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ABSTRACT

As object oriented technigues enable the fabrication of ever more
sophisticated systems, the need grows for a mechanism to ensure
the consistent and ‘correct’ behaviour of each object at run-time.
We describe a new, in-source specification mechanism, Message
Pattern Specifications (MPS), to directly satisfy this need in a
succinct, orthogonal and disciplined manner. Targeted for use
in paralle]l object oriented systems, MPS allows programmers
to enunciate the ‘legal’ patterns of run-time behaviour in which
their objects may engage. Furthermore, it supports the definition
of methods for object recovery or graceful failure in case these
specifications are violated during execution.

1 INTRODUCTION

Despite the common assertion that program reliability is one
of the most significant problems remaining in software en-
gineering, it has been observed that remarkably few object
oriented languages cater, in any pragmatic manner, for the
detection and handling of anomalous behaviour at run-time
[Mey89, Mey88, LG86). The increase in language sophistica-
tion heralded by the object oriented paradigm has, so far, failed
to produce a commensurate increase in the facility of error de-
tection mechanisms [Mey89] or debugging tools [PW89b].

In this paper, we present a technique to enhance the relia-
bility of software at the level of individual objects. Our goal
is to demonstrate the feasibility of operational specifications as
the basis of a technique for in-source specification and run-time
error handling. We describe MPS — Message Pattern Specifi-
cation — an in-language facility for the specification of object
behaviour and the definition of relevant recovery procedures,
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should these behaviours be violated. MPS augments a ‘host’
object oriented language and allows the user to express the de-
sired conduct of each defined object in terms of one or more
Message Patterns, using a language based on CSP [Hoa83]. A
group of shadow methods is also defined by the user, in the host
language, to handle the recovery or graceful failure of objects
which violate one of their message pattern specifications.

This work is divided into four main parts. In the next section,
we describe the failings of the few error handling systems that
currently exist for object oriented languages and explain the
advantages of operational specification — upon which MPS is
based. Sections 3 and 4 contain a detailed definition of the
theory and usage of Method Pattern Specifications; including the
need for shadow methods to handle MPS violations. MPSs have
been implemented within the object oriented language Solve
[RWW88a). This implementation, and examples of how MPSs
are used within an object oriented language, are discussed in
section 5. We conclude with a comparison of our work to the
facilities offered by alternative techniques and a discussion of
further research.

2 TOWARDS ACCOUNTABLE OBJECTS

2.1 TRADITIONAL METHODS

In order to enhance program reliability, it has been the tradition
to embed tests within the main methods of objects, designed
to check for erroneous usage and invalid states. This practice
can be a liability in sophisticated objects, as these tests — error
signallers (ESs) — can be both numerous and complex. Often,
they obscure the semantics of the methods containing them,
rendering code harder to understand, debug or maintain [Ben87].
In many cases the code segments used to alleviale signalled
problems — the error handlers (EHs) — are also placed within
the main method body, exacerbating the situation.

This problem has been partially overcome in a few languages
through the direct, in-language, support of ESs and EHs. These
facilities are collectively known as error signaller and handler
mechanisms (ESHMs). Typically, these express assertions about
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the current system state and nominate handlers to be executed
if these are violated. Such mechanisms are still in their infancy
and suffer from four principle problems:

o Weakness of Expression: Many ESHMs, e.g., those of
Eiffel [Mey88] and EC++ [Mas89], use the host language
to specify these assertions. Although this greatly eases the
use of such mechanisms, it also compromises their power.
Object oriented languages are not the most expedient tool
for behavioural specification, especially in concurrent sys-
tems.

e Non-Uniform Error Handling: In order to reduce com-
plexity, assertion violations should be signalled and han-
dled orthogonally, irrespective of where they originate.
Languages with weak or retro-fitted ESHMs, for example
Smalltalk-80 [GR83] and C++ [Str86), ignore this point
and use different techniques to process exceptions origi-
nating from hardware, the operating system and the user’s
program. In C++, there is little commonality between the
way in which hardware and user software exceptions are
handled; in Smalltalk-80 the latter are not even provided.

e Lack of Implicit Discipline: Some ESHMs override all
existing control structures of the host language. These can,
and are, abused as a means of easy escape from heavily
nested constructs to remote ‘saviour’ procedures. Such
mechanisms leave too much to the discretion of the user,
rendering them open to ill conceived and inconsistent use.
The Ada raise mechanism and associated ESHM exem-
plify this [Mey88].

e Poor Distribution: Many ESHMs, for example that of
CLU [LG86], make little distinction between ESs, EHs
and primary method code, allowing all three to be mixed
at will. As noted previously, this can severely obscure
method semantics.

Object accountability requires an unambiguous division of re-
sponsibility, within a program, for ‘normal’ behaviour of an ob-
ject and the detection and management of anomalies [BGH?89].
The latter requires language support for the axiomatic definition
of ‘correct’ object behaviour and a uniform mechanism to pro-
cess all exceptions without contravening the control constructs
of the host language.

2.2 THE BENEFITS OF OPERATIONAL SPECIFICA-
TION

The need to enunciate the correct behaviour of an object im-
plies the use of a specification language. However attemplts to
use an established specification language like OBJ [Shu89], Z
[Spi89] or Clear [BG81], or an object oriented equivalent, would
be impractical and inappropriate. Such languages are designed
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to perform verification at the design stage of software devel-
opment, not to monitor run-time behaviours. Ideally, a means
of expressing behaviour in a full predicate calculus should be
provided. Alas, this too is beyond the realm of current prag-
matism [Mey88, KJ88]. Indeed, any method of specification
which concentrates on internal form and semantics is likely to
be non-viable, because of the dearth of popular, mathematically
rigourous, parallel object-oriented languages. Instead, we use a
method based on object behaviour.

Operational specifications are expressed solely in terms of
the events suffered by objects. Object behaviour, in a parallel
system, is specified by a partial ordering of instances of these
events. The power of this method is chiefly responsible for the
wealth of event-based debugging and monitoring techniques for
parallel and distributed systems [Bat87, Bat89, BH83, LL89,
Smi85, BLW89]. Event-based models of behaviour may be ex-
pressed at many levels of abstraction and event filtering may
be used to support slicing [Wei82], a vital part of behavioural
analysis. Furthermore, such models are entirely language inde-
pendent and support concurrency with relative ease.

3 MESSAGE PATTERN SPECIFICATIONS

3.1 PRIMITIVE ELEMENTS OF BEHAVIOUR

Before the behaviour of objects can be operationally specified,
the event alphabet in which they indulge must be determined
[LL89]. Through the creation and analysis of a parallel, object
oriented system model, the authors have derived this funda-
mental alphabet [PW90]. Implemented in CSP, the model is
operationally isomorphic to a object oriented system (as defined
by [BGM89]) with parallelism to method granularity, shared
memory, one-way communication and a by-proxy delegation
mechanism. The model demonstrates that, in such a system,
the entirety of object behaviour can be expressed as a sequence
of events of only eight classes. Each event class and the at-
tributes (parameters) which distinguish individual instances are
described below.

e Object Allocation. The event class create, parameterized
by the newly created instance.

e Object Assignment. The event class assign, parameter-
ized by the instances involved.

e Object Destruction. The event class destroy, parameter-
ized by the instance destroyed.

o Message Send. The event class send, parameterized by
sender, recipient, selector and arguments.

e Method Starts Execution. The event class ezecute, pa-
rameterized by method (method name and process identi-
fier) and the host instance.
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e Method Terminates Execution. The eventclass terminate,

parameterized by method (method name and process iden-
tifier) and the host instance.

e Delegation (or superclass lookup). The event class
lookup. Occurs when a selector from an incoming mes-
sage fails 10 match any method in the local dictionary, so
it is forwarded to the proxy. It is parameterized by original
recipient, selector, arguments and proxy (or superclass).

o Delegation (or Inheritance) Path Terminates. The event
class I fail. Occurs as above, except that no further proxy
can be provided or the oot of the inheritance hierarchy
has been reached during a search. It is parameterized by
recipient, selector and arguments.

All object behaviour constitutes sequences (or parallel com-
positions thereof) of instances of these eight event classes.

3.2 MPS SYNTAX

MPS serves to fully, or partially, specify the desired operational
behaviour of objects at run-time. They form part of the defini-
tion of every class or type template expressed in the host object
oriented language. An MPS is said to fail if tr, the trace of
all events actually exhibited by an object, does not conform to
the behaviour pattern the MPS describes. Each MPS consists of
five parts:

o A Name. All specifications are labelled with user-defined
names to enhance their meaning. Names are essential in
identifying which (if any) specifications fail at run-time.

e The Relevant Trace. The subtrace of ir pertaining to
the specification; many specifications can be simplified by
local filtration of the irrelevant events from the stream tr.

e The Main Specification Template. The ordered event
pattern to which tr must conform, in order to satisfy the
specification. Partial specifications can use wildcard traces
to express their partiality. These wildcards are named,
bound varables. If ¢r conforms to the event pattern, these
variables become instantiated with those components of
the actual behaviour trace to which they correspond.

e Additional Constraints. These are optional conditions
which need to be met to ensure that a specification is sat-
isfied. Expressed in a language similar to the specification
clauses of CSP [Hoa83], these clauses often express fur-
ther provisos in terms of the bound variables described
above.

e Handler. This is the name of the local, private method
(shadow method) which is used to handle the error gener-
ated if a specification is violated (see section 4). If none
is provided, a default is used.
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Semantics
English
trace ir filtered by those
events (or event classes)

Operator
Syntaz CSP

tr restrict £ | tr{é

in the list £

reverse ir ir the order of trace ir
is reversed

tail tr tr" | the first element of tr
is removed

Table 1: Functions Used to Generate Relevant Traces

The overall MPS syntax is:

Name

satisfies [relevant-trace
inwhich template

iff constraints]
else handler

Some elucidation on the these constituents follows.

3.3 THE RELEVANT TRACE

The relevant trace, the first part of an MPS, filters from tr these
aspects of behaviour which are of interest to a particular spec-
ification. Filtration is an essential feature of event monitoring
systems [Bat89], which enhances their ability to specify sys-
tem behaviour at many different levels of abstraction. Filtration
avoids the consideration of irrelevant events, improving the ef-
ficiency of man and machine. Relevant races are functions of
tr designed to yield sub-traces which can be matched against
the specification template.

The simplest relevant trace is ir itself, indicating that the
entire behaviour of the object will be considered. Filtering is
achieved though use of the tr restrict £ construct, which re-
stricts the relevant trace to events (or event types) contained
within the list £. This function has semantics identical 1o the
CSP operator 1. Other operators include those listed in Table 1.

For example, the relevant trace (for a stack object)
tail (tr restrict {ezecute(push), ezecute(pop)})

is a stream of events representing all push and pop operations
on the stack, excepting the first. Whereas

tr restrict {ezecute}

is a stream of all events of type ezecute.

3.4 THE SPECIFICATION TEMPLATE

The main body of an MPS is a template, constructed from in-
stances of the primitive event classes using pattern operators. It
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Operator Semantics

Syntaz CSP English

p* pX.(p—X) the pattern p occurs
an unspecified number
of times in succession

prn p™ where (n € N;) | n successive instances
of the pattern p occur

Y z : (atr — p)— ... | any pattern excepl p

P1, /2 P1—p2 pattern pz occurs
immediately after p;

P1 ... p2 n—X\{p2}; p2 pattern p, occurs
after py

pi\/o2 | (o1—X)[(p2—X) | pattern p; or p2
oCCurs

1|l p2 prillpz the patterns p; and p2
are interleaved

p/18] pkB as the pattern p
occurs, the state §
is attained

Table 2: Pattern Operators Used to Generate Specifications Tem-
plates

serves an analogous purpose to that of a syntactic regular expres-
sion in LEX [LS75], with the exception that, out of necessity,
the syntax is somewhat different and extended to handle parallel
and state compositions. Also, unlike LEX, the specification is
designed to aid semantic review. To help users to quickly deter-
mine how an object is used and its limitations. These functions
are vitally important to software reuse [SBK81].

Each pattern operator takes one or more events or patterns
(p) and yields a more complex pattern. The operators are listed
in Table 2, wherein the process denoted X is a don't care term,
N is the set of all strictly positive numbers and the state ex-
pression f is a boolean condition binding the observable state
of the object concerned. Encapsulation must not be violated in
verifying state conditions.

The simplest pattern is merely a single event specification.
For example terminate(push), which signifies the termination
of the method push. The MPS language supports the specifi-
cation of sequential and concurrent sequences (, .. ., H) deter-
ministic and non-deterministic choice (\ /) and iteration (¥, *n)
to compose useful behaviour patterns from these events.

As an example: for an object representing a screen, a speci-
fication to ensure that, in a redraw method, a screen is cleared
before the flood of redraw messages is sent, might read:

FinishClear
satisfies [tr restrict{send, erecute, terminate}
inwhich ezecute(redraw), execute(wipe),

terminate(wipe)...(send(redraw))+]

In many specifications, there is a need to label evenis to
distinguish instances of the same event occurring within partially
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concurrent, overlapping threads. This is achieved by labelling
processes with symbolic names which are unified with a process
identifier at run-time. Such labelling is accomplished through
use of the : operator. Hence to indicate a sequence of events a,
b and ¢, in which a and ¢ are generated by the same thread 1,
one may use the template:

ita,j:b, 1:¢c

Here j may, or may not equal i. Both are instances of unified
variables. For example, to enforce serialisation of the push
method (i.e., to monitor it) one would use a specification:

StackMonitor
satisfies [tr restrict {ezecute, terminate}
inwhich i : ezecute(push), i : terminate(push)]

to ensure that both events belonged to the same thread.

3.5 ADDITIONAL CONSTRAINTS

Relevant traces and specification templates are not enough o
describe all behaviours. They can filter and specify the ordering
of permitted events, but are unable to express the inequalities
that often comprise real-world specifications. Also, the partiality
introduced by the operators . .. and || cannot be constrained in
any way as part of the specification — a further limitation.

To circumnavigate these weaknesses, an optional clause can
be used to supplement some MPSs. Any partially specified sec-
tions of the template, upon which further constraint should be
imposed, and which hitherto had been represented with ... or
|I, is instead denoted by a bound trace variable. These vari-
ables are denoted by a name, preceded by the symbol $ (e.g.,
$a). They are instantiated with the traces they represent at run-
time, if tr conforms to the template. The constraint clause may
then strengthen the MPS by expressing additional conditions for
acceptance in terms of these traces, their lengths and their al-
phabets. Table 3 depicts the functions that constraints use, in
addition to these shown in Table 1, to manipulate these trace
variables or calculate their properties. Another class of bound
variable is used to achieve an analogous unification of values
within state expressions. These variables are denoted by names
prefixed by the symbol &.

The traces and alphabets generated by constraint functions
(through the use of bound trace variables or the operator @)
can be tested using a range of set operators including in, sub-
setof and equals (which have the semantics of the mathematical
relations €, C and = respectively) and their negations. They
may be compared with other traces or alphabets, or with liter-
als like <>, the empty trace, and {}, the null alphabet. Trace
and alphabet lengths (found using #), state bound & variables
(found using state expressions) and unified variables can be like-
wise compared using standard magnitude relations (>, >=, elc).
The semantics of any relation may be negated by prefixing it
with the symbol ~.
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Operator Semantics
Syntaz CSP English
head tr tro the first element
of trace tr
trn) trn] the n*" element
where (n € N1) of trace ir
trin..m] An<i<mtrli] a subtrace a tr
where (n,m € N;) | consisting of the n*"
through to the m*®
element of tr
@tr atr the alphabet of trace ir
#ir #tr the length of trace tr
trig #(irte) the number of
occurrences of £
within 2r
tro/\ try trz"try, trace (or event)
concatenation

Table 3: MPS Constraint Functions

Additional constraints are so powerful that some specifica-
tions may be expressed using them alone. For example, to
ensure that an initially empty stack is never requested to pop
when empty, one might use the MPS:

NotEmpty

satisfies [tr

inwhich $a

iff Sal{ezecute(push)} >=3a!{execute(pop)}]

although this is not the best method, it alleviates the need for
a precondition check in this case. Assuming the existence of a
method size, another specification achieving the same goal is:

NotEmpty
satisfies [tr
inwhich ezrecute(pop)/[(sel f<— size) <=0]]

Where a<— b denotes a message send to object a of selector
b (as in Smalltalk-80 [GR83)). Postconditions may likewise be
simulated in MPS, e.g., lo ensure push increases stack size:

PushGrows

satisfies [tr restrict {ezecute, terminate}

inwhich i:ezecute(push)/[&l = (self<—size)]...
i: terminate(push)/[&2 = (sel f<— size)]

if f &2 > &1]

Often, additional constraints are used as their name implies.
For example, for a window object to assert that it should only
be moved when opened and destroyed when closed, one may

specify:

MoveWin

satisfies [tr restrict{ezecute,destroy}

inwhich  (erecute(open)...ezecute(close), $2)*,
destroy

iff send(move) notin @%2)
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4 RUN-TIME ERROR MANAGEMENT

4.1 UNIFORMITY OF ERROR HANDLING

In a system supporting MPS, each instantiated specification con-
stitutes a guardian parser for its object, constantly monitoring
events relevant to itself and the object it guards. At run-time,
an MPS may have one of three states: satisfied, indicating be-
havioural compliance of the object to its specification; violated,
indicating that the object has failed to act as specified and unde-
cided, indicating that, as yet, insufficient information is available
for it to attain one of the former states. A satisfied specifica-
tion is ignored by the system, the MPS is reset and continues
parsing anew. A failed specification, however, causes the MPS
to abort parsing and signal an error condition. This results in
the execution of the handler method. The responsibility of the
MPS error signaller ends here.

The error handling method, a shadow method named in the
last (optional) argument of a MPS, is passed the name of the
failing specification and a full description of the event trace
causing the violation. It may to programmed to take one of the
following courses of action:

e Attempt Recovery. The EH could alter the state of the
object to undo any damage caused by the erroneous be-
haviour, alter the state of the object to avoid further in-
stances of the error, rewind the parser by one pattern and
attempt to continue execution.

e Graceful Failure. The EH may alter the state of an object
in order to render it usable by other threads, create diag-
nostics sufficient to describe the nature of the failure to
the user (see section 7) and advise the object’s clients of
the problem by violating the client’s implicit serverOK
specification (see below).

e Invoke the System Debugger. This behaviour is only
acceptable at the early stages of software development.
It is especially useful if the debugging tool also supports
MPS (see section 4.2)

Each object has an implicit MPS:

ServerOK
satisifes [tr
inwhich  “server fail]

When any handler adopts the graceful failure policy, its final
action is to automatically place an instance of the special event
class server fail (and a reference to itself as a parameter) into
the input stream of all of its client’s parsers. This results in
the failure of the client’s serverOK MPS. By default (unless
the user redefines this MPS), all serverO K violations result in
graceful failure. In this manner, propagation of error though the
compositional hierarchy of a system is achieved.
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The facility and uniformity of MPSs is greatly enhanced by
virtue of the fact that common hardware or operating system
exceptions (e.g., divide by zero, memory allocation problems)
may be handled as pre-defined primitive MPSs. The core set of
event classes defined in section 3.1 may be extended to encom-
pass occurrences of these errors. Allowing the user, or library
programmer to make specifications like:

NoZeroDivide

satisfies [tr

inwhich "Divide By Zero)
else handler

4.2 LINKS WITH OBJECT-ORIENTED DEBUGGING

The ability of MPSs to report deviations from desired behaviour
in parallel object oriented systems constitutes a useful facility for
a debugger. Indeed, MPS was originally designed as a tool for
testing behavioural hypotheses during debugging [PW89a]. Its
mode of usage within an interactive debugging tool is somewhat
different to that described here. However, MPS demonstrates
considerable aptitude at both preventing bugs and debugging.

5 IMPLEMENTATION

5.1 THE SOLVE LANGUAGE

The MPS system is being implemented as part of SOLVE, the
Span Object oriented Language enVironmEnt. At the core of
SOLVE is Solve, an object oriented language developed at Uni-
versity College London and designed for use on parallel, multi-
processor systems [RWW88a, RSHWW88, RWW88b]. It sup-
ports fully active objects with concurrently executing methods.
Furthermore, it provides a message passing subsystem which
allows applications running outside Solve, perhaps in different
languages, to inter-communicate. This communication can be
achieved synchronously, asynchronously or with futures. Solve
supports multiple inheritance, type conformance and parameter-
ized types.

At compilation, Solve source is parsed and a parse tree of
node objects is created. These are instances of node classes, of
which one exists for each of Solve’s constructs. These nodes
respond to messages to symbol check, type check and code
generate themselves. Hence the latter stages of compilation are
achieved by sending these messages in turn to the parse trec root
node, which propagates them accordingly. The compiler sup-
ports incremental compilation 1o the level of individual language
statements and since all primitive methods are user defined, it
can generate code in any intermediate-level, object oriented lan-
guage capable of supporting its abstractions.

Many aspects of the Solve language and system can be fun-
damentally altered by the user, for example, the inheritance
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lookup mechanism, scheduling mechanism and binding mecha-
nism. The implementation of MPS takes full advantage of this
flexibility.

5.2 EFFICIENT SUPPORT OF MPSs IN SOLVE

The implementation of MPS comprised three main tasks: al-
tering the SOLVE compiler to correctly parse MPS definitions;
altering the code generator to include the instrumentation needed
for the system to log fundamental events and building the
guardian parsers for each object.

The first of these tasks necessitated editing the LEX and
YACC [LS75, Joh78] grammars of the original compiler and cre-
ating new parse tree node classes to support MPS type checking
and code generation. The Solve language syntax was extended
in a manner as to ensure backward compatibility with earlier,
non-MPS, versions. The MPS parse tree nodes themselves con-
tain references to filter, template and constraint nodes which
construct relevant trace filters, guardian parsers and constraint
provers respectively. Finally, object nodes were amended to
enable receipt of event streams.

Instrumentation, the amendment of code such that it has side
effects which make visible its internal behaviour, is notoriously
computationally expensive [Bat89]. Consequently, it must be
implemented efficiently and be subject to user veto. To support
this, the code generator was designed to generate instrumen-
tation only when the relevant compiler options are selected. If
these options are deselected, MPSs are disabled and have no run-
time overhead. Each event type requires unique instrumentation.
The create and destroy events classes can be provided by in-
strumenting the memory management system; assign by careful
alteration of the assignment parse tree node; send by chang-
ing the communication subsystem; ezecute and terminate by
amending the scheduler and lookup and !fail through the pro-
vision of a new binding algorithm. Each instrumentation is
implemented as an ‘in-line’ function call in the generated code.

In section 3.4, MPSs are compared to LEX specifications.
This comparison is a limited one however. Because MPSs al-
low the parallel composition of event sequences, they cannot
be directly implemented by LALR(1) parsers. Instead, a finite
state automaton is required which recognises a symbol hierar-
chy rather than a flat alphabet. This allows an executing au-
tomaton to delegate responsibility for parsing a complex event
sequence to a subordinate automaton (which it regards as a sym-
bol). Constrained Shuffle Automata (CSA)[Bat87] satisfy all of
these criteria. In addition, they permit event instances to be
selectively ignored according to the values of their attributes,
thus providing support for filtration and additional constraints.
Efficient implementations of constrained shuffle automata have
been reported elsewhere [Bat89], however our implementation
is not yet mature enough to test.
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Signature Datafile(element)
Supertypes (Object)

InstancelOperations
openout: ()-><Datafile(element)>
openin: ()-><Datafile(element)>
read: ()-~><element>

write: (<element>)~><Datafile(element)>
close: ()-><Datafile(element)>
TypeOperations

new: (<String>, <Type>)-><Datafile(element)>

Figure 1: Solve Signature for the Datafile Type

53 MPS EXAMPLE

The following example is provided in order to give some indi-
cation of how MPSs are used in practice. The example chosen
is a simple one, with the aim of conveying pertinent facts with-
out undue complication. The datafile type describes a set of
objects which may be used to simplify the use of file storage
in a system. Each instance of datafile represents a file. The
Solve signature of this parameterized type is defined in figure 1.
The type has five instance methods: openin and openout, which
open files for reading and writing respectively; and read, write
and close, which have the usual file semantics. All methods are
parameterless except write, which requires a datum to append
to the file. All methods return a modified datafile object except
read, which returns a datum from the file. The type method new
creates new instances of datafiles, given the pathname and type
of data stored (or to be stored) therein.

The Solve implementation of Datafile consists of three main
constituents:

1. Definitions of Instance and Type Methods
2. Method Pattern Specifications

3. Definitions of Handler Methods

Constituents 1 and 3 are largely irrelevant to this example, in that
they are Solve specific and have no bearing on MPS. However,
in order to convey some flavour of the Solve language, the
beginning of the implementation is depicted in figure 2. Datafile
objects have two instance variables: storage, an IOBuffer which
actually performs the disc storage; and pathname, a string which
holds the name of the file.

Figure 3 depicts a list of the MPSs constraining Datafile be-
haviour. Two MPSs are defined, each of which triggers a dif-
ferent handler when violated (FileUseError and PermError).
These handlers are Solve methods, defined in a similar way to
those of figure 2. Their exact usage is beyond of the scope of
this work. The MPS FileProtocol ensures that a file may have
either multiple readers or one writer, but not both concurrently.
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Implementation Datafile(element)
Includes (Object)

InstanceSection
let storage <IOBuffer(element)> := ()
let pathname <Strxing> := "."

export const read <Method((), <element>)> :=
[ let next <element> := storage<~-get()
=>next

1

export const write <Method((<element>),
<Datafile(element)>)> :=
[ item <element> |
storage<--put (item)

3

Figure 2: Solve Implementation of the Datafile Type

It uses a unified variable n (see section 3.4) to ensure that each
reader closes the datafile after use. The interleaving operator
|| ensures that file accesses need not be nested. The MPS Ac-
cessPermission ensures that, within a given process, file access
permissions are not infringed. It is violated, for example, if a
file opened with openin attempts to execute the method write.
The same MPS prevents closed files from being reclosed.

6 RELATED WORK

The parallel Janguage PROCOL [vdBL89] offers facilities that,
like MPS, may be used to order and constrain inter-object com-
munications and to control object access. These tools can be
used to specify some of the behaviours we have previously de-
scribed (iteration, sequence and selection), both sequentially and
concurrently. However, they fail to incorporate inheritance or
delegation into their model (a crucial facet of object oriented lan-
guages [BGM89, Weg87]). Subsequently, since it constrains us-
age protocols by receiver, it must name specific object instances
within a specification — an unfortunate inflexibility. Further-
more, PROCOL's tools offer no support for the assignment event
class (proved essential by [Bru85]). In PROCOL, event specifi-
cations are mandatory and may not be partially specified. PRO-
COL fails to handle possible run-time errors indicated by failure
of one of its specifications, instead the thread concerned is sus-
pended until it can satisfy the behaviour pattern. This, coupled
with the provision of parallelism to object and not method gran-
ularity, means that recursive methods may deadlock the system.

MPSs’ template facility bears some resemblance to the life-
script of Kozaczynski’s Executable System Specification for
JSD (ESSJSD)[KJ88]. Although not aimed specifically at ob-
ject oriented languages — indeed, much research has shown
that JSD is an inappropriate method for object-oriented design
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MPSSection

FileProtocol
gatisfies [ tr restrict
{execute(openin),
execnte(openout), execute(close)}
create;
((execute(openin);
(execute (openin) *n| |execute(close)*n);
execute(close))
\/ (execute(opencut); execute(close)))s;
destroy ]
else FileUseError

inwhich

AccessPermission
satisfies [ tr restrict i:execute

inshich  (execute(openin);
execute(read)*; execute(close))
\/ (execute{openout);
execute(write)*; execute(close)) ]
else PermError

Figure 3: Message Pattern Specifications of the Datafile Type

[Som89, Pun90) — ESSJSD’s goals have some commonality to
those of MPSs. ESSJSD offers no direct support for inheritance,
delegation or partial specifications. Furthermore, ESSISD is a
design aid — it does not pass into the implementation and has
to be regressed if the latter is subject to alteration during main-
tenance. ESSJSD’s ESs are, by the authors’ admission, very
verbose and are not separated from the main specification in
any way. ESSJSD’s specifications are expressed in Prolog and
then translated, implying some reliance on the logic paradigm.
Finally, it is our view that specification languages should be
engineered to support a software engineering paradigm not just
one design methodology.

The Data Path Debugging (DPD)[HK89] technique shares,
with MPS, the ability to monitor object behaviour as a stream
of events and to report deviations of actual traces from these
specified. However, MPS is a preventative technique — object
behaviour is specified initially so that deviations may be no-
ticed and acted on immediately. However, DPD is a debugging
tool for locating errors once their presence has been revealed by
testing. MPSs constitute part of a program, they aid semantic
review, whereas the specifications of DPD are ephemeral. DPD
and MPS have some commonality however, both systems avoid
language dependencies. Both use standardized multiple history
graphs to log the events suffered by object instances and then
allow the comparison of desired and actual behaviour. However,
we feel that the DPD technique puts too strong an emphasis on
the state changes of objects, to the detriment of its handling of
control flow. Whilst it is true that many bugs are incarnated
in inappropriate data values, the root cause is often a flawed
flow of control — both aspects of the dichotomy must be ad-
dressed. Rather than attempting to build a unified fundamental
event set for control and state, as we have, DPD builds one
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and attempts to map it to the other — an activity which is not
always feasible [LL89). Many of DPD’s facilities support the
behavioural patching of software, we feel that with the advent
of modern incremental compilers, this dangerous practice is no
longer necessary.

7 FURTHER WORK

We are currently implementing MPS and anticipate that perfor-
mance will be the chief problem. The cheapness of processes in
the SOLVE system causes the additional overhead due to instru-
mentation and CSA maintenance to be significant. In a parallel
system, the perturbation of method timing due to instrumentation
— the probe effect [Gai85] — can alter program behaviour and
is to be avoided at all costs. The authors are currently seeking
an optimum implementation of constrained shuffle automata.

Currently, each MPS can have only one failure mode, be-
cause of the problems of deducing the semantics underlying a
specification violation, after it has occurred. We plan 1o over-
come this limitation by allowing the expected points of failure
to be described as part of the MPS template. Furthermore, it
may be useful to allow each failure point to designate a separate
handler.

Often the most pragmatic error handlers simply report the
problem and fail gracefully. Currently, these reports are little
more than formatted listings of the failed specification name, the
event causing the failure and its attributes. The listings often
start with the root cause and backtrack through the compositional
hierarchy because of the serverOK propagation explained in
section 4.1. A detailed textual analysis of the departure of actual
behaviour from specified behaviour, or a visual trace of the
reasons for failure, would be more useful. The authors are
currently investigating the latter.

The event classes listed in section 3.1 pertain to a pure object
oriented model, in which all data entities are objects. However,
many popular object oriented languages are based on a hybrid
object model (e.g., C++ [Str86]), in which two data representa-
tions are used. Simple data entities, like integers and reals, are
represented as primitive types and lack any form of object in-
terface or message passing protocol. More complex entities are
built from these and constitute objects, identical to those of the
of the pure model. If MPSs are to support this hybrid paradigm,
research must be conducted to establish if, and how, the funda-
mental event set of the hybrid object model differs from that of
the pure model.

8 CONCLUSION

We have developed an original means of operational, in-source
specification of the behaviour of objects in a parallel, object
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oriented language. These specifications allow the user to de-
fine, detect and handle cases where the run-time behaviour of a
system deviates from that which the user intended. They allow
programmers to enhance program reliability without degrading
readability. Indeed, they improve the latter because they sepa-
rate conventional code from ervor signalling and handling code,
and allow the objects to openly declare ‘legal’ usage patterns.
The MPS technique permits behavioural specification at many
levels of abstraction due to its ability to filter events and its use
of a template (and constraint) language based on CSP. It consti-
tutes a systematic, language independent, orthogonal exception
handling mechanism and contributes directly toward object ac-
countability.
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