva, July 1990.

[28] C. Tomlinson and V. Singh, “Inheritance and Synchronization
with Enabled Sets,” ACM SIGPLAN Notices, Proceedings
OOPSLA 89, vol. 24, no. 10, pp. 103-112, Oct 1989.

[29] P. Wegner and S. B. Zdonik, “Inheritance as an Incremental
Modification Mechanism or What Like Is and Isn’t Like,” in
Proceedings of the European Conference on Object-oriented
Programming, ed. S. Gjessing and K. Nygaard, Lecture Notes
in Computer Science 322, pp. 55-77, Springer Verlag, Oslo,
August 15-17, 1988.

[30] Y. Yokote and M. Tokoro, “Concurrent Programming in
ConcurrentSmalltalk,” in Object-Oriented Concurrent
Programming, ed. A, Yonezawa, M. Tokoro, pp. 129-158, The
MIT Press, Cambridge, Massachusetts, 1987.

[31] Y. Yokote and M. Tokoro, “Experience and Evolution of
ConcurrentSmalltalk,” ACM SIGPLAN Notices, Proceedings
OOPSLA '87, vol. 22, no. 12, pp. 406415, Dec 1987.

[32] A. Yonezawa, J-P Briot and E. Shibayama, “Object-Oriented
Concurrent Programming in ABCL/1,” ACM SIGPLAN
Notices, Proceedings OOPSLA '86, vol. 21, no. 11, pp. 258-
268, Nov 1986.

ECOOP/OOPSLA '90 Proceedings 43

