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Abstract

Kaleidoscope is an object-oriented language being de-
signed to integrate the traditional imperative object-
oriented paradigm with the less traditional declara-
tive constraint paradigm. Imperative state changes
provide sequencing while declarative constraints pro-
vide object relations. A wvariables as streams se-
mantics enables the declarative-imperative integra-
tion. A running example is used to illustrate the
language concepts—a reimplementation of the Mac-
Draw II dashed-lines dialog box. The example is in
three parts: the input channel, using imperative code
to sequence through modes; the output channel, us-
ing constraints to update the display; and the internal
relations, using constraints to maintain the data ob-
jects’ consistency requirements. The last sections of
the paper discuss views as a natural result of com-
bining objects with constraints, as well as related and
future work.
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1 __ Introduction

Kaleidoscope is an imperative object-oriented lan-
guage in the style of C++, Emerald, Eiffel, Smalltalk,
and others, but this is not why Kaleidoscope is in-
teresting.  Kaleidoscope is also a constraint lan-
guage in the style of Sketchpad, ThingLab, Maga-
ritte, Bertrand, and others, but, again, this is not why
Kaleidoscope is interesting—numerous papers have ex-
plored these issues, some even in this conference [Born-
ing et al. 87, Maloney et al. 89]. Kaleidoscope is
interesting because it is an integration of these two
paradigms—the imperative object-oriented paradigm,
which uses destructive assignment to change state; and
the declarative constraint paradigm, which does not.

The justification for Kaleidoscope, as for any new pro-
gramming language, is that better ways can be found
to express certain algorithms and concepts. Kaleido-
scope was born from the realization that programmers
need to specify two types of relations:

1. Long-lived relations between objects to define
the information, consistency, and internal struc-
ture of an application—an Engine is part-of an
Automobile; this String is a printed representa-
tion of that Integer.

2. Sequencing relations between program states, and
between objects in those states—when the mouse
button is pressed, bring this Window to the front;
the position of an Automobile is computed from
its previous position plus its current velocity.

A traditional imperative object-oriented language only
provides sequencing relations, forcing the programmer
to shoulder the burden of ensuring that all internal
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and external consistency relations are maintained af-
ter each set of assignments. Some languages, such as
Emerald [Black et al. 86] and Eiffel [Meyer 88], provide
assertions or class invariants to check such consistency
relations, but do not synthesize code to maintain them.

On the other hand, most constraint languages have
no notion of state or sequencing. Those that do, such
as Animus [Duisberg 86] and ThingLab II [Maloney
et al. 89), provide a read-only time variable and use
a hidden system process to store historical values for
future access. This informal imperative semantics al-
lows these systems to be used for simple animations
and simulations but breaks down when dealing with
complex constraints and dynamically changing object-
oriented sytems.

Kaleidoscope provides both sequencing and con-
straints by keeping the states of a variable as a his-
tory of object values, similar to the variables of Lucid
[Wadge & Ashcroft 85]. Long-lived or durable relations
are constraints on all values in the history, such as the
relation between Celsius and Fahrenheit:

Vt,C¢ * 1.8 = Fy — 32

Transitory relations, such as assignment, are con-
straints on the value at a particular time (the room
temperature at 10:00am is changed to 28):

C — 28 = ClO:OOa.m =28

Or on some range of values (it is cold all winter):

Vit € Dec-Feb, F; < 10

Kaleidoscope also separates asserting constraints from
advancing the streams. Statements are separated by
“:” and the streams are advanced by “#”. All con-
straints between hash-marks hold simultaneously, even
when separated by complex statements and procedure
calls. And, as pointed out by other researchers, this
detailed level of control allows program idioms such as
swapping two variables without a temporary:

x <oy
y <-x; #

Xt41 = ¥t
Yi+1 = X3

As a result of mixing these two paradigms, one might
assume that programmers using Kaleidoscope would
have to mentally shift gears from their previous exper-
tise in imperative object-oriented programming. For-
tunately, this assumption is false, as the Kaleidoscope
semantics are a superset of both imperative semantics
and constraint semantics. A program can be written
completely imperatively, using side-effects to change
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object state, assignment statements, etc.; or com-
pletely declaratively, using only constraints; or using
any mixture of the two. Programs from a traditional
imperative object-oriented language could be syntacti-
cally translated into Kaleidoscope; thus the program-
ming style of Smalltalk or C++ could be used in a
Kaleidoscope program. However, strictly imperative
Kaleidoscope programs would only be using half the
power available. A more useful Kaleidoscope style is
to write programs with a combination of explicit se-
quencing and declarative relations—each paradigm ex-
pressing those features of the program to which it is
most suited.

Sections 2 and 3 start this paper with a review of
the constraint theory used, and the semantics neces-
sary for its integration with imperative objects. Sec-
tion 4 illustrates some language concepts through a
running example—a reimplementation of the Mac-
Draw II dashed lines dialog box. Section 5 discusses
views as a natural result of combining objects and con-
straints, and section 6 finishes with a review of related
work.

Due to space restrictions, this document deliberately
simplifies a number of issues. For a complete descrip-
tion of Constraint Imperative Programming paradigm
and the Kaleidoscope language, the reader is referred
to [Freeman-Benson 90a] and [Freeman-Benson 90b]
respectively or to the author’s forthcoming Ph.D. dis-
sertation.

As of the publication deadline (July 1990), the lan-
guage and its virtual machine have been designed,
some example programs have been written, and the
implementation of the compiler has begun.

2 _ Constraints and
Constraint Hierarchies ___

Constraints are system maintained assertions about
the program. In general, there are many interrelated
constraints in a Kaleidoscope program,; it is up to the
compiler and run-time system to sort out how they
interact and to keep them all satisfied.

Kaleidoscope uses a constraint hierarchy [Borning et
al. 87, Borning et al. 89] to provide a convenient means
for stating relative desires. In a constraint hierar-
chy each constraint is given a strength: required,
strong, ..., very_weak with the stronger constraints
completely dominating the weaker ones. Other papers
have described the theory of constraint hierarchies,
and given algorithms for solving them. Kaleidoscope
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uses a constraint hierarchy and the locally-predicate-
better comparator function. This function defines a
potential solution, o, to be betier than another, 0, if o
completely satisfies at least one constraint that ¢ does
not.

References [Leler 88] and [Freeman-Benson et al. 90)
provide more comprehensive overviews of previous
constraint languages and systems.

3 _ Semantics and Time ____

The key to integrating the declarative constraint
paradigm and the imperative object-oriented one is
the definition of a semantics that combines the two.
As a starting point, one can loosely characterize the
semantics of the imperative and declarative paradigms
(this paper is not concerned with formal denotational
semantics—a rough characterization will suffice):

Imperative
Each instance variable holds a single value (e.g.,
a pointer to an object). Also, each instance vari-
able potentially holds a different value after each
instruction is executed. However, the value of a
variable cannot change unless the instruction ex-
plicitly writes to that variable.

Declarative
Each variable holds only one value, i.e., the result
of evaluating the program. For functional pro-
grams, the least fixed-point; for constraint hierar-
chies, the best valuation. Time does not advance,
and the value of the variable cannot changeT.

Thus, inspired by Lucid’s use of infinite streams, Kalei-
doscope’s Constraint Imperative Programming (CIP)
semantics merges the two:

Constraint Imperative Programming

Each instance variable holds a stream, or history,
of values. Each value represents the value of the
variable at a different instant, with subsequent
values representing subsequent instants. Time is
virtual and represented by the positive integers.
The value of a variable at time ¢ is the result
(the best valuation) of the constraints that ex-
ist at time ¢. To prevent various paradoxes, the
past is read-only.

TLogic variables in logic programs can change by becom-
ing more refined during execution, but they cannot arbitrarily
change value.
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With the following four definitions, the CIP semantics
are a superset of both imperative object-oriented and
declarative constraint semantics:

1. The value at time t is, by default, the same as
the value at time ¢t — 1. Thus a variable’s value
does not change unless the variable is assigned
to or otherwise constrained. This is implemented
in Kaleidoscope by a very_weak stay constraint
between the values of the stream:

Vt, veryweak V; = V,_,

2. An assignment constraint is a constraint on the
next value of the stream and thus can only affect
the next instant. It can affect the distant future
only when the new value is propagated by the
very weak stay constraint mentioned above. It
cannot affect the present or the past. For exam-
ple, if the current time is 8 then:

X<y, = zo=ys

3. All other constraint expressions denote a (poten-
tially) infinite set of constraints on individual val-
ues in the streams. Thus, in Kaleidoscope, the
constraint expression:

pig = cow

defines a value constraint for each instant:
Vt, pigs = cowy

or, equivalently, starting at time t = 1:

pig] = cowp
pigy = cowy

In other words a constraint expression affects the
values of the variables it constrains “from now
on”. The assert...during... construct demon-
strated in section 4.5 corresponds to “from now
until then,” or:

Vi€En...m, pigy = cowy

And, as discussed earlier,

4. Time is explicitly advanced using the “#” oper-
ator. Here Kaleidoscope differs from traditional
object-oriented languages which advance time as
each byte-code or machine language instruction is
executed.

Thus, a program without constraints (only assign-
ments), has similar semantics to an imperative pro-
gram (values stay the same, assignments change val-
ues). A program without assignments and hash-marks
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Figure 1: MacDraw II Dashed Line Dialog Box

has the same semantics as a constraint program (vari-
ables have a single value; the same single value at each
instant).

Naturally, an efficient Kaleidoscope implementation
will recognize when a variable is being used strictly
imperatively and represent it as a more efficient de-
structive assignment variable, perhaps even storing it
in a register.

4 __ Language Overview ___

The running example used to demonstrate the lan-
guage concepts is a reimplementation of the Mac-
Draw II dashed-lines dialog box seen in figure 1
(thanks to Joel Spiegel for suggesting this example).
This dialog box is used to specify the pattern of black
and white dashes that make up a dashed line. There
are three main components to the interaction:

1. The data consistency constraints—constraints
such as “all dashes are adjacent,” and “each ver-
tical bar is attached to the end of a dash.”

2. The output channel—the routines that maintain
the graphical representation of the data structure
within the dialog box.

3. The input channel-—the routines that handle
mouse and keyboard events by translating them
into data structure modifications and mode tran-
sitions.

A DragBar is a vertical line with a small mouse
sensitive box. Figure 1 has four DragBars for the
four dashes (two black and two white) and one ex-
tra DragBar on the far right. A new dash is created
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by dragging the far right DragBar into the ruler space,
and, conversely, the last dash can be deleted by drag-
ging its DragBar to the far right (see figures 6 and 7).

The original dialog box source code is about 360 lines
of Object Pascal and took two to three weeks to write
with about half the time spent dealing with corner
cases and constraints [Spiegel 89).

4.1 __ Constraints and Classes __

Kaleidoscope has a standard class-based, garbage-
collected approach to objects. Objects can have public
and private instance variables and operations (meth-
ods). An initially clause can be defined to initial-
ize each new object. For example, the Dash class has
four instance variables, three constraints, and an ini-
tial color:

class Dash subclass of Object
public var left, length, color;
public virtvar right;
initially
always: right - left = length;
always: length >= 1;
always: length <= 128; % 128 =13~
weak color <- Black;
end initially;
end Dash;

The right variable is defined as a virtual variable: a
name that acts like a variable but uses no storage.
Instead, a virtual variable is defined in terms of other
variables and is recomputed upon each access. Because
constraints are used, virtual variables can be assigned
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to, as well as be read from. A virtual variable must be
defined by at least one constraint.

Each constraint in Kaleidoscope has a strength—those
without an explit strength are, by default, required.
Thus far, the example program’s constraints have all
been required. As described in section 3, an assign-
ment is a constraint, thus assignments can also have a
strength.

Kaleidoscope uses classes for implementation inheri-
tance. For example, in the following code fragment,
DashedLine inherits its representation and operations
from Array and then adds four constraints. Note that
the statement labels “1...” are not part of the Kalei-
doscope syntax:

class DashedLine subclass of Array

initially
1 always: self[first].left = O;
2. always: self[first+l..last].left =
self[first..last-1].right;
3. always: self[first].color = Black;
4., always: self[first+1..last].color =

self[first..last-1].color.inverse;
end initially;
end DashedLine;

These four constraints are iferative constraints: con-
straints on objects whose size changes dynamically (in
this case self, a subclass of Array). Constraint 1
places the first dash at the left edge of the line, 2 places
each dash adjacent to its neighbors, 3 makes the first
dash Black, and 4 causes the colors to alternate;

] )
& (&S] Ll 4 Wl w2
t 2 2 2 34 41

4.2 __ Types of Constraints __

The time complexity of constraint satisfaction depends
on both the domain and kind of the constraints. For
example: linear equations over the real numbers can
be solved in polynomial time, single polynomials to
degree four have a closed form solution, discrete CSP
problems are NP-complete, and the complexity for in-
teger polynomials of degree greater than two is still
unknown. As a result, much of the effort in constraint
language research has gone into finding algorithms,
heuristics, and language subsets that can be solved
efficiently. In Kaleidoscope, these limitations manifest
themselves in how the constraint solver operates.

For example, because Kaleidoscope is essentially an
imperative language, it does not support backtrack-
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ing. Thus the solver uses a committed-choice ap-
proach: once a value has been determined, further
constraints in the same time interval cannot change
its value. Thus, if an additional constraint producing
a different value is encountered before the next time
advance, the program will halt with a run-time error.
For example, the following code fragment is illegal:

if X > 5 then
once: X = 3;
end if;

The reader is referred to [Freeman-Benson 90a] for
complete details.

Thus there are three types of constraints in Kaleido-
scope:

Equality
Value equality can be both soft (user-defined) and
hard (system-defined).

Primitive

The core of the constraint solver only solves prim-
itive constraints over real numbers, integers, and
booleans using a few pre-defined operators (+, -,
=, <, ...). Primitive constraints may be cyclic, re-
dundant, and even uni-directional. Note that the
solver cannot perform miracles—it cannot solver
Fermat’s last theorem—however it will have a
number of algorithms to solve various kinds of
constraints over various domains.

Complex
Complex constraints are constraints over complex
objects built by constraint constructors (special
side-effect-free procedures) from lower-level con-
straints. For example, Point addition can be con-
structed as:

class Point
constructor +{ q, r )

always: self.x + q.x = r.x;
always: self.y + q.y = r.y;
end +;
end Point;

4.3 __ Complex Constraints __

The dashed lines dialog box allows six different
dashed lines to be specified, each with a differ-
ent arrangement of dashes. In this reimplementa-
tion, a DashPatternInteraction object is cre-
ated when one of the six radio buttons is se-
lected. The DashPatternInteraction handles

ECOOP/OOPSLA 90 Proceedings 81



1,4 1,4,3

—— N 1ers
—_—i
———D—
R, T
—_—
_n_—

Figure 2: Minimum, Median, and Maximum Configurations

the user interaction, returning control only when the
mouse 15 clicked outside its sphere of influence.

class DashPatternInteraction
var draggers, line;
initially
line <- DashedLine.new();
draggers <- Array.new();

The number of DragBars is one more than the num-
ber of Dashes in the DashedLine because of the extra
DragBar waiting on the right. However, there is a
maximum of six dashes in a pattern, thus when six
dashes are present, the extra DragBar should not be.
This constraint could be written:

always: draggers.size =
min({ line.size+1, 6 );

But writing the constraint this way does not specify
how to modify the arrays, i.e., what object to place
in new array entries. Instead, this constraint is writ-
ten using a constraint constructor in the DashedLine
class. Note that this constraint is asymmetric: if 1ine
changes size, draggers will adapt; but not vice versa.

always: line.min_six( draggers );

class DashedLine
constructor min_six( d )
var diff;
once: diff = d.size
- min(self.size+1,6);
%
% If I am the bigger array then
% add 1o the draggers array.
if diff < O then
d.add_n_last(
DragBar.new(), -diff );
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% If I am smaller, remove from draggers.
elseif diff > O then
d.remove_n_last( diff );
end if;
end min_six;
end DashedLine;

As a general rule, the DragBars are attached to end-
point of their corresponding Dash (constraint 1 below),
and the last DragBar rests at the right edge of the dia-
log box (constraint 2). However, there are two special
cases: first, the DragBar of the last Dash is only weakly
attached so that the DragBar may be dragged to the
far right (constraint 3); and second, there must be at
least two dashes in each pattern (a dashed line with
one dash is a solid line!). Thus, if the last dash is the
first or second dash, it cannot be dragged to the far
right (constraint 4). This is very confusing in words,
but is easy to express in Kaleidoscope:

1...always: required
draggers[..last-1].offset
= line.dashes[..].right;
2...alvays: very_weak
draggers[last].offset = RHS;
3...always: weak
draggers[line.dashes.size].offset
= line.dashes[last].right;
4...always: required
draggers[1..2] .offset
= line.dashes[1..2].right;

Figure 2 shows which constraints connect to which
DragBars in various situations. As explained in sec-
tion 2, required > weak > very_weak, so that if the
constraints conflict, the stronger ones (1 and 4) will
override the weaker ones (2 and 3). The constraints
can be specified in any order.

4.4 __ Output Channel __

The classes and constraints defined in the previous
sections are the data objects and internal consistency
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Figure 5: The DragBar snaps back

relations for the dialog box. To define the output
channel (alternatively, the output relation), a Kalei-
doscope program uses constraints as one-way filters
from source objects to bitmaps [Ege et al. 87). In
other words, the constraints are being used as a
uni-directional functional language similar to Fabrik
(Ingalls et al. 88]). The filter constraints are uni-
directional because: (1) there is no good algorithm
to determine the positions of the DragBars from arbi-
trary bitmaps, and (2) the committed-choice approach
of the solver cannot execute the filter constraints in re-
verse. The actual code is not shown.

4.5 __ Input Channel _

The last part of the example is the input channel. The
interesting part of the input channel is the procedure
that handles a mouse-down event in the drag box of
an DragBar. The procedure has two parts: a set of
constraints that temporarily change the system’s be-
havior, and a block of imperative code to sequence
through the three modes: dragging, off-to-the-right,
and finished. The constraints are:

1. The DragBar position is constrained to follow the
mouse position, but only with a medium strength.
Thus, in figure 3, when the mouse attempts to
drag the DragBar into a position that would vio-
late other stronger constraints, the DragBar does
not follow.

Qctober 21-25, 1990

2. The length of all Dashes, except the selected one,
are required to remain fixed, i.e., to stay the
same as their previous value. If they were not so
constrained, or constrained at a weaker level, then
the medium mouse constraint could change their
length by pushing them up against the edges of
the dialog box. See figure 4.

3. The length of the selected Dash is weakly con-
strained so that the mouse can stretch it—recall
that weak is weaker than the mouse constraint’s
medium,

These constraints are placed in an
assert...during... construct to assert that the tem-
porary constraints should only be valid during the du-
ration of the enclosed block.

assert
1... medium draggers([sel].offset =
mouse.position.x;
2...  required line[..\sell.length stay;
J...  weak line[sell.length stay;
during

The duration of the dragging interaction is enclosed in
the during block, and is defined by a loop that termi-
nates when the mouse button is released. During the
dragging, any of three interesting events can happen:
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4. The mouse button can be released, terminating
the dragging, and removing the temporary con-
straints. As shown in figure 5, if the last DragBar
has been dragged into the blank space between
the last Dash and the right edge of the box, the
constraints will snap it back to the end of its cor-
responding Dash.

5. The DragBar can be dragged from the far right,
creating a Dash (figure 6).

6. The DragBar can be dragged to the far right,
deleting a Dash (figure 7).

The code is as follows:

loop
if mouse.button = false then
4... exit;
elseif draggers[sel].offset <> RHS
and sel = line.size+l then
J... line.add_last( Dash.new );
elseif draggers(sel].offset = RHS
and sel <> line.size+1 then
6... line.remove_last();
end if; #
end loop;
end assert;

The remainder of the dialog box program is not shown.

5 ___ Views

Kaleidoscope gets its name from an original goal of
using constraints to support multiple views in object-
oriented programming. In traditional olject-oricnted
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languages, each object presents the same aspect of it-
self to all viewers, or rather to everyone except itself—
the self view often extends the public view with a
private protocol and instance variables. In C++, the
friend and protected keywords allow an object to
have three views: private, protected, and public. Nu-
merous research projects including [Goldstein & Bo-
brow 80, Wadler 87, Haberman et al. 88, Shilling &
Sweeney 89, Harrison et al. 89] have provided single
objects with multiple interfaces.

For example, an Employee might also be viewed as
a Friend, and perhaps as a BloodDonor. Some of
the instance variables of the three views are shared,
whereas others are not:

Employee Friend BloodDonor
name name name

age - age

ssn# - -

- - blood_type

A more traditional computer science example is view-
ing a Tree data structure as an Array (with a pre-order
filter), or as a Set (by an any-order filter). The defi-
nition, use, and implementation of views is an active
area of research.

The simplest view of an object is as a supertype:
an Integer as a Number. Following the Emer-
ald terminology, this type of viewing is referred to
as narrowing! the view of an object because it re-
duces the number of operations that can be invoked
on the object. Conversely, widening views an ob-
Ject as a subtype. Widening is safe if the object
is really just a narrowed view of the subtype, e.g.,
(4 as Number) as Integer.

tNot the same definition of narrowing as in [Reddy 85].
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However, if the object being widened is not the ap-
propriate type, then the new view will contain infor-
mation not present in the old view, and the prob-
lem becomes the view update problem of databases
[Date 81]. Traditional languages often catch this er-
ror with a run-time trap, for example the Smalltalk
doesNotUnderstand: message.

In Kaleidoscope, a view is an object (or equivalently,
an object is a view). FEach view of some informa-
tion (each view of a particular object) is a separate
objectT. The objects are connected by consistency
constraints—often equality constraints between their
common instance variables, although any other con-
straints are permitted. The viewing operation consists
of creating the new object (instantiating its class) and
creating the consistency constraints. Thus the viewing
operation “as” is no different than a standard opera-
tion. For example:

class Employee
var name, ssn;
public func as( Friend ) -> ( £ )
f <- Friend.new; #
always: f.name = self.name;
end as;
end Employee;

Because the object-oriented paradigm places the oper-
ations (methods) in each object, writing correspond-
ing views between two classes requires a lot of du-
plication. For example, the programmer must write
one function for Celsius as Fahrenheit and another
for Fahrenheit as Celsius, each containing the con-
straint C*1.8 = F — 32. To ease this burden, Kaleido-
scope provides a view definition syntax that, in effect,
automatically generates an as function for each class:

view Celsius <--> Fahrenheit <--> Kelvin
always: Celsius * 1.8 = Fahrenheit - 32;
always: Celsius = Kelvin + 273;

end view;

Constraints in the view definition can have different
. strengths, and assignment constraints are permitted
to give default values:

TConceptually, at least, a view is a separate object. The
compiler may choose to implement multiple views as a single
object using techniques from [Haberman et al. 88, Shilling &
Sweeney 89].
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view Point <--> Pixel
always: Point.x = Pixel.x;
always: Point.y = Pixel.y;
la... weak Pixel.color <~ Grey;
end view;

Note that the apparently similar view definition:

view Point <--> Pixel
always: Point.x = Pixel.x;
always: Point.y = Pixel.y;
1b... weak Pixel.color = Grey;
end view;

actually specifies a different behavior. Constraint 1b
defines a weak equality that overrides the very weak
Vi = Vi_1 value propagation stay constraint men-
tioned in section 3. Thus the color would return to
Grey after each assignment statement:

pixel <- point as Pixel; #
% pizel.color is Grey
pixel.color <- White; #
% pizel.color is White
#
% pizel.color is Grey again

The multiple activations of [Shilling & Sweeney 89] al-
low multiple views of the same class: a Friend may
have three jobs, and thus three Employee views. The
current definition of Kaleidoscope supports only a sin-
gle view of each class (e.g., a Friend can only have one
Employee view), although the extension to labelled or
query-selected multiple views is being considered for
the future.

6 __ Related Work

The previous and related work can be grouped into
three categories: object-oriented languages, constraint
based systems, and combinations thereof.

Kaleidoscope is a dynamically-typed object-oriented
language, and with the exception of its viewing mech-
anism, Kaleidoscope does not present any new ideas
in its basic object-oriented features. The debates on
metaclasses versus prototypes, inheritance versus del-
egation, static typing versus dynamic typing, control
flow with messages versus control flow with state-
ments, compiled versus interpreted, etc. are all rela-
tively independent of the interesting issues that Kalei-
doscope explores—those problems and opportunities
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that arise when integrating declarative and imperative
object-oriented paradigms. Consequently, the Kalei-
doscope design has chosen to use classes without meta-
classes, run-time typing, statement-based control flow,
and a mixture of compilation and interpretation be-
cause these techniques are useful and well-understood,
rather than because they are the “best.”

Previous and continuing constraint language research
in a variety of fields has demonstrated the utility
of multi-directional declarative programs. Bibliogra-
phies and discussions can be found in [Leler 88] and
[Freeman-Benson et al. 90]. In Constraint Logic Pro-
gramming (CLP) [Jaffar & Lassez 87], its cousin HCLP
[Borning et al. 89], and the cc family of languages
[Saraswat 89], logic programs are used to construct
and query comstraint networks. Similarly, Kaleido-
scope uses an imperative program to construct and
query a network. Logic programming supports back-
tracking; Kaleidoscope does not.

The Kaleidoscope combination of constraints and
object-oriented programming was inspired by the infi-
nite streams of Lucid [Wadge & Ashcroft 85] as well
as by the Fabrik visual programming environment [In-
galls et al. 88]. Independently inspired, [Berlandier &
Moisan 88] developed a similar constraints-and-
sequencing system named Prose, although without
complex constraints., Other constraints-plus-object-
oriented languages, e.g., [de Wegher et al. 89, Avesani
et al. 90], have not addressed the issues of constraints
on dynamically changing objects nor on objects at dif-
ferent part-subpart levels. Instead, these languages
only permit constraints on terminal variables. Kalei-
doscope uses constraint constructors to, in effect, split
a larger constraint on an object into smaller con-
straints on its subparts.

Kaleidoscope and Prose are similar in that they both
use streams of values to hold state. Kaleidoscope uses
a constraint hierarchy to provide a clean semantics for
default information, and emphasizes efficiency. Prose
is a constraint language within the SMECI object-
oriented expert system, and relies on a backtracking
solver to handle conflicts and higher-order constraints.
The constraint language and expert system are sepa-
rate yet interconnected: the supervising expert system
can add and remove constraints as the rules are fired;
and the constraints can fail, causing the expert system
to backtrack. Kaleidoscope, on the other hand, uses
constraints to enforce rather than to verify relations.
Thus, instead of being controlled by an external sys-
tem that backtracks, the Kaleidoscope system main-
tains the constraints during the natural execution of
the program.
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The use of a constraint hierarchy rather than a flat
constraint system is essential in the semantics of
Kaleidoscope because it allows the imperative “vari-
ables stay the same unless changed” and “assignment
changes the value” relations to be defined in terms of
constraints (cf. section 3). Systems without a hierar-
chy cannot cleanly integrate these two paradigms.

7 __ Conclusion

This paper has outlined some of Kaleidoscope’s fea-
tures for integrating declarative constraints and im-
perative object-oriented programming. These features
have been selected to provide a useful yet efficient lan-
guage. As with any new language, there are a number
of rough spots. The obvious solution to these problems
is to allow maximal generality. However, the language
designer must keep in mind that a high-level language
should not penalize the programmer. Powerful fea-
tures will always consume resources, but they should
only do so when actually used. In other words, a Kalei-
doscope program without constraints should be as fast
as the corresponding C++ program, as should a Kalei-
doscope program with constraints that can be stati-
cally compiled. Only in complex situations should the
Kaleidoscope compiler resort to using run-time con-
straint solver calls. Useful implementation techniques
have been gathered from many previous systems, in-
cluding [Chambers et al. 89, Graver 89, Chambers &
Ungar 90, Freeman-Benson 89] and are being used to
build a prototype Kaleidoscope system.

Mixing constraints, objects, and imperative program-
ming has proved useful in ThingLab II, and in the sam-
ple Kaleidoscope programs written so far. The dialog
box example in section 4 demonstrates the utility of us-
ing constraints to define relationships between objects
in three parts of a user interface: the input channel,
the output channel, and the internal data invariants.
Other programs have demonstrated that adding con-
straints to an object-oriented program is useful pro-
gramming technique. And last, but not least, adding
explicit objects, state, and time to a constraint lan-
guage allows a compact description of many sequenc-
ing algorithms. Kaleidoscope is a language explicitly
designed for all these techniques.
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