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Bureaus cannot live without a host,
being true parasitic organisms. ..

A cooperative on the other hand

can live without the state.

That is the road to follow.

The building up of independant units

to meet needs of the people

who participate in the functioning of the unit.

- William S. Burroughs, “The Naked Lunch”

Abstract

We introduce a novel concurrent logic programming
language, which we call LO, based on an extension
of Horn logic. This language enhances the pro-
cess view of objects implementable in Horn-based
concurrent logic programming languages with pow-
erful capabilities for knowledge structuring, lead-
ing to a flexible form of variable-structure inheri-
tance. The main novelty about LO is a new kind of
OR-concurrency which is dual to the usual AND-
concurrency and provides us with the notion of
structured process. Such OR-concurrency can be
nicely characterized with a sociological metaphor as
modelling the internal distribution of tasks inside «
complez organization; this complements the exter-
nal cooperation among different entities accounted
for by AND-concurrency.

1 Introduction

Actor languages [1] have been introduced to pro-
vide linguistic support for open systems [13]. The
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metaphor “programs as societies” [16] felicitously
characterizes object-oriented programming as is
possible in such languages: objects (i.e. actors)
form a community of interacting, cooperating indi-
viduals. The purpose of this paper is pushing this
metaphor one step forward, in that we aim to deal,
in the context of object-oriented programming, with
communities functioning on a more sophisticated
principle: indeed, communities where not just sim-
ple individuals, but also organizations of individuals
cooperate. Nowadays societies, with the complex
tasks they have to perform, are in fact most natu-
rally modelled in this way. There are good reasons
why this extended metaphor would lead to an im-
provement of the Actor model of computation.
First, let us observe that an organization is char-
acterized by essentially two kinds of behaviours:

o internal distribution: the situation when a
complex task is dealt with by partitioning it in
several subtasks distributed to different parts
of the internal structure of the organization.

e ezternal cooperation: the situation when an or-
ganization is not adequate at all for performing
a certain task, although it does need the result
of performing it; in this case, it will ask the
cooperation of another organization with the
necessary know-how; but the overall handling
of the request may end up as being a complex
task in itself.

For example, a company working in mechanical en-
gineering may commission a CAD simulation to a
software company: the exact details of the request
will be formulated by its production division, while
its administrative division will take care of the pay-
ment upon delivery of the product. As for the soft-
that copying is by permission of the Association for Computing
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ware company, one of its divisions will first provide
a “high level” prototype of the requested product;
later on, another division will work on a more effi-
cient “low level” implementation.

This distinction about the two options available
for an organization to handle different kinds of tasks
gives us an interesting insight on the sharing of
knowledge in object-oriented systems. For we can
think of an object as of an organization obtained
by composing together different subobjects, which
can interact in the fulfillment of complex duties:
we identify this situation with the internal distri-
bution of tasks. On the other hand, objects may
also delegate to other (completely separate) objects
tasks which fall without their degree of behavioural
specialization: this is the case corresponding to ex-
ternal cooperation.

In its usual formulation, the Actor model does
not make a distinction between these two possibil-
ities, or rather accounts for everything in terms of
the second one. In fact, all the sharing of knowledge
is in general obtained by creating delegates, which
may in turn refer to other delegates. Therefore,
it becomes all too easy proliferating “bureaucrat”
objects, which waste computing energy for the only
purpose of delivering requests for tasks someone else
is going to doj; this increases the overall entropy of
the system, and burdens it with a heavy communi-
cation protocol (see [23] for some recent considera-
tions on this problem). By contrast, if the sharing of
knowledge comes also from composing objects into
objects, then the communication necessary for the
internal distribution of a complex task in a given ob-
Ject can be achieved in a purely static manner, sim-
ply by permitting the relevant subobjects to trigger
the methods needed to solve the corresponding sub-
tasks. In other words, the given object inherits the
necessary knowledge, as opposed to delegating the
task.

In the model of computation we are going to pro-
pose, objects can be viewed as organizations capa-
ble of solving tasks both in terms of internal dis-
tribution and of external cooperation. Our starting
point is the family of concurrent logic programmin g
languages [20], where actors can be elegantly imple-
mented as AND-concurrent, stream-communicating
processes [22]. A simple extension in the logic un-
derlying these languages, given by the introduction
of a novel form of concurrent disjunction (denoted
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by the symbol @), will provide us with the ca-
pabilities of structuring such processes to support
an “organization-like” style of programming. We
have shown elsewhere [4, 2, 3, 5] that this exten-
sion finds a rigorous proof-theoretic counterpart in
Linear Logic, a logic recently introduced to pro-
vide a theoretical basis for the study of concur-
rency [8]. The programming language LO (for Lin-
ear Objects), which we have designed according to
these principles, is therefore characterized by two
kinds of concurrency:

e the OR-concurrency embodied in the disjunc-
tion @, to account for internal distribution of
subtasks

o the AND-concurrency embodied in the con-
Jjunction &, to account for external cooperation

Thus, the sociological duality in the behaviour of or-
ganizations is directly reflected into a corresponding
logical duality in the operational semantics of the
language.

In virtue of this more expressive syntax, we can
write programs burdened by lesser run-time over-
head than in standard Actor systems: in fact, ob-
jects are identified with structured processes, and
many complex tasks can thereby be automatically
partitioned internally to single objects, instead of
requiring the creation of new processes. On the
other hand, such a “low entropy” model of com-
putation is not bought at the price of institutional
rigidity: we shall see that our cooperating organiza-
tions are amenable to being modified in the course
of events via addition, deletion and change of role
of elements in their structure.

This paper is organized as follows. In Section 2
we shall introduce the syntax and the operational
semantics of LO. In Section 3 a sample applica-
tion will demonstrate how the novel notion of OR-
concurrency adds powerful knowledge structuring
capabilities to the process view of objects which
can be modelled with concurrent logic programming
languages. In Section 4 we shall briefly describe the
current state of implementation of the system. Fi-
nally, in Section 5 we shall compare our approach
with related work.
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2 Concurrent Structured Pro-
cesses

2.1 The Process View of Objects

Concurrent logic programming languages based on
Horn logic [20] provide an elegant implementation
of objects (i.e. actors) as proof processes commu-
nicating with each other via shared variables [22].
Such processes may be perpetual, and can be sus-
pended and then resumed upon interaction with
the user; change of state is achieved side-effect free
by performing an inference step which replaces a
subgoal by 0, 1 or more subgoals. Thus, as op-
posed to sequential logic programming languages
like Prolog, which are transformational systems, in
the sense that given a certain input they will com-
pute a certain output and then terminate, concur-
rent logic programming languages are reactive sys-
tems, which continuously interact with the environ-
ment [12]. Alternatively, they could be character-
ized as open systems, in the sense of [13].

Let us rapidly sketch the notion of process char-
acterizing this class of languages. In this frame-
work, an object state transition is identified with
an inference step in the proof procedure. Admissi-
ble transitions are specified as Horn clauses of the
form

old_state :- new_state.

old_state and new_state are atomic formulae (lit-
erals) encoding, respectively, the initial and the fi-
nal state of the transition. Typically, the predicates
of these formulae will be the same, and represents
the class of the object. The arguments of the for-
mulae are the slots and communication streams of
the object. For example,

point(In,5,7,0ut)

encodes a point in a 2-dimensional space with co-
ordinates 5,7 and communication streams In,0ut
(input and output, respectively). A clause

point([proj_x|In],X,Y,0ut) :-
point(In,X,0,0ut).

specifies a transition, triggered by the message
proj-x on the input stream, which resets the second
coordinate of the point (i.e. applies a projection on
the X-axis). In the case of the object above, firing
of this transition would change its state as follows:
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point(In,5,0,0ut)

Similarly, objects can be, respectively, created and
terminated by clauses of the form

old_state :- new_state & created_state.
final_state.

The first clause specifies a transition with cre-
ation of a new process while the second clause spec-
ifies the condition for terminating of a process.

The main problem with this approach is knowl-
edge sharing: state transitions specified for given
objects cannot be used by objects corresponding to
instances of more specific classes. For example, the
clause above, processing the message proj x for 2-
dimensional points, cannot be applied to a coloured
2-dimensional point like the one encoded in the fol-
lowing atom:

point(In,5,7,red,0ut)

In fact, unification is not possible between this atom
and the head of the clause. To cope with this prob-
lem one can simulate delegation [22] or even add
it as a primitive to the language [15, 7], but here
we have in mind a more static, albeit fully flexible,
solution.

2.2 The Principle of Organizational In-
heritance

As should be clear, objects in Horn-based concur-
rent languages do not really qualify for the t:tle of ¢
organizations”: for, as much as they are cax:ble of
evolving through time as complex human conglom-
erates can do, they are barred from doing this in the
modular fashion which is an unescapable feature of
real-life social behaviour — that is, they miss what
makes subgroups of a given community capable of
independent mutation while still remaining part of a
larger social structure. Seen from a linguistic view-
point, ob jects suffer from the expressive narrowness
of being packaged within single predicates, where
one cannot talk of evolution of a subpart without
mentioning the remaining idle parts.

The shift in perspective we introduce with LO is
simple and radical: objects are encoded as multisets
(i.e. unordered lists) of independent units. For ex-
ample, an instance of coloured 2-dimensional point
can be represented as follows:

point, In, x(5), y(7),
colour(red), out(Out)
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Given the order in which this multiset has been dis-
played, the first literal is meant to identify the corre-
sponding object as a point, the second one encodes
theinput stream, the third and the fourth one corre-
spond to the two coordinates, the fifth one refers to
the colour and the sixth one to the output stream.
Transitions will be consequently specified in an ex-
tended syntax with respect to that of Horn-clause
logic, so as to be capable of applying them to sub-
parts of objects. Indeed, firing of transitions will be
inspired by the following Principle of Organiza-
tional Inheritance:

An organization can solve a certain task if
one of its suborganizations can solve it.

Operationally, this is achieved by allowing tran-
sitions as formulae with multiple literals in their
head, connected together via the novel connective
@; each literal identifies an object component which
is going to be involved in the change of state. Thus,
the transition for projecting two-dimensional points
on the first axis can now be specified as follows:

point @ [proj_x|In]l @ y(Y) <-
point @ In @ y(0).

This transition can be applied to any object corre-
sponding to a supermultiset (modulo unification)
of the multiset of literals in the head, like the
coloured two-dimensional point above. The ob-
ject changes its state by replacing the literals in
the head with those in the body. In terms of the
“objects-as-organizations” metaphor, this means
that a coloured two-dimensional point can project
on the X-axis, since its subpart corresponding to
the multiset

point, In, y(¥)

can do it.

2.3 Adding Structure to Processes

Formally, the evolution of a set of processes can be
represented as the building of a proof tree. Each
node in a tree encodes a state of a process and
branches encode state transitions. Each transition
has a unique initial state but may have 0, 1 or more
final states. In Horn logic, each node of a tree is la-
belled with a single goal (an atom or a conjunction
of atoms) and the allowed transitions are described
in terms of two inference figures:
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¢ Duplication

Gy Go
G1&Go
¢ Propagation
54
A

if A - G is a clause in the program.

For instance, a clause p :- ¢&r can be triggered
by any process in state p and the corresponding
transition is encoded in the tree as

q r
q&r
D

This subtree has the following bottom-up reading:
the initial state of this transition is p and the final
states are ¢ and r.

Seen from this standpoint, the main idea behind
LO consists of enriching the structure of the proof
trees, thus achieving a notion of “structured pro-
cess” capable of supporting an “organization-like”
style of programming. Instead of dealing with nodes
labelled by single (conjunctive or atomic) goals, we
associate nodes with multisets of goals, calied “cor.-
texts”. The syntax of the formulae and tlz proof
inference figures are consequently enriched .o :ake
full advantage of the structure of the conte.”z. We
shall distinguish three kinds of non-atomic :_:xu-
lae: views, goals and methods. They are buiic trom
atomic formulae, using four main connectives: &,
@, « and <. The st two connectives correspond,
respectively, to concuzrant forms of conjunction and
disjunction. The other two correspond to two dif-
ferent, albeit strictly related, forms of implication.
As shown in [4, 2, 3, 5], all these connectives can
be reconstructed in terms of Linear Logic connec-
tives 10, 9]; in fact, & is the “additive” conjunction
of Linear Logic, @ is the “multiplicative” disjunc-
tion, « is linear implication and <« is linear im-
plication combined with the modality “of course”.
We also use the logical constant T (“top” in Linear
Logic).

Let A,V,G and M be syntactic variables ranging,
respectively, over atoms, views, goals and methods.
V,G and M are defined from A as follows:

V=A4|Way,
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G=A|T|Gi1@G, | G1&G,
M=V «<G|V<G

A program is a set of methods. A contextis a mul-
tiset of ground goals. Let P and C be respectively a
program and a context, and let [P] be the (possibly
infinite) set of all ground instantiations of elements
of P. We follow the convention of using the comma
“» to denote multiset union, and to refer to a sin-
gleton multiset in terms of its single element. The
inference figures of LO are as follows:

I - Termination

T,C
IT - Splitting
G17G27C
G1Q@G,,C
IIT - Duplication
G,  Ga,C
G1&Go,C

IV - Propagation (partial match)

G,C
A, ARC

if A1@...QA, « G is an element of [P].

V - Propagation (total match)

G
AL A,

if A1@...QA, < G is an element of [P].

Thus, the method p@qg « (r@s) & ¢ can be trig-
gered from a process in state, say, {p,q,u} and the
corresponding transition is encoded in the proof tree
as

5y tu

r@s, u ’

_ (r@s)&t,u
p.q,u

The final states of this transition are {r,s,u} and
{t,u}.

For simplicity sake, the inference figures above
have been defined for the basic case of ground goals.
However, it is easy (although formally tedious) to
generalize them to the non-ground case via unifica-
tion. As a matter of fact, the use of unification for
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variable instantiation will be assumed in the exam-
ples discussed later on.

Let us interpret the proof rules above in terms
of processes. I (termination) tells us that a process
can successfully terminate if its associated context
contains the distinguished constant T. II (split-
ting) makes @ synonymous with multiset union: a
formula G;@G; can be replaced in a context by G
and G,. III (duplication) handles conjunctive goals
by creating two subprocesses, much in the same way
as in Horn-based AND-concurrent languages: the
difference here is that a conjunctive goal can occur
in the context of other goals, which have to be dupli-
cated for each subprocess — as we shall see, quite a
handy feature to account for the creation of new ob-
jects by cloning previously existing ones. As for the
two propagation rules: IV, based on partial match,
embodies the principle of organizational inheritance
introduced in the previous section, by allowing trig-
gering of methods whose head offers a partial view
of the object it applies to (that is, methods contain-
ing knowledge usable by suborganizations of the or-
ganization corresponding to the whole object); V,
based on total match, maintains the possibility of
triggering methods whose head contains a complete
view of the object, just as in Horn-based concur-
rent languages. Another way of characterizing the
difference is in terms of class inheritance: methods
can be triggered via propagation by partial match
if they are in any superclass of the object; instead,
with propagation by total match, they must be in
its most specific class.

2.4 OR- and AND-concurrency

We want to briefly characterize in which sense the
connective @ has a disjunctive reading. As we have
seen, this zcmnective is responsible for building up
contexts /when it occurs in a goal: rule IT) and for
analysing contexts (when it appears in the head of a
method: rules IV and V). Observe indeed that the
language of Horn logic corresponds to the sublan-
guage of LO where the connective @ never occurs,
and the connectives «+ and < can therefore be col-
lapsed together. In other words, contexts in Horn
logic always contain one single element. By permit-
ting non-singleton contexts, @ introduces a form of
OR-concurrency, characterized by the following fea-
tures:
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e the process identified by a non-singleton con-
text may evolve via alternative applications of
the propagation rule IV to any of its subparts,
including the whole context itself (or just the
whole context if proof rule V is involved); that
is, all the subcontexts of a context determine
possible alternatives for process propagation.

e those elements of the context which are not in-
volved in a step of process propagation at a
certain stage of the proof, remain part of the
new context; therefore, they may be involved in
another step of process propagation at a fur-
ther stage of the proof. This is the essential
point about OR-concurrency: elements in the
context associated with a certain proof process
can lie dormant for a while but may at any time
reenter the computation.

OR-concurrency of this kind is a new thing with re-
spect to all other forms of disjunctive reasoning pre-
viously available in logic programming languages,
concurrent and not; for instance, it is quite differ-
ent from %he disjunction available in certain Pro-
log impieiaentation, which makes a disjunctive goal
succeed if one of the disjuncts separately succeeds.
Instead, with @ we wrap together in one unique
process several different subprocesses each of which
may represant a possible option for the evolution
of the cvarall process. Also, there is clearly no
relatiezcliy with “OR-parallel” logic programming
languag2:, which are characterized by parallel ex-
ecution <1 alternative search processes and are not
concerr.zZ with problems of concurrency and com-
munice:in,

Finai y, before going into a more extensive exam-
ple, here is a simple case which demonstrates the
radically different nature of the interaction among
processes induced by the two connectives @ and &
(responsible, respectively, for OR-concurrency (in-
ternal distribution) and AND-concurrency (exter-
nal cooperation)). In the following program to re-
verse a list, we use the usual infix notation [X|L]
to refer to a list with head X and tail L, and the
notation #t to refer to the distinguished formula T.
With this program, the computation is performed
by building a context with two elements, one corre-
sponding to a two-place predicate holding an input
list and a buffer list, and the other to a one-place
predicate holding the reversed list.
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reverse(L,K) <= rev(L,[]) @ result(X).
rev([XIL],M) <- rev(L,[XIM]).

rev([],M) @ result(M) <= #t.
Here, calling a goal like
?7- reverse([a, b],K).

will involve propagating (by total match) on the
first clause and then splitting, thus creating a con-
text containing the atoms

rev([a, bl,[]), result(k)

Propagation (by partial match) will be then trig-
gered twice again by using the second clause, until
the context is rewritten to

rev([],[b, a]), result(k)

At this point, the atom result(K), which has been
“dormant” so far, can reenter the computation: in
fact, the whole context can trigger the third clause,
with the effect of instantiating the free variable K to
the reversed list [b, a].

Consider now what happens when evaluating the

goal

?- reverse([a, b],K1) &
reverse([c, d],K2).

The conjunction & creates two completely separate
reverse processes; as they do not share any vari-
able, no interaction whatsoever is established be-
tween the two processes, and each of them binds K1
and K2 to, respectively, [b, a] and [d, <J, just
as expected. Thus, & plays a fundamental role of
“isolating curtain”, to prevent unwanted interaction
between communities which are meant to remain
structurally separate, whether they establish or not
communication.

3 A Sample Application

The sample application that we now describe
manipulates graphical objects in a 2-dimensional
space. The application involves three kinds of struc-
tured objects:

e an input device

ECOOP/OQPSLA '90 Proceedings 49



e an output device

e drawings, which receive data from the user via
the input device and send back other data to
the user via the output device.

These objects are interconnected as AND-
concurrent structured processes. In Fig. 1, we have
represented the objects as labeled boxes while the
communication flow is represented by arrows. The
communication is achieved by sharing of streams,
i.e. potentially infinite, partially instantiated lists.
Actually, we use here channels [24], corresponding
to a more structured notion of streams than the
simple list-based one. Channels are defined as fol-
lows:

¢ [] is the empty channel.

o IfMis a term and C is a channel, then [MIC] is
a channel (list).

o If C1 and C2 are channels, then so is {C1,C2}
(fork).

3.1 The Input/Output Devices

We first define the user interface objects, which have
a very simple structure.

3.1.1 The Input Device

This object interfaces the external input provided
by the user and the channels internal to the system,
which the user wants to access. It associates each
<f such channels with a name, i.e. a user-provided
:zbel. The user can then select a channel by its
aame. In this way, user’s messages are dispatched to
different labeled channels. We represent the input
device as a context of the form

‘ispatch, name(L1,C1),...,name(Ln,Cn)

Zach Ci is a channel; Li is its associated name.
User’s commands on the external input are inter-
preted as follows.

e Msg>L means: write the message Msg on the
channel named L.

o dup(L1,L2) means: fork the channel named L1
and give the name L2 to the second branch (the
other one keeps the name L1).
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e close(L) means: close the channel named L.
Thus, we have the following methods:

dispatch ‘read_input(I) <- dispatch(I).

dispatch(Msg>L) @ name(L,[MsglC]) <-
dispatch @ name(L,C).

dispatch(dup(L1,L2)) @ name(L1,{C1,C2}) <-
dispatch @ name(L1i,C1) @ name(L2,C2).

dispatch(close(L)) @ name(L,[]) <-
dispatch.

In the first method, we use the backquote symbal ¢
to refer to system primitives, like input/output in-
structions, arithmetics etc., called before executing
the body of the method. This syntactic convention
has been adopted in the current implementation of
LO.

Notice also that the names given to the channels
have no meaning from the point of view of the sys-
tem: in no way they act as object identifiers — only
the channels themselves are. Their only purpose is
to provide an interface for the user.

3.1.2 The Cviput Device

This object draws line segments on a real display
device. We represent it as a context of the form

display, C1,...,Cn

where each Ci is an input channel, receiving mes-
sages as display instructions (i.e. drawing line seg-
ments). Forking a channel amounts to connecting a
new input channel to the output device. Thus, we
have the following methods:

display @ [line(M1,M2){C]
‘draw_line(M1,M2)
<- display @ C.

display @ {C1,C2} <-
display @ C1 @ C2.
3.2 The Drawings

Drawings are complex structures whose behaviour
is modularly accounted for in terms of OR-
concurrency.
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draving

input device »] drawing » output device
W\ /
A\ drawing /
\ /
\ /
\ /
USER

Figure 1: The objects and the communication flow

3.2.1 Fundamental Operations

A drawing contains, at least, the following basic
components:

e a basic shape: square, circle etc.

e ascale, i.e. a 2x2 matrix specifying distortions
(not only extensions and reductions) of the as-
sociated basic shape in each direction. Thus,
many complex shapes can be obtained from ba-
sic ones by distorting them (all sorts of parallel-
ograms from squares, and ellipsis from circles).

¢ a position, i.e. a point in the 2-dimensional
space, which specifies a reference point for the
basic shape (usually its center).

We encode these information in a context of the
form

drawing, C, position(0), scale(P)

Ti2 variable C here represents the input channel.

The following operations are universal to all
drawings, as they are only concerned with the
position and scale slots:

e move(D) where D is a vector. This operation
applies a translation of vector D to the drawing,
thereby modifying its current position.
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¢ distort(D) where D is a matrix. This opera-
tion applies an affin transformation of matrix D
to the drawing, thereby modifying its current
scale.

Thus, we have the following methods

drawing @ [move(D)|C] @ position(0)
‘01 is 0+D <-
drawing @ C @ position(01).

drawing @ [distort(D)|C] @ scale(P)
‘Pt is D% <-
drawing @ C @ scale(P1)

3.2.2 Graphical Operations

We now define the graphical operations themselves.
They depend on the basic shape but also on the
current position and scaie.

For each basic shape, there is a method print ca-
pable of writing, on the input channel, instructions
for a “pen” describing the specific shape. There are
two types of pen commands:

¢ jump(X): which causes the pen to jump, with-
out writing, to position X.
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e step(D): which causes the pen to move, while
writing, to the position obtained by translating
the current position by vector D.

In these commands, X and D are relative to the ba-
sic shape and do not pertain to absolute positions.
For instance, for graphical objects which are squares
— that is, encoded as contexts containing square
among their elements — pen commands are gener-
ated by triggering the following method:

square @ [print|C] <-
square @ [jump(m(1,0)),
step(m(-1,1)),step(m(-1,-1)),
step(m(1,-1)), step(m(1,1))ic].

Such pen commands are written in the input chan-
nel itself, so as to be executed immediately, be-
fore any other messages: further modifications of
the drawing must take place after their execution.
Fig. 2 illustrates the pen movements in the case of a
square. The pen commands must then be converted
into actual display commands, taking into account
the current position and scale of the drawing, and
be sent to the display device. The following two
components perform that task:

pen(Q), out(U)

Q is the current absolute position of the pen and U
is the output stream (towards the display device).
We have then the following methods:

drawing @ [jump(X)I|C] @ pen(_) @

position(0) @ scale(P) ‘Q is 0+P*X <-
drawing @ C @ pen(Q) @
position(0) @ scale(P).

drawing @ [step(D)IC] @ pen(Q) @
scale(P) @ out([1ine(Q,Q1)iU])
‘Q1 is Q+Px*D <~
drawing @ C @ pen(Q1) @
scale(P) Q out(U).

3.2.3 Prototypes and Clones

We now consider the case where the input channel
of a drawing is a fork. We interpret it as a mes-
sage to clone the drawing object which receives it,
by creating an object with the same structure but
different input and output channels. Thus, we add
the following method:
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drawing @ {C1,C2} @ out({U1,U2}) <-
drawing @ C1 @ out(U1) &
drawing @ C2 ¢ out(U2).

The capability of duplicating contexts because of
proof rule IIT (duplication) is here crucially ex-
ploited to implement the cloning operation.

Once the clones have been created, they can be
modified independently. For this, we already have
the basic operations move and distort described
in Section 3.2.1. However, we assume that initially,
all drawings have a default basic shape, noshape,
with no special print method; therefore we also
need methods for changing the basic shape of such
“invisible” entities. Here is an example, where a
drawing is made square.

drawing @ noshape @ [make_square|C] <-
draving @ square @ C.

Once a basic shape (other than noshape) has
been defined, it cannot be changed, nor other ba-
sic shapes can be assigned to the object; this
is achieved by assuming that all shape-assigning
methods only work for objects with the default
shape noshape. In this way, we avoid the problem
of dealing with such disquieting entities as “squared
circles”.

3.3 The System at Work

3.3.1 Initialization

Initially, three processes are created and connected:
o the input device
o the output device

® a shapeless prototype drawing, clonable as
many times as needed

The input channel of the prototype is associated
with some name, for example proto, to make it
accessible to the user. The initial goal, which ini-
tializes the three processes, is therefore

dispatch @ name(proto,C) &

drawing @ noshape @ C @
position(m(0,0)) @ scale(m(1,0,0,1)) @
pen(_) @ out(U) &

display @ U.
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step(m(-1,-1)

step(m(1,-1)}

step(m(-1,1))

step(m(1,1))

Figure 2: The pen movements for a square

Here is an example of user input data:

dup(proto,my_square),

move(m(200,300) )>my_square,
distort(m(0,200,~100,0))>my_square,
make_square>my_square,
dup(my._.square,an_other_square),
move(m(500,300))>an_other_square,
move(m(700,100))>my_square,
print>my_square, print>an_other_square,

The first line creates a clone of the prototype proto
and names it my_square. The second and third
line modify the characteristics of my_square. The
fourth line defines it as a square. Given the dis-
tortion matrix, it will appear in fact as a rectan-
gle. The fifth line creates a clone of my_square and
names it an_other_square. The sixth and seventh
line modify both my_square and an_other.square,
which have now separate lives. The last line prints
on the display device the two objects that have been
created.

3.3.2 Execution

To obtain a proper behaviour of the system, we
need ts introduce some synchronization mechanism
among the AND-concurrent processes. We rely
here on the usual technique of suspending vari-
ables [20, 11]. We could introduce explicit “read-
only” marks or mode declarations but we prefer the
following convention: the application of a method is
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postponed if its head matches a subpart of the con-
text which contains a free variable at the top level
(typically the case of input channels). The method
is actually triggered only when these variables be-
come instantiated (if the instantiation is still com-
patible with the head of the method). When all
candidate methods on a context are postponed,
then the proof process for this context is suspended.
When all processes have been suspended, the user
can resume the computation by feeding the global
input, thus causing some suspending variables to
become instantiated (via the input device).

3.3.3 Termination

We still have to define methods to terminate the life
of objects. Here, closing of the global input should
make all the living processes terminate. This can
be achieved via the following methods:

/* Input device */
dispatch(end_of_input) @ name(_,[])
<- dispatch(end_of_input).

dispatch(end_of_input) <= #t.

/* Drawings */
drawing @ [] @ cut([]) <- #t.

/* Output device */
display @ [] <- display.

display <= #t.
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Notice here the use of the total match implication.
It forces, for example, the input device to close all
its named streams before terminating. Similarly,
the output device terminates only when all its input
streams are closed.

4 Implementation

An interpreter for executing LO programs has been
implemented using the sequential logic program-
ming environment SEPIA [17]. The coroutining fa-
cilities of SEPIA have been exploited to account
for the specific control strategy described in Sec-
tion 3.3.2.

Obviously, the interpreted approach is quite inef-
ficient. Indeed, the propagation proof rules IV-V
involve trying to match each head of a method with
each subpart of the context, although, in general,
very few matches will succeed. A smarter execu-
tion strategy should be capable of foreseeing many
cases of failure, thus avoiding them at execution
time. For instance, in the sample application of
the previous section, it can be shown that none of
the methods for the display device (characterised
by the atom display in their head) will ever apply
to a context representing a drawing (i.e. containing
the atom drawing). This kind of analysis can be
performed during a “compilation” phase and may
improve significantly the efficiency.

A pre-processor based on this principle has been
implemented. Using partial evaluation techniques,
it computes a “type” for each context that may ap-
pear during the execution. Types are then used for
t{wo main purposes.

e The preprocessor associates to each type the
methods whose head is compatible with that
type. At run time, only those methods are
tried on contexts of that type. This technique
improves time efficiency.

e The preprocessor also tries to optimize the in-
ternal representation of the contexts of a given
type, especially when it apcears that such con-
texts have a fixed structuze (typically, a spe-
cific number of slots of a class of objects). This
technique improves space efficiency.

Notice that the interpreter corresponds to the de-
generate case where all contexts have the same type.
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For space reasons, we cannot describe here the type
inference procedure used in the preprocessor. It
yields encouraging results with the simple applica-
tions that we have tested.

We are also exploring abstract computational
models which could lead to efficient low-level im-
plementation of LO. From this point of view, it
seems particularly interesting to explore connec-
tions with the rewriting model recently proposed
by Meseguer [18] as a unifying framework for con-
currency. Finally, we are investigating whether sys-
tem called (introduced with the backquote nota-
tion in LO) can be implemented as constraint as
in Saraswat’s concurrent constraint logic program-
ming languages [19].

5 Discussion

Our starting point has been Horn-based concur-
rent logic programming languages. These lan-
guages identify objects with the proof processes
of atomic goals; under this view, arguments in
atomic goals are either stream or state parame-
ters, where streams allow interobject communica-
tion, while states hold the value of the slots of the
object in its current state. While this approach is
very elegant and powerful from the point of view of
message passing and dynamic modification of ob-
jects, it has strong drawbacks from the point of view
of knowledge structuring, since, to change the value
of a few slots, a method must explicitly access all
the components in the object, even those which are
going to be left unchanged in the new state of the
object. This is a very undesirable situation — as
it is easy to find applications with objects involv-
ing large numbers of slots — which can be partially
obviated via the use of delegate processes as in [22]:
that is, explicit structures are created only for ob-
jects with a manageable number of slots, and more
complex objects are created by delegating to the
simpler ones via stream communication. But, as
distinguished from Actor languages (like Act1 [16}),
where it is a built-in mechanism, here delegation
has to be simulated by the programmer; higher-
level languages built on top of Horn-vased ones like
Vulcan [15] and Polka [7] avoid this problem but
have to introduce mechanisms like class declara-
tions, which fix the structure of objects. (Actually,
Vulcan has also class declarations which support
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classical fixed-structure inheritance.) A more recent
solution, known as logic programming with implicit
variables[14, 21] is closer to the usual syntax of logic
programs but still requires declaring in advance the
slots of an object. The use of multiple head clauses
has already been proposed in [6, 19]. These sys-
tems rely on an “extended” resolution mechanism,
which can be reconstructed in LO using only the @
connective. Hence, in these systems there is no no-
tion of multiple contexts (corresponding to different
objects) as obtained in LO with the & connective
(duplication rule ITI): all the objects must share the
same, unique, resolvent (using explicit object iden-
tifiers to avoid name conflicts); when huge numbers
of objects are involved, the resolvent may become
untractable.
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