Beyond Schema Evolution to Database Reorganization

Barbara Staudt Lerner
A. Nico Habermann

Carnegie Mellon University
School of Computer Science
Pittsburgh, PA 15213

Abstract

While the contents of databases can be easily changed,
their organization is typically extremely rigid. Some
databases relax the rigidity of database organization
somewhat by supporting simple changes to individual
schemas. As described in this paper, OTGen supports not
only more complex schema changes, but also database
reorganization, A database administrator uses a
declarative notation to describe mappings between objects
created with old versions of schemas and their
corresponding representations using new versions.
OTGen generates a transformer that applies the mappings
to update the database to the new definitions, thus
facilitating improvements in performance, functionality,
and usability of the database.!

!Support for rescarch on Gandalf is provided in part by ZFE F2
KOM of Siemens Corporation, Munich, Germany and in part by
the Defense Advanced Research Projects Agency (DOD), ARPA
Order #4976, under contract F33615-87-C-1499 and monitored by
the Avionics Laboratory, Air Force Wright Acronautical
Laboratories, Aeronautical Systems Division (AFSC), Wright-
Patterson AFB, Ohio, 45433-6543.

The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency, the US government, or other
supporting institutions.
Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
€ 1990 ACM 089791-411-2/90/0010-0067...$1.50

October 21-25, 1990

1. Introduction

Separation of interfaces from implementation is by now
a generally accepted technique for localizing the effect of
change. It gives the implementor the freedom of
improving the code without affecting the client, while the
latter can continue to use the specified interfaces and
apply the provided operations as before. Only when
client and implementor agree on a change in the
specifications will it be necessary to modify the client’s
application.

However, changes in either specification or
implementation not only affect programs, but also the
representation of persistent data objects. The problem of
modifying software is not limited to changing code, but
also affects existing data objects that were generated with
that software prior to modification. It is thus necessary to
address the problem of how to adapt existing objects to
the new requirements imposed by the modified software.

The problem of updating existing objects is well known
to the software support groups that install new releases of
an operating system. They rely heavily on their
understanding of the impact of system modifications and
bring existing data up to date with procedures of their
own ad hoc invention.

Our work involves the automation of this updating
process. Our basic approach is to apply a program
generator to the delta of the data definitions (i.e., to the
difference between the old and the new definitions), and
let it produce the necessary programs and tables that can
transform the existing data into the new formats.

ECOOP/OQPSLA '90 Proceedings 87

Automation of this process has recently received some
attention from the database world where this problem is
particularly acute. Examples of projects addressing this
issue are Orion [1] at MCC and GemStone [3] at Servio
Logic. We share with these projects our basic approach
as to the kind of data transformations that can be
automated. However, our approach goes much further
than any we know of in allowing the database
administrator to reorganize the data. Reorganization is
accomplished by editing the transformation tables with
the assistance of our interactive OTGen environment. We
found that this capability lifts the transformation
technique from an interesting toy to a tool of great
practical use.

Our experience in automatic database transformations
goes back to 1986 when we developed TransformGen, a
system for transforming tree-structured databases used in
Gandalf programming environments [2,5]. The
TransformGen environment is still heavily used for
editing abstract syntax specifications used to generate
programming environments. When these specifications
are modified, TransformGen simultancously builds
transformation tables that are later used to transform
existing trees to the new format. An important next step
in the process is that the developer can edit transformation
tables to effect richer transformations, such as movement
of data from one node to another, creation of new nodes,
and context-dependent transformations. We showed in
[5] that this implementation covers the whole range of
changes a developer might want to perform on a database,
and we showed that these changes are composable.
Changes produced automatically by TransformGen are
composed automatically with those changes already
encoded in the table.

TransformGen has enabled us to upgrade our tools
without hesitation. The ability to gencrate transformers
easily has allowed us to develop and use early prototypes
of systems without fear the data created will be unusable
when the "real" system is released. This gradual
evolution of a tool via repeated refinement can continue
throughout a tool’s lifetime, allowing the experiences
gained from use of an early version to be applicd to the
redesign and upgrade of later versions, without losing the
work done with the earlier versions of the tool.

Recently, we started looking into the possibility of

68 ECOOP/OOPSLA '90 Proceedings

replacing our tree-structured databases with more general
object-oriented databases. However, current object-
oriented databases lack the ability to redefine database
structures and transform existing databases that we have
been accustomed to with TransformGen. These
considerations led to a redesign of TransformGen,
resulting in our new system, called OTGen (Object
Transformer Generator), that applies to object-oriented
databases.

This paper starts with a discussion of the kind of
modifications that can be handled automatically in an
object-oriented database. It proceeds with a discussion of
the important extensions that make the transformation
process very practical.

2. Transforming Object-Oriented Databases

Because of the richness of the data structures that can
be stored in an object-oriented database, some changes
are required to adapt our tree-oriented transformer into
one suitable for object-oriented databases. In this section,
we describe our basic data model, the ways in which class
definitions can be modified, the invariants that the
transformation process must maintain, and the default
transformation rules associated with the various class
definition changes.

2.1. Basic Object-Oriented Data Model

We assume a fairly standard basic data model. Classes
encapsulate typed instance variables and methods.
Objects are created dynamically. Each object has a type.
The type is defined by a class. Classes are organized into
a lattice. Each class has at least one superclass, except for
the special Object class, which is the top of the lattice. A
class inherits instance variables and methods from its
superclasses. In addition, a class may override an
inherited variable or method, by defining one locally with
the same name. To be more formal, we describe our data
model using the following invariants, which are very
similar to those used by Orion [1].

Class Lattice Invariant. The subclass-superclass
rclationship forms a lattice, of which the pre-defined class
Object is the root.

Unique Name Invariant. Each instance variable and

October 21-25, 1990

method defined or inherited by a class must have a unique
name. Each class must have a unique name.

Full Inheritance Invariant. A class inherits the union
of instance variables and methods from its superclasses,
unless it defines an instance variable or method with the
same name. If more than one superclass defines the same
instance variable or method, the one inherited is the one
defined by the superclass that appears earliest in the
class’s superclass list.2

Type Compatibility Invariant. If a class ¢ defines an
instance variable with the same name as an instance
variable it would otherwise inherit from superclass s, the
type of £'s variable must be a subclass of the type of s’s
variable.

Typed Variable Invariant. The type of each instance
variable must have a corresponding class in the class
lattice.

Numerous extensions can be made to this basic model
without compromising the capabilities of OTGen.
Possible extensions include the addition of new type
constructors (such as set and sequence), class variables, or
components (to provide "part of" semantics).

To transform a database defined with one class lattice
into another database with a revised class lattice, we must
solve several problems. First, we need to identify the
kinds of changes that can be made to a class. Second, we
need to define a set of default transformations indicating
how existing objects should be transformed for each kind
of class change. Third, we need to provide a mechanism
by which a database administrator can override the default
transformations, yet is prevented from violating the rules
imposed by the data model. The remainder of this papcr
describes how OTGen solves these problems. Bricfly,
OTGen assists the database administrator in
understanding the effects of changes to class dcefinitions,
provides the default transformations, and provides the
mechanism to allow ovemriding of the default

“The details of how conflicts due to multiple inheritance are
resolved is really orthogonal to the point of this paper. Any
resolution scheme would work equally well for the purposes of
transformation, as long as it can be statically determined. For this
reason, we have chosen the simplest possible resolution scheme to
avoid the presentation of unnecessary details.

Qctober 21-25, 1990

transformations.

2.2, Effects of Class Changes

Inheritance is a basic property of object-oriented
systems. A clear model of inheritance is important to
understand the ramifications of changing a class. In a
data model that does not support inheritance, any change
to a type affects only that type. In a data model with
inheritance, however, changes to a single class might
affect all subclasses of the changed class.

Below we describe each kind of change that can be
made to a class. For each change, the database
administrator initiates the change by changing the class
definition using OTGen. If the change would violate the
class lattice invariant by adding cycles to the graph, the
change is rejected because it would be impossible for
OTGen to recompute inheritance. Otherwise, OTGen
recomputes the inheritance of the affected classes. If any
naming conflicts arise during this computation, they are
brought to the database administrator’s attention. In
addition, the database administrator is warned if the class
lattice becomes disconnected, or if the type compatibility
or typed variable invariants are violated. After being told
of the conflicts and violations that would occur, the
database administrator is given the option of committing
the change or aborting it. Temporary violations of the
class lattice, type compatibility, and typed variable
invariants are allowed. However, before a database
transformer can be generated, all invariants must hold.

The changes supported by OTGen are:
¢ Adding an instance variable

e Deleting an instance variable

¢ Renaming an instance variable

* Changing the type of an instance variable

* Adding a superclass to a class’s superclass list

* Deleting a superclass from a class’s superclass list
¢ Adding a new class

e Deleting a class

® Renaming a class

For example, consider the effects of adding an instance
variable, v3, to a class C.

ECOOP/OOPSLA '90 Proceedings 69

Class C subclass of §

vi: TI
v2: T2
Before
Class C subclass of §
vli: TI
v2: T2
vi: T3
After

Let’s consider each invariant in turn.

Class Lattice Invariant. Adding an instance variable
does not affect the class lattice invariant.

Unique Name Invariant. The unique name invariant
requires that there be no other instance variable with the
same name in that class. Therefore, if the new variable
had been named vl or v2, the unique name invariant
would have been violated. If a variable with the name v3
was inherited, it will no longer be inherited, because C’s
definition of v3 will now override the inherited definition.

Full Inheritance Invariant. To ensure that the full
inheritance invariant still holds, we must examine each
subclass of C. If a subclass defines an instance variable
named v3 locally, it is not inherited. If it does not define
v3, and does not already inherit v3, it should inherit C’s
v3. If it already inherited v3 from C (because it was
inherited by C), we need to inherit the new definition of
v3. If v3 was inherited from a different superclass, we
need to determine which superclass the subclass should
inherit v3 from by examining the ordering of superclasses.
In any event, if C’s definition of v3 is inherited by a
subclass, we need to repeat this process to propagate the
inheritance to all of this subclass’s subclasses.

Type Compatibility Invariant. After having re-
established the full inheritance invariant, we can now
determine if the type compatibility invariant is violated.
If C’s v3 is overriding another definition of v3, we must
check that the type of C’s v3 is a subclass of the v3 it is
overriding. Also, if any subclasses of C fail to inherit v3
because they define their own v3, we must ensure that the
type of the subclass’s v3 is a subtype of C’s v3.

Typed Variable Invariant. To guarantee the typed
variable invariant, we require v3’s type to correspond to a

70 ECOOP/OOPSLA '90 Proceedings

class in the class lattice.

A similar analysis must be made of each change listed
above.

2.3. Invariants on Transformation

The purpose of the transformation process itself is to
change a database from using one version of a set of class
definitions to another. We require transformation to
maintain the following three invariants:

Completeness. When a new set of class definitions is
relcased, each object must be transformed to its new
definition before it can be manipulated further. This
could be implemented using either lazy or eager
transformation.

Correctness. After transformation, each object must
correspond to a definition of a class in the new set of
definitions. In particular, the value for each instance
variable must correspond to the type of the instance
variable in the corresponding class definition.

Sharing. If two instance variables, in the same or
different objects, point to a single object before
transformation, and if

e neither instance variable is deleted,

¢ neither instance variable’s default transformation is
overridden,

¢ and the transformed object is type correct for each
instance variable,
they will both point to the same object after
transformation.

2.4. Default Transformations

With the above invariants in mind, we can now define
default transformations for each kind of class change.
Here we consider how a class change should affect
existing objects in the database. We would like default
transformations to affect the contents of the database as
little as possible. If a class is not changed, the default
transformation for objects of that class should simply
copy the objects into the new database. If a class is
changed, we want to preserve the maximum amount of
information in the object, while changing it to conform to
the new class definition.

October 21-25, 1990

For instance, let’s reconsider the example from Section
2.2 of adding instance variable v3 to class C. We have
two cases to consider, depending on whether or not C’s v3
is overriding another definition. First, if v3 is overriding
another definition, then objects of class C already have a
value for v3. If so, we recursively transform the value. If
the type of the transformed value is the same or a subtype
of C’s v3, we can assign it to v3 in the new database. If it
is not type correct, we assign the special value VOID to v3
and report an error. Similarly, if v3 is not an overriding
definition, then there is no existing value to assign to v3.
Instead we initialize it to VOID.

Similar default {ransformations are defined by
considering each kind of class change, and determining
how to transform existing objects to conform to the new
class definition while retaining the maximum amount of
information.

Up to this point our model of transformation is not
significantly different from that provided by Orion. In
some cases, we allow more general transformations. For
instance, Orion only allows a variable type to be
generalized, while we allow arbitrary changes. In the
cases where we differ, our default transformation
typically increases the likelihood that information will be
lost. By restricting variable type changes to
generalizations, Orion assures that the variable’s value
will still be type correct in the new database, and so
information will not be lost.

Why then should we allow arbitrary changes, and risk
the loss of information from our database? The answer is
that the normal evolution of programs requires not only
changes to code, but also arbitrary changes to class
definitions. = To support general changes to class
definitions, it is necessary to support database
reorganization. The approach taken by other researchers
(e.g., [1, 3, 4]) is that all desired database changes can be
addressed by making changes local to individual classes.
This assumes that the overall design of the database is
correct, but that some information should be either added
to or deleted from individual classes. It does not allow for
an overall redesign and reorganization of the database.
When enhancing a program that uses non-persistent data,
a programmer can make arbitrary changes to all
datatypes, procedures, and their relationships to each
other to provide improved functionality, better

Oclober 21-25, 1990

performance, etc. We believe the same freedom should
be afforded to programmers using databases.

3. Supporting Database Reorganization

The default transformations described above address
only local changes to class definitions, not database
reorganization. Our unique contribution is that in
addition to using OTGen’s default transformations, we
allow the database administrator to override these default
transformations in such a manner that arbitrary
reorganization is possible. This section describes how
this is done.

To provide general database reorganization in a
database transformer, the database administrator must
describe the relationships among objects in the old
version of the database and those in the new. OTGen
provides a tabular notation in which this is done. The
table has one entry for each class defined in the old
version of the database. It indicates how instances of that
class should be transformed. The table is initialized by
OTGen. When a class definition is changed, OTGen
describes the effect by changing the table to reflect the
default transformation provided by the change. The
database administrator can then change the table to
override the default transformation.

For example, suppose we have a class C with two
instance variables vI and v2. (The transformation table
lists both variables that are locally defined, and those that
are inherited.) Initially, the entry for C is:

Class C:
new self: C
vl: Transform vI
v2: Transform v2

This is the simple copy transformation. Every instance
of C in the old database is replaced with an instance of C
in the new database. The values for the variables are the
result of recursively transforming the values of the
variables from the old database.

Suppose now a new variable v3 is added to class C.
The default transformation changes the table to:

Class C:
new self: C
vl: Transform vl
v2: Transform v2
v3: VOID

ECOOP/QOPSLA '90 Proceedings 7

If the database administrator wishes to initialize the
new variable, he can change the entry. For instance, to
initialize it to 0, he would change the entry to:

Class C:
new self: C
vl: Transform vl
v2: Transform v2
vi: O

The interesting issues to address for database
reorganization are the types of changes that can be
expressed using this notation, and how OTGen can ensure
that the invariants presented in Section 2.3 are not
violated.

3.1. Expressiveness of Transformation Tables
The transformation tables defined by OTGen’s default
transformations use the following mapping operations to
transform an object in an old database to one in a new
database:
¢ Creation of an object in the new database with the
same class as the object in the old database.

* Replacement of an object in the old database with
VOID in the new database. This is used only when
the old object’s class has been deleted.

o Recursive transformation of an old instance
variable’s value into a value for the same instance
variable in the new database.

o Initialization of an instance variable in the new
database to VOID.

All of the default transformations can be expressed using
the above four operations of the transformation tables.

To support database reorganization, OTGen provides
additional operations. They are:
» Initialization of variables

¢ Context-dependent changes

¢ Movement of information from one object to
another

¢ Creation of new objects

o Sharing of information among objects

We have already seen how variables can be initialized
in transformation tables in the introduction to this section
where v3 was initialized to 0.

72 ECOOP/OOPSLA '90 Proceedings

3.1.1. Context-Dependent Changes

Context-dependent transformations are supported by
allowing boolean expressions to be attached to each
portion of a transformation table entry. For instance,
suppose we add a new class D, which is a subclass of C
defined as follows:

Class D subclass of C is
v2: T4

Now, suppose we want to transform those instances of
C whose value for v2 is in 74 to be instances of D. We
could change the transformation table for C to be:

Class C:
if TypeCheck (v2, T4)
new self: D
vl: Transform vl
v2: Transform 2
else
new self: C
vl: Transform vl
v2: Transform v2

Here TypeCheck is a function provided by OTGen
which is given an object and a class name. It returns true
if the type of the object is the same or a subclass of the
given class.

3.1.2. Moving Information

Suppose we want to move a variable from one class to
another, with the effect that the variable’s value will move
from an object of the first class to an object of the second
class. For instance, suppose we have two classes Quter
and Inner, and change them by moving instance variable
i2 from Inner to Quter, as shown below:

3In reality, we want to type check the transformed value of v2,
so the first argument to TypeCheck should be Transform(v2),
which first recursively transforms v2 before performing the type
check. The algorithm described in Section 3.2.3, which ensures
the sharing invariant is maintained, would also ensure that v2
would be transformed only once.

October 21-25, 1990

Class Quter subclass of SI is
ol: TI
02: Inner

Class Inner subclass of S2 is
il: T2
i2: T3

Before

Class OQuter subclass of SI is

ol: TI
02: Inner
i2: T3
Class Inner subclass of §2 is
il: T2
After

The effect that we want on the database is

demonstrated by Figure 3-1.

After
Figure 3-1: Moving Objects in a Database

The transformation table entries generated by OTGen’s
default transformation treat this as two changes: the
addition of a variable to Outer, and the deletion of a

October 21-25, 1990

variable from Inner. The resulting table entries are:

Class Quter:
new self: OQuter
ol: Transform ol
02: Transform 02
i2: VOID

Class Inner
new self: Inner
il: Transform il

Using these tables, the value of Inner’s i2 is lost. To
retain the value in Outer’s i2 instance variable, the
database administrator must override the default
transformation by changing the entry for Outer to:

Class Outer:
new self: OQuter
0ol; Transform ol
02: Transform 02
i2: Transform 02.i2

Any expression that evaluates to an object in the old
database may be used in a transform statement. In the
above example we dereferenced the instance variables
directly. Function calls are also acceptable.

3.1.3. Creating New Objects

Another desirable reorganization is to add objects that
did not exist in the original database. For instance,
suppose we want to modify objects of class C so that vI is
an object of a new class Wrapper whose first field is the
old value for vI. The definitions of C and Wrapper are as
follows:

Class C subclass of § is

vli: TI1
v2: T2

Before

Class C subclass of S is
vl: Wrapper
v2: T2

Class Wrapper subclass of T is
wl: TI

After

OTGen sees this change simply as a type change of an
instance variable. The default transformation for a type
change is a rccursive transformation, where the
assignment will fail if the transformed variable value is

ECOOP/OOPSLA '90 Proceedings 73

not type correct for the variable. To get the effect that the
database administrator wants, he must change the
transformation table entry to:

Class C:
new self: C
vl: Create WRAPPER
wl: Transform vl
v2: Transform v2

Figure 3-2 shows the effect this transformation has on an
object of class C.

vl
v2

Before

After
Figure 3-2: Creating Objects During Transformation

3.1.4, Sharing Information

The sharing invariant stipulates that sharing must be
maintained across transformation. However, suppose the
desired database reorganization is to introduce sharing.
This can be done in one of two ways. If the object to be
shared existed in the old database, simple transform
statements, such as those used above, identifying the
object to be shared will introduce the sharing. However,
if the object to be shared is being created in the new
database, sharing must be done explicitly using a shared
expression.

For instance, suppose we have two classes CI and C2.
Some instances of each of these classes share values via
variables v/ and v2, respectively. Suppose we want to
wrap this shared value in a new class, called Wrapper,
and share this value instead. An example of this
transformation is shown in Figure 3-3.

74 ECOOP/OOPSLA '90 Proceedings

After

Figure 3-3: Introducing Sharing
During Transformation

This sharing is achieved as follows:

Class CI
new self: ClI
vl: Share NewWrap(vl)

Class C2
new self: (2
v2: Share NewWrap (v2)

Shared expression NewWrap (oldobj)
Create WRAPPER
wl: Transform oldobj

A shared expression is a parameterized variable
transformation. A shared expression is evaluated once for
each distinct set of argument values it is instantiated with.
After it is evaluated, the result is cached in a table indexed
by the argument values. Then, if the shared expression is
instantiated a second time with the same set of argument
values, the cached value is returned. In this way, the

October 21-25, 1980

e

sharing can be moved from one object to another as in the
example above.

Any object from the old database can be passed to a
shared expression. The shared expression may require
any number of arguments, including zero. If zero
arguments are used, then all references to the shared
expression will result in sharing of a single object. Also,
it is not necessary for a shared expression to use the
arguments in evaluating the expression. They might just
be used to control sharing by being used as indices into
the cached table.

3.2. Guaranteeing Transformation Invariants

In this section, we describe how OTGen preserves the
transformation invariants in the presence of arbitrary
database reorganization.

3.2.1. Completeness

In OTGen we collect together class definition changes
before updating database objects, rather than creating a
new database version for each change. A database
administrator performs a collection of related changes,
affecting both class definitions and methods, and releases
them as a unit. When changes are released, it is necessary
to restart all database servers, but it is not necessary to
transform the database immediately. Instead, we support
lazy transformations, where a collection of connected
objects is transformed when it is first accessed with the
new version of the database server. In this way the
downtime of the database is very short, with short delays
the first time each object from an old version is accessed.

Each collection of connected objects has a root through
which it can be externally accessed. Each root has a
version number indicating the version of the database
server that last accessed it. If the current database server
is a newer version, all objects reachable from the root are
transformed. If the objects are more than one version
out-of-date, a serics of transformers will be called, each
updating the objects one version. By transforming all
connected objects when the root is accesscd, we can
assure the completeness invariant.

Oclober 21-25, 1990

3.2.2. Correctness

The correctness invariant of transformation is
guaranteed by the transformation algorithm itself. All
operations provided by transformation can be broken
down into two basic components: creation of new
objects, and assignment of values to instance variables.
When an object is created, it is created using the latest
version. Thus, new objects are type correct. Before a
value is assigned to a variable (for instance during
initialization, or recursive transformation of a variable),
the value is tested for type correctness. If the value is not
type correct, VOID is assigned, and an error message is
produced.

OTGen provides some assistance to the database
administrator during modification of the transformation
tables, in order to increase the likelihood that the resulting
transformations will be type correct. Whenever the
database administrator requests the construction of a new
object, OTGen provides a template listing the variables of
the new object’s class. The table is not complete until
each variable transformation is specified. It is not
possible for the database administrator to delete variable
entries within a construction. In addition, when a variable
transformation specifies that a new object should be
constructed, OTGen can determine whether that
construction will be type correct by comparing the new
object’s class to the variable’s type. If the object’s class
is not the same or a subclass of the variable’s type, the
construction can be flagged as an error immediately,
rather than waiting until transformation time.

3.2.3. Sharing

The sharing invariant is guaranteed by the
transformation algorithm by associating unique identifiers
(UIDs) with each object in the old database. When an
object is recursively transformed, it maintains the same
UID in the new version of the database. Each object
created during transformation gets a new UID. Before
recursively transforming a variable’s value, the
transformer looks at the UID of the value in the old
database, and sces if an object exists in the new database
with that UID. If so, the old object has already been
transformed, and the corresponding new object can
simply be assigned to the variable (assuming it is type
correct).

ECOOP/OOPSLA ‘90 Proceedings 75

Sharing introduced by shared expressions works in a
similar manner. The tables caching the results of shared
expressions are indexed by UIDs of the arguments, and
return a UID for an object in the new database if a match
is found. For instance, reconsider the example from
Section 3.1.4. Suppose the shaded object has UID 3.
When the CI object is transformed, it requests a shared
value described by NewWrap(3). Suppose NewWrap(3)
has not yet been evaluated. The lookup in the cached
table will fail. We therefore create a new object of type

Wrapper. Suppose its UID is 4. We then make the
following entry in the NewWrap table:
oldobj Result
3 4

Now when the C2 object is transformed, it requests the
shared value described by NewWrap(3). This time the
lookup in the cached table succeeds, and the new shared
object is assigned to variable vZ2.

4. Conclusions

The ability to change the format and reorganize the
contents of a database are imperative if the database is to
keep pace with the demands of its user community. In
this paper, we have described the design of OTGen, a tool
to aid the database administrator in the devclopment of
transformers to facilitate such updating of databases. The
functionality achieved in this way goes beyond that
provided by Orion [1], Gemstone [3], and Skarra and
Zdonik’s work [4]. While they allow simple changes to
be performed to individual schema, we support not only
more complex operations, but also support database
reorganization, and arbitrarily complex transformations
on the contents of individual objects as well as the
database as a whole. We believe the evolution supported
by OTGen is very important, since it allows databases to
evolve as users’ experiences create ncw demands on the
database, rather than remain more or less committed to
the original database design conceived probably with
good intentions, but undoubtedly with lack of experience.

Acknowledgements

We were assisted in the design and implementation of
TransformGen and OTGen by numerous members of the
Gandalf project, most notably David Garlan, Charlie
Krueger, Robert Stockton, and Benjamin Pierce. We also
would like to thank those who commented on earlicr

76 ECOOP/OOPSLA '90 Proceedings

versions of this paper: Charlie Krueger, Robert Stockton,
and Richard Lerner.

REFERENCES
[1] Jay Banerjee, Won Kim, Hyoung-Joo Kim, and
Henry F. Korth.

Semantics and Implementation of Schema
Evolution in Object-Oriented Databases.

In Umeshwar Dayal and Irv Traiger (editors),
Proceedings of the ACM SIGMOD 1987
Annual Conference, pages 311-322. San
Francisco, May, 1987.

2] David Garlan, Charles W. Krueger, Barbara

J. Staudt.

A Structural Approach to the Maintenance of
Structure-Oriented Environments.

In Proceedings of the ACM SIGSOFTISIGPLAN
Software Engineering Symposium on Practical
Software Development Environments, pages
160-170. Palo Alto, December, 1986.

Reprinted in SIGPLAN Notices, January 1987.

3] D. Jason Penney and Jacob Stein.
Class Modification in the GemStone Object-
Oriented DBMS.
In OOPSLA '87 Proceedings, pages 111-117.
Orlando, Florida, October, 1987,

[4] Andrea H. Skarra and Stanley B, Zdonik.
The Management of Changing Types in an
Object-Oriented Database.
In OOPSLA '86 Proceedings, pages 483-495,
September, 1986.

[5] Barbara Staudt, Charles Krueger, and David
Garlan.
TransformGen: Automating the Maintenance of
Structure-Oriented Environments.
Technical Report CMU-CS-88-186, Department
of Computer Science, Carnegie Mellon
University, November, 1988.

October 21-25, 1990

