What Tracers Are Made of

Heinz-Dieter Bocker
GMD-IPSI
DolivostraBe 15
D-6100 Darmstadt
Federal Republic of Germany
boecker@ipsi.darmstadt.gmd.dbp.de

Abstract

In object-oriented languages like SMALLTALK-80,
browsers and inpeciors are used to provide insight into
the static world of objects and their relations, debuggers
are used to inspect and modify states of computation.
This article presents a detailed description of TRICK,
a basic toolkit to build fracers. Tracers can be used
to uncover the dynamic properties of SMALLTALK-80
programs. As an example of how the power of this kit
may be used by an experienced programmer, we de-
scribe the TRACK system, a visual trace construction
kit, by means of which trace specifications may be set
up through direct manipulation of graphical objects.

1 Tracers’ TRICK

In object-oriented languages like SMALLTALK-80,
browsers and inpectors are used to provide insight into
the static world of objects and their relations, debuggers
are used to inspect and modify states of computation
(cf. [4]). We suggest to build tracers that can be used
to uncover the dynamic properties of programs. Like
browsers and inspectors, tracers live in windows, an ar-
bitrary number of which can coexist concurrently and
may cooperate with each other as well as with their
cousins: the browsers, inspectors, and debuggers. Also,
they are manipulated in similar ways, may be accessed
from the other tools, and in turn provide access to these
tools.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1990 ACM 089791-411-2/90/0010-0089...$1.50

October 21-25, 1990

Jirgen Herczeg
University of Stuttgart
Department of Computer Science
Herdweg 51, D-7000 Stuttgart 1
Federal Republic of Germany
herczeg@informatik.uni-stuttgart.de

This paper describes TRICK (tracers’ internal
construction kit), the low level program interface for the
SMALLTALK-80 programmer who wants to build textual
or graphical tracers. We will show how it has been suc-
cessfully used to build TRACK (trace construction kit),
which is described in more detail in [2].

Browsers and inspectors obviously can be used to look
at the code that implements them. Figure 1 depicts an
analogous situation in which the TRACK tracer is ap-
plied to some of the components it is built of; the trace
shows how a message to be traced is passed through
the various subfilters of a trace filter which is one of the
buildings blocks available within TRICK.

2 Tracing Object-Oriented Pro-
grams

Standard tracing tools in object-oriented languages (like
the one contained in SMALLTALK-80, Version 2.3) are
mostly inadequate for other than toy situations. They
suffer from basically the same problems that plague
the users of tracing tools in ordinary programming lan-
guages: for- the user it is hard to make them provide
just the right amount of information at a level of detail
that is just about right for the problem at hand, e.g.,
to find a bug in a program. A detailed analysis of these
deficiencies is contained in the above mentioned paper
describing the TRACK system.

Message passing and methods organized in class hi-
erarchies are characteristic constituents of the object-
oriented programming paradigm in languages like
SMALLTALK-80. The modularity achieved through
these mechanisms side-effects the very concept of trac-
ing as known from “ordinary”, procedural programming
languages. In these languages, tracing refers to some
means of monitoring the execution of procedures or

ECOOP/OOPSLA '90 Proceedings 89

JcomplexArgumentsTraceFilter]

sander-filtar ~> salf

<¢< tastConditions: <<< trua
9> testConditlons: »>>
recalvar-filtar ~> salf

<<< tastConditions: <<

positive-filter => self

<<€ tastObjacts: << trua
»»> testClasses: »»>
positive-filtar -> self

<<< testClasses: < true
»>> testSuparclasses: »»>
positive~filter => self

¢<¢ testSuparciassas: <<< true
> testObjects: >»
nagativa-filter => salf
¢¢¢ tastObjects: << false

BasicObjectFilte

trace-filte

5> test: (a Parson 'raquast’) >>>
<K test: LK false

argumant-tilta

»> test: a Mayor >»

) test: ‘request’ »»>

<¢¢ tast: <KL falsa

argument2-filte

¢<< tast: << trua
> tast: a Mayor >

<<< test: <K< true

> test: a Mayor >>> > test: a Mayor >3
€< tast << true €¢C tast: <KL faise

3> test: (a Person ’request’) »> trace-filter -> argument-filter

) test: ‘request’) argumant-filter => argument2-filter
»> testObjects: ‘requast’ >>> a BasicObjectFilter -> seif
<{< tastObjects: <<< falsa
K< test: KK false
<€ tast: K< false
<¢< testArguments: << false
B << testSalectorargumantsisendarirecalver: (< false

Figure 1: Using the TRACK tracer to trace components of TRICK

functions. In object-oriented languages, tracing may re-
fer to two different, though closely related things: meth-
ods or messages. The tracing of methods is roughly
equivalent to the tracing of procedures; trace informa-
tion is produced during (or immediately before or after)
the execution of the method or procedure. Alterna-
tively, when focussing on the tracing of messages, we
do not necessarily assume the existence of procedural
entities that respond to these messages. Tracing mes-
sages amounts to spying on information that is flowing
between objects. A method trace is defined by referring
to the recipient of a message or the class of the recipient
and its superclasses whereas a message trace does not
necessarily refer to any object at all.

90 ECOOP/OOPSLA '90 Proceedings

Within any tracing task, two phases may be separated:

e Specification phase: The program parts, i.e. meth-
ods or messages, that are to be traced are specified.

e Ezecution phase: The program is executed and the
trace output is generated. This phase may again
be separated into two subparts (cf. [5]):

— Recording phase: The trace information is col-
lected, i.e. the program parts to be traced are
filtered from all executed program parts.

~ Animation phase: The trace information
is presented to the user (possibly asyn-
chronously to the recording phase), i.e. arbi-
trary actions are performed for each program
part to be traced.

October 21-25, 1990

The TRICK system contains components that may be
combined to implement both the specification and ex-
ecution phase of a trace. By modifying and extending
these components or by adding new ones, the speci-
fication and animation of a trace can be customized.
TRACK (see section 4) is an example of how this may
be done by employing graphical interaction and visual-
ization techniques.

Slightly different visualization techniques for tracing
object-oriented programs are used by the GRAPH-
TRACE system, described by Kleyn and Gingrich [5].
To visualize the flow of control within a program they
combine textual protocols with graphical displays of the
tree- or net-like structures formed by the calling struc-
tures of methods. A similar trace tool is described in [3].
Their system integrates the debugger and a stepping fa-
cility to produce diagrams of currently active methods
within the context of their containing classes.

3 The TRICK System

The TRICK system implements a method trace and pro-
vides utilities to implement a message trace. Within
TRACK, the basic machinery provided by TRICK has
been used to implement a method trace as well as a
message trace facility.

TRICK provides a collection of classes which form build-
ing blocks to implement user level trace tools. The
most important elements of TRICK’s architecture are
displayed in Figure 2. Below, we will describe the build-
ing blocks and show how they work together on the sys-
tem programming level. Throughout this description we
will use the following small program example:

bag := Bag with: 1 with: 5 with: 5.
sortColl :=

SortedCollection with: 9@ with: 3 with: 4.
sortColl addAll: bag.

Two collections of numbers are created, an unsorted
collection (instance of class Bag) and a sorted collection
(instance of class SortedCollection). The elements of
the unsorted collection are spliced into the sorted col-
lection. We will trace the communication between the
two collections and actions performed within the sorted
collection, i.e., the messages sent between both collec-
tions, the messages sent from the sorted collection to
itself, and the methods invoked. For the sake of simplic-
ity, we will restrict our scrutiny to the methods directly
defined in the classes of the two collections; we will not
be interested in methods defined in their superclasses,
e.g. the class Object.

October 21-25, 1990

application
classes »| trace
pools
methods
A 4 f
traced context
methods tracers * managers
ﬂ‘ A /
v trace text
collectors
trace | points /
top % trace
osce poinaf<_ [obiighe
compound \ trace
trace points " filters

Figure 2: TRICK’s basic architecture

3.1 Traced Methods and Trace Pools

When deciding about how to implement the foundations
of a trace tool, we have to avoid paying performance
penalties. We will probably have to accept a small loss
in performance for the parts of the program that get
traced; the rest of the program, however, should be un-
affected. This requirement rules out the possibility of
modifying the interpreter and promotes the possibility
of modifying the program code, which means that more
work is to be done in the specification than in the exe-
cution phase.

Obviously there are still alternative ways to implement
this kind of tracing mechanism. One method which
comes to mind proceeds as follows: define a new method
with a name identical to the one of the original method
within a new class that is created as a subclass of the
original one. From within this method, call the origi-
nal one via a super call. We decided not to use this
technique since it would require making all instances
and subclasses of the original class into instances and
subclasses of the newly created class.

The basic technique used by TRICK to trace methods is
illustrated by figure 3. When a method is to be traced,
the method dictionary of its class is modified (in the
specification phase) in two ways: (A) a new selector en-
try generated from the original selector is added point-

ECOOP/QOOPSLA '90 Proceedings 91

Method-Dictionary
Selector \ Method
Traced- / Traced-
Selector Method
Insertion
Method-Dictionary
Selector +1 Method
1 Traced- 1 ! :TI‘.r-a;e_d-_ }
L Selector 1 _____ § L Method |

Deletion

Figure 3: Insertion and deletion of a traced method

ing to the code of the original method, and (B) the
original selector is made to point to the traced method.
This is a piece of code which

1. notifies the class defining the invoked method that
this method was called in a certain context (con-
taining sender, receiver, selector, etc.),

2. calls the original method stored away in step (A)
and saves the result in a temporary variable,

3. notifies the class of the invoked method that the
method called in a certain context is about to fin-
ish, and

4. returns the result.

For example, the method dictionary entry of class
SortedCollection for the method with selector add:

92 ECOOP/OOPSLA '90 Proceedings

add: newObject
| nextIndex |
self isEmpty ifTrue: :
[~super addLast: newObject].
nextIndex := self indexForInserting: newObject.
self insert: newObject before: nextIndex.
“newObject

is substituted by two entries for the methods:

TRACEDSortedCollectionadd: newObject
| nextIndex |
self isEmpty ifTrue:
[~super addLast: newObject].
nextIndex := self indexForInserting: newObject.
self insert: newObject before: nextIndex.
“newObject

add: newObject
| result |
SortedCollection send: #add: in: thisContext.
result :=
self TRACEDSortedCollectionadd: newObject.
SortedCollection return: #add: in: thisContext.
“result

It is up to the class containing the traced method how
to react to the notifications mentioned. Through meth-
ods inherited from the standard class Behavior every
class knows how to employ trace pools for book-keeping
of traced methods and how to react to the notification
messages. Each class defining methods to be traced has
an associated trace pool which maps the traced methods
to the tracers, instances of arbitrary trace components,
in which these methods are to be traced. Thus, each
single method may be traced by an arbitrary number of
tracers. Conversely, each tracer may trace any number
of methods possibly spread over different classes. When
a class gets the notification of an invoked method to be
traced, it simply passes this information to all corre-
sponding tracers. Each tracer defines whether or not
and how the method or the corresponding message are
to be traced.

3.2 Trace Filters

In common trace situations, not all traced methods in-
troduced in the initial specification phase are of inter-
est to the user any time they are invoked. More typi-
cally, the invocation of a specific method is of interest
only when called with certain arguments or when be-
ing invoked by a message from a specific instance. In
TRICK, the methods or messages to be traced are there-
fore determined in the recording phase (at run time) by
trace filters. A trace filter is employed to filter a traced

October 21-25, 1990

method with respect to its arguments, its result (if al-
ready computed), and the sender as well as the receiver
of the corresponding message. Since in SMALLTALK-80,
message sender and receiver as well as the arguments
and the result are objects, in a trace filter each of them
is handled by an object filter. Filtering aspects for an
object passing an object filter are:

¢ equality with specific objects,
¢ class membership, or

e arbitrary predicates to be fulfilled by the object.

An object filter is defined as an instance of class
ObjectFilter. The set of objects being accepted or
rejected are specified by the following methods:

acceptObject:
acceptInstances0f:
acceptKindsOf:
rejectObject:
rejectInstancesOf:
rejectKindsOf:
acceptUnderCondition:

When no restriction is specified, each object passes the
object filter.

A method or message passes a trace filter, when
its arguments, result, sender, and receiver pass all
object filters and fulfill arbitrary constraints speci-
fied for the filter. Trace filters are defined in the
specification phase and may be incrementally modi-
fied. The object filters are accessible by the meth-
ods senderFilter, receiverFilter, resultFilter,
or nthArgFilter: and may be restricted by the
methods of class ObjectFilter listed above. Addi-
tional constraints for a trace filter are specified by
acceptUnderConstraint:. From within these con-
straints the selector, the arguments, the result, the
sender, and the receiver can be referenced.

In our example, the trace filters for all messages sent
from bag to sortColl and vice versa may be defined as
follows:

TFUnsortToSort := TraceFilter new.

TFUnsortToSort senderFilter
acceptObject: bag.

TFUnsortToSort receiverFilter
acceptObject: sortColl.

TFSortToUnsort := TraceFilter new.

TFSortToUnsort senderFilter
acceptObject: sortColl.

TFSortToUnsort receiverFilter
acceptObject: bag.

Qctober 21-25, 1990

A trace filter for all messages sent from an instance of
class SortedCollection to itself is created by:

TFSortColl := ComplexTraceFilter new.
TFSortColl receiverFilter

acceptInstancesDf: SortedCollection.
TFSortColl

acceptUnderConstraint: ’sender == receiver’

3.3 Trace Actions

While in traditional trace components the actions per-
formed in the animation phase produce textual out-
put for each traced program part, in TRICK arbitrary
trace actions may be defined during the specification
phase in an object called trace action manager. De-
fault actions are textual notifications recorded in trace
text collectors before and after a method or message
has been called. In addition, specific textual output
and actions may be specified which, for example, pro-
vide a graphical animation of the program (e.g., the
“moving ball” within TRACK indicating a “travelling”
message) or an invocation or notification of arbitrary
programming tools. Specific kinds of actions provided
by a trace action manager are break points that inter-
rupt program execution before messages to be traced
are sent or after their results are returned. A trace ac-
tion manager is set up by the following methods defined
in class TraceActionManager:

addBeforePrint:
addAfterPrint:
addBeforeAndAfterPrint:
addBeforeAction:
addAfterAction:
addBeforeAndAfterAction:
setBreakBefore
setBreakAfter

In our example, for messages sent from the sorted collec-
tion to itself we will instantiate a trace action manager,
which in addition to the default textual trace output,
(A) pretty-prints the receiver object before and after
each traced message to see how the message modifies
the internals of the collection object and (B) sends a
changed message to the corresponding tracer to (pos-
sibly) update the representation of the objects on the
screen in tracers like the graphical tracer of TRACK:

TAM := TraceActionManager new.
TAM addBeforeAndAfterPrint: ’receiver’.
TAM addAfterAction: ’tracer changed’.

ECOOP/OOPSLA '30 Proceedings 93

Tracer
trace
- action
op manager|
context
Fnanager trace
point trace
text
I ollector|
compound
trace
point
mpound d
trace| | co trI;ce COT:; Z:n | |trace
filter point point filter
simple simple simple simple
trace |--| trace trace |--+| trace
point oint point point

Figure 4: Internal representation of a trace specification

3.4 Trace Points

Trace poinis are the main concept used in the internal
representation of trace specifications. They tie together
the traced methods, trace filters, trace actions, and the
tracers in a hierarchical structure, in which it is possible
to group sets of traced methods and associate them with
a trace filter and specific trace actions. On different
levels of a trace point hierarchy, there are three different
types of trace points:

o A simple trace point corresponds to one traced
method; simple trace points form the lowest level
of a trace point hierarchy.

o A compound trace point groups a set of simple trace
points or subordinate compound trace points and
associates them with a trace filter.

e A top trace point forms the root of the hierarchy
and associates all trace points contained with a
trace action manager, a trace text collector, a con-
tert manager which saves the contexts from which
traced messages that have not yet returned are
sent, and finally a tracer.

Thus a trace point hierarchy for each traced method
associated with its simple trace points defines when the
method or the corresponding message is to be traced
and what actions are to be performed. The method is
traced if it passes all trace filters (cf. figure 1) following
the path of the hierarchy starting at the corresponding
simple trace point up to the top trace point.

The trace point hierarchy for a trace of all messages
sent between the two collections bag and sortColl of
our example may be set up as follows (cf. figure 4):

94 ECOOP/OOPSLA *90 Proceedings

CTPUnsortToSort := CompoundTracePoint new.
(SortedCollection
traceableMethodsCalledFrom: Bag) do:
[:selector | CTPUnsortToSort addTracePoint:
(SimpleTracePoint new
method: selector
class: SortedCollection)].
CTPUnsortToSort traceFilter: TFUnsortToSort.

CTPSortToUnsort := CompoundTracePoint new.
(Bag traceableMethodsCalledFrom:
SortedCollection) do:
[:selector | CTPSortToUnsort addTracePoint:
(SimpleTracePoint new
method: selector
class: Bag)].
CTPSortToUnsort traceFilter: TFSortToUnsort.

CTP := CompoundTracePoint new.
CTP addTracePoint: CTPUnsortToSort.
CTP addTracePoint: CTPSortToUnsort.

TTPBetwColls := TopTracePoint new.
TTPBetwColls subTracePoint: CTP.

The trace for all messages sent from a sorted collection
to itself is specified by the following operations:

CTPSort := CompoundTracePoint new.
(SortedCollection traceableMethodsCalledFrom:
SortedCollection) do:
[:selector | CTPSort addTracePoint:
(SimpleTracePoint new
method: selector
class: SortedCollection)].
CTPSort traceFilter: TFSortColl.

TTPSortColl := TopTracePoint new.
TTPSortColl subTracePoint: CTPSort.
TTPSortColl traceActionManager: TAM

3.5 Tracers

A tracer implements the specification and execution of a
method and/or message trace. It implements the con-
struction and modification of trace point hierarchies,
makes sure that each method represented by a simple
trace point is converted to a traced method which in
turn addresses the tracer by the trace pool associated
with the corresponding class. In the execution phase, a
tracer redirects the notifications from executed traced
methods to the corresponding trace points where the
methods (or messages) to be traced are filtered out and
the trace actions are performed. Moreover, a tracer
may visualize trace specifications and, for example, im-
plement a graphically animated trace. Since the trace
points are not directly addressed by the traced meth-
ods, the whole trace specification of a tracer may be

October 21-25, 1990

easily activated and deactivated to temporarily silence
a tracer without removing trace points, and mechanisms
like a stepping facility may be implemented.

A tracer specifies how to trace a part of a program.
Multiple tracers may be used to trace different program
parts, e.g., to separately trace the methods contained
in separate categories of a class or methods on different
abstraction levels of the application. Different tracer
specifications and different kinds of tracers, possibly re-
ferring to the same methods, may coexist simultane-
ously.

A simple tracer may implement a textual trace printed
to a scrollable text window. In our example, this tracer
is set up in the following way:

SimpleTracer := Tracer nev.

SimpleTracer addTracePoint: TTPBetwColls.
SimpleTracer addTracePoint: TTPSortColl.
SimpleTracer open.

Figure 5 shows part of the textual trace output of this
simple tracer in the trace text collector for messages
from the sorted collection to itself, when the unsorted
collection is spliced in.

A message that has been sent is marked with >>> and
identified by its selector, arguments, sender, and re-
ceiver. The result returned by a message is printed to-
gether with the corresponding message selector marked
by <<<. Hierarchical dependencies between message
calls are represented by appropriate indentation. Addi-
tional trace output like the message receiver in the trace
example (receiver = ...) and notifications for per-
formed trace actions (tracer changed ... done) are
printed below the default entries.

When a method or message is traced with TRICK,
the following actions are performed within the differ-
ent components between the invocation of the traced
method and the evaluation of the trace actions:

1. The class in which the method is defined is notified
that the method will be invoked, i.e. the message
has been sent.

2. All tracers possibly tracing the method or message
are notified via the trace pool associated with the
class.

3. By the trace filters, the active trace points are fil-
tered out of all trace points of the tracers referring
to the traced method.

4. The trace actions before method invocation for the
active trace points are executed.

5. The original method is invoked.

October 21-25, 1950

55> reSort >>> a SortedCollection -> self
receiver = SortedCollection (34955 1)
55> sort: 1 to: 6 >>> a SortedCollection -> self
receiver = SortedCollection (34955 1)
>>> swap: 1 with: 6 >>> a SortedCollection -> self
receiver = SortedCollection (34955 1)
<<< swap:with: <<< a SortedCollection
receiver = SortedCollection (1 495 5 3)
tracer changed ... done
>>> swap: 6 with: 3 >>> a SortedCollection -> self
receiver = SortedCollection (1 4 955 3)
<<< swap:with: <<< a SortedCollection
receiver = SortedCollection (1 43 55 9)
tracer changed ... done
$>> sort: 1 to: 1 >>> a SortedCollection -> self
receiver = SortedCollection (1 4355 9)
<<< sort:to: <<< a SortedCollection
receiver = SortedCollection (1 435 5 9)
tracer changed ... done
>>> sort: 2 to: 6 »>> a SortedCollection -> self
receiver = SortedCollection (1 43 55 9)
»>> sort: 2 to: 3 >>> a SortedCollection -> self
receiver = SortedCollection (1 4 355 9)
>>> svap: 2 with: 3 >>> a SortedCollection -> self
receiver = SortedCollection (1 43 55 9)
<<< swap:with: <<< a SortedCollection
receiver = SortedCollection (1 3455 9)
tracer changed ... done
<<< sort:to: <<< a SortedCollection
receiver = SortedCollection (1 3 45 5 9)
tracer changed ... done
5>> sort: 4 to: 6 >>> a SortedCollection -> self
receiver = SortedCollection (1 3 455 9)
<<< gort:to: <<< a SortedCollection
receiver = SortedCollection (1 3 455 9)
tracer changed ... done
<<< sort:to: <<< a SortedCollection
receiver = SortedCollection (1 3455 9)
tracer changed ... done
<<< sort:to: <<< a SortedCollection
receiver = SortedCollection (1 3455 9)
tracer changed ... done
<<< reSort <<< a SortedCollection
receiver = SortedCollection (13455 9)
tracer changed ... done

Figure 5: Textual trace output

6. The method defining class is notified that the
method has been evaluated, i.e. the message will
return a result.

7. All tracers possibly tracing the method or message
are notified.

8. The active trace points are filtered out, the result
of the message is included in the filtering process.

9. The trace actions after method invocation are exe-
cuted for the active trace points.

ECOOP/OOPSLA '90 Praceedings 95

SartedCollection

{SortedCallection (3 4 9)

Figure 6: Trace set up with TRACK before splicing in the collection

4 TrACK — A Graphical Tracer

The TRACK system implements a tracer in which both
trace specifications and trace output are visualized
graphically [2]. A message trace is specified by set-
ting up obstacles between or around graphically visu-
alized objects (classes and instances) to be affected by
the trace (cf. figure 1), e.g., to trace all messages be-
tween two instances, a “hurdle” is placed between the
icons representing them, or to trace all messages to in-
stances of a specific class, a “fence” is built up around
the icon representing this class. Different types of ob-
stacles that represent different trace specifications are
predefined. There are round shaped obstacles which
trace exactly one type of message and obstacles hav-
ing rectangular shape tracing all messages. The type of
obstacle is chosen from a graphical menu, and the po-
sition is determined interactively by moving the mouse
under continuous feedback indicating what the affected
objects are. When an obstacle is set up by the user,
the corresponding internal trace point hierarchy with
appropriate trace filters and default trace actions is au-
tomatically built up. The trace filters and trace actions
may be incrementally modified via dynamic menus and
forms.

96 ECOOP/OOPSLA '90 Proceedings

When traced methods are invoked, the corresponding
messages and methods are textually recorded in win-
dows associated with the trace text collectors. There
may be textual trace windows for each obstacle and
there is a global trace window for all messages and meth-
ods traced by the tracer. Further, each traced message
is graphically animated by a little ball moving from the
message’s sender to its receiver, following the line con-
necting the two, eventually crossing the obstacle.

Figures 6 and 7 display a graphical tracer of TRACK
tracing the example used throughout this article. The
graphical tracer of figure 6 contains visualized represen-
tations for all instances of class SortedCollection in
the left part of the trace window and for the two specific
instances of Bag and SortedCollection in the right
part of the window. Obstacles are set up between or
around these objects that trace all messages between the
Bag and the SortedCollection (the two hurdles in the
instances’ trace window) and all messages sent from a
sorted collection to itself (a square fence around the icon
representing all instances of class SortedCollection).
The additonal filter constraint sender == receiver and
the tracer changed — action are specified for the ob-
stacle in the class trace window via a menu attached
to the obstacle and by entering the appropriate expres-
sions. When the sortColl addAll: bag expression is

October 21-25, 1990

Tracear

7 UNTRACE[LJUNTRAGE [0 1. il
g i i i B
| oN !ggl RESET irl SPECIAL _kE“ A | o3fEena)

SortadCollection;

535 reSort >
receiver = SortedCollection (34 956 1)
2> sort: 1 to: 6 >
racalver = SortadCollaction (34966 1)
3 swap: 1 witht 6 53
racalver = SortadColiaction (34966 1)
<< swapiwith: << SortedCollection (3 4 8)
receiver = BortedCollaction (1495583)

tracer update .. done l
95 swap: € with: 3 5> ~}
racaiver = SortedCollection (14 955 3) -

<< swapiwith: << SortedCollection (149685 3) S

racelver = SortedCollaction (14366 9)
tracer update .. done

(6] [0) =

—

) siza >»

(K siza <K B

3> do: [1in SortedCollection>>addAll: >
<< do: << Bag (5 6 1)

\/

fsortedCotlaction (13 4 & 5 9)

L] < CHIEHCICHOIO |

¢<< sartito: <<€ SortedCollection (13465 9)
555 sort: 4 to: 6) SortadCollection (1 34 6§ § 8) -5 saif
<& sort:to: << BortedCollection (134569)
€<¢ sortitor << SortedCollaction (134 6859)
¢¢¢ soruto: <<¢ SortedCollaction (134685 9)
<<¢ reSart <¢¢ SortedCollaction{(1345589)

Figure 7: Graphical tracer after splicing in the collection

evaluated, an animation starts which visualizes the mes-
sages sent between the objects and shows how these
objects are changed in response to the messages: For
each traced message a ball moves from the sender to its
receiver. When it crosses the obstacle, a textual notifi-
cation of the message is printed in the global trace text
window in the lower part of the tracer and in the local
trace text window of the obstacle (cf. figure 7). Lo-
cal trace text windows may be opened by clicking onto
the corresponding obstacles. Moreover, by the tracer
changed action specified for messages from a sorted col-
lection to itself, the textual identifications in the ob-
ject icons in the trace windows are updated. Thus, af-
ter each message crossing the obstacle surrounding the
class SortedCollection, the numbers currently con-
tained in the instance of SortedCollection and their
order are displayed. Figure 7 shows the graphical tracer
after all numbers of the Bag have been inserted into the
SortedCollection at the correct position.

For each obstacle, the user may set a break point which
causes the program execution to be interrupted when
an animated message crosses the obstacle. The message
may be inspected and the program execution continued
by clicking on the ball visualizing the interrupted mes-
sage.

By pressing the appropriate buttons and switches in the

October 21-25, 1990 ECOOP/QOPSLA

top menu of a graphical tracer, the following utilities are
invoked:

o All messages and methods in the textual trace out-
put may be marked by a unique number to identify
corresponding “before” and “after” entries in the
different trace text windows.

In addition to the traced messages, the invoked
methods determined by selector and class are
printed in the global trace text window when
the corresponding messages are received (method
trace).

The program execution may be interrupted by the
STOP button whenever an animated message crosses
an obstacle just as if a break point would have been
encountered.

e The program may be executed in a stepping mode.
In each step, one traced message is sent. The
user requests to see more traced messages sent
within the corresponding method invocation or to
jump without further trace information to the point
where the current message returns its result.

o The speed of the program animation may be ad-

justed by a graphical gauge.

‘90 Proceedings 97

ControlManage

>» searchForActiveController
»>> a ControlManager => salf

[expand

[J initialize

P iscontroiwanted
] open

[] refreshDispiay

StandarddystemView

a ControlManage

> isControlWanted >>>
<<< isControlWantad < trua

7

la StandardSystamControllerf

»>> containsPoint: >»>
<¢< containsPolnt: << trua

a BrowserVie

> containsPoint: 4 1@ 196 > a StandardSystemControllar -> a BrowserVYiew

<<« containsPoint: <<« falsa
>»> searchForActiveController >>> a ControlManager -> salf

> IsControlWanted >3 a ControlManagar ~> a StandardSystemController
35> containsPoint: 41@196 > a StandardSystemController -> a BrowserYiew

<¢< contalnsPoint: <KL false
<LK isControlWanted << false
> saarchForActiveGontrolier >>> a ControiManager ~> self

Figure 8: Animating the MVC-paradigm with TRACK

Figure 8 shows how TRACK may be used to animate and
analyze even complex dependencies within SMALLTALK-
80 such as the Model-View-Controller user interface
paradigm [6], which is much more difficult to under-
stand from inspecting the static structure of the objects
involved, let alone from the program code.

Tracers like TRACK are not just tracing tools. They
may also be used in a more general sense as ezecution
browsers. Traditional browsers are used to explore the
static properties of code or other symbolic structures.
By constructing (or spawning) tracers, that are simi-
lar to each other and by interactively modifying them
the dynamic behavior of a program may be explored
in similar ways [1]: the grain size of observation may
change from coarse to detailed, different sections of a
SMALLTALK-80 program may be included in different
tracers, the speed of execution may be adjusted, etc.

98 ECOOP/QOPSLA '90 Proceedings

5 Integration of TRICK and

TRACK with SMALLTALK-80

The TRICK system as well as the TRACK tracer have
been fully integrated into the SMALLTALK-80 program-
ming environment. Making it possible to access a tracer
from the standard programming tools of SMALLTALK-
80 like browsers, inspectors, and debuggers and, con-
versely, making these tools accessible by a tracer is cru-
cial with respect to usability. In a graphical tracer, for
example, visualized classes and instances may be in-
serted and inspected with standard class browsers and
inspectors, respectively; traced messages may be in-
spected by debuggers. It is possible to specify a textual
trace of specific methods or all methods of a class from
a method or class browser.

October 21-25, 1990

To integrate this trace component with SMALLTALK-80,
the following major problems had to be solved:

e The existence of extended methods introduced to
implement traced methods and messages had to be
hidden from the programmer; the browser had to
be modified to show the original methods and, in
case the programmer modifies them, propagate the
changes to the traced methods.

¢ Deleting and adding methods or classes in an ap-
plication that is being traced causes several con-
sistency problems, e.g. what happens when a class
is removed which has traced methods and is visu-
alized in a graphical tracer, or what should hap-
pen when a method is added to a class for which
the user specified all methods to be traced? To
solve these problems, each tracer is notified about
the creation or deletion of classes and methods to
perform appropriate update actions that keep each
trace specification consistent with the rest of the
system, e.g. when a class is removed it is also re-
moved from all graphical tracers, or when a method
is added, the corresponding traced method is auto-
matically created if any trace specification implic-
itly addresses this method.

e To let the user also trace methods that are sent
within the trace component itself (methods of
which the user generally is not aware), a special
locking mechanism has been introduced to avoid
infinite recursion during the internal trace process,
see for example figure 1 where the messages sent

to a trace filter are themselves filtered by a trace
filter.

6 Conclusion

In this paper, we have introduced the concept of iracers
and suggested them to be one of the core ingredients of
sophisticated programming environments. We have also
tried to give some evidence that the TRICK system de-
scribed in this paper provides the right set of primitives
to implement tracers by describing how it was used to
built TRACK, a graphical tracer.

However, the potential of trace tools like TRACK and
TRICK is by no means limited to pure tracing. They
may easily be employed for the implementation of gen-
eral algorithm animation tools by combining them with
other tools, e.g. visual browsers and inspectors.

October 21-25, 1990

References

[1] Heinz Dieter Bocker and Jirgen Herczeg. Brows-
ing Through Program Execution. In Proceedings
of INTERACT’90, IFIP Conference on Human-
Computer Interaction. IFIP, 1990, forthcoming.

[2] Heinz Dieter Bocker and Jiirgen Herczeg. TRACK
— A Trace Construction Kit. In CHI-90, Human
Factors in Computing Systems Conference Proceed-
ings, pages 415-422. ACM SIGCHI/HFS, 1990.

[3] Ward Cunningham and Kent Beck. A Diagram for
Object-Oriented Programs. In N. Meyrowitz, editor,
OOPSLA ’86 Proceedings, pages 361-367, Septem-
ber 1986.

[4] A. Goldberg, editor. SMALLTALK-80, The Inter-
active Programming Environment. Addison-Wesley,
Reading, Ma.., 1984.

(5] Michael F. Kleyn and Paul C. Gingrich. GraphTrace
— Understanding Object-Oriented Systems Using
Concurrently Animated Views. In N. Meyrowitz,
editor, OOPSLA ’88 Proceedings, pages 191-205.
Schlumberger-Doll Research, November 1988.

[6] G.E. Krasner and S.T. Pope. A Cookbook for using
the Model-View-Controller User Interface Paradigm
in Smalltalk-80. ParcPlace Systems, 1988.

ECOOP/OOPSLA '90 Proceedings 99

