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Abstract

This paper is concerned with the relation between sub-
typing and subclassing and their influence on program-
ming language design. Traditionally subclassing as in-
troduced by Simula has also been used for defining a
hierarchical type system. The type system of a lan-
guage can be characterized as strong or weak and the
type checking mechanism as static or dynamic. Param-
eterized classes in combination with a hierarchical type-
system is an example of a language construct that is
known to create complicated type checking situations.
In this paper these situations are analyzed and several
different solutions are found. It is argued that an ap-
proach with a combination of static and dynamic type
checking gives a reasonable balance also here. It is also
concluded that this approach makes it possible to base
the type system on the class/subclass mechanism.

1 Introduction

The purpose of this paper is to contribute to the clar-
ification of typing issues in object-oriented languages.
The issue of type checking in languages that has classes
with type parameters have recently been the subject of
several papers [2, 10, 11]. There has also been proposals
for introducing a separate type system supplementary
to the subclass hierarchy [1].

We will investigate these problems from the point of
view taken in the Scandinavian school of object-oriented
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programming (4, 8, 12]. The class concept was intro-
duced in Simula [3] and its motivation was to model
concepts in the application domain. This lead to the
introduction of subclassing mechanisms as a means to
represent specialization and generalization hierarchies.
Inheritance of properties in these hierarchies was the
main motivation to introduce subclassing. Viewed as
a modeling mechanism, subclassing was also taken to
define a hierarchical type system. Types are defined ex-
plicitly which means that separate classes with the same
internal structure define different types. This approach
has been followed in Smalltalk [5], Beta [7], C++ [15]
and Eiffel [10].

Apart from being used for (1) modeling as originally
intended, subclassing has also been used as a means of
specifying (2) inheritance of code or "code sharing”. A
type system can also be viewed in two different ways (1)
as a means for representing concepts in the application
domain and (2) as a means for detecting certain kinds
of program errors, type errors. The first aspect, Tep-
resentation of concepts, is covered by both mechanisms
and subclassing has been used also to define a hierarchi-
cal type system which have thus made a separate type
system unnecessary.

The strength of the type system is also a related is-
sue. We regard this as a continuum where weakly typed
means that the type of an expression carries little or
no information. Smalltalk is an example of such a lan-
guage where the type of instance variables convey very
little information on what messages are legal to send to
the denoted object. A perfectly strongly typed language
would exclusively have expressions where its type car-
ries all information about the denoted object. We are
not aware of any such object-oriented language although
some other languages come close [16]. Languages with a
hierarchical type system and qualified references serve
as & compromise since some, but not necessarily all,
operations on an object can be inferred from the qual-
ification of the reference. Strong typing also implies
that type checking can be performed during compila-
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tion, but utilization of weak typing aspects has to be
checked during run-time.

Weak typing and run-time t{ype checking provides a
greater flexibility for the programmer. This flexibility is
especially appreciated when developing the initial pro-
totypes of a system. Compile-time type checking is use-
ful for three purposes: (1) it improves the readability
of programs (2) it makes it possible to detect a cer-
tain class of program errors at compile-time and (3) it
makes it possible to generate more efficient code. A pro-
gramming language must offer a proper balance between
flexibility and compile-time checking to be useful.

Most so-called strongly typed languages rely on a
combination of compile-time type checking and run-
time type checking. Simula and BETA are examples
of such languages. Here a large class of type errors are
caught at compile-time, whereas others are left to run-
time checks. C++ is an example utilizing compile-time
type checking to some extent, but situations that can
not be caught during compilation are not cared for dur-
ing run-time. Eiffel is an example of a language which
has been designed to permit a high degree of compile-
time type checking, but there are, however, also situa-
tions where run-time type checking has to be used.

Parameterized classes in combination with a hierar-
chical type- system are known to create complicated
type checking situations (2, 10, 11]. Similar situations
can be created with a variety of language constructs in
most object-oriented languages. This paper is using the
type system of BETA, which extends the type system
of Simula, for illustrating the problems. The extension
allows for classes parameterized with classes (types) by
means of so-called virtual classes as described in [9)].
The type checking problems that arise in such situations
are analyzed and alternative solutions are described.
It is argued that an approach with a combination of
static and dynamic type checking gives a reasonable bal-
ance also here, again avoiding a separate type system.
Language constructs which can be used to reduce the
amount of run-time checks in certain situations are also
discussed.

In addition some of the examples from [1] are shown
in BETA. The notions of qualified references, remote
access and reference assignment as described in section
2-4 are the same in BETA and Simula.

The language notation used in this paper is a modified
version of BETA similar to the notation used in [9].

2 Qualified references
Consider the following class hierarchy:

Vehicle: class (# owner: Qinteger;
licenseNo: Qinteger

October 21-25, 1990

#);

Bus: class
Vehicle (# noOfSeats: Qinteger;#);
Truck: class
Vehicle (# tonnage: Qinteger #);
Car: class Vehicle (# #);

aVehicle: -~ Vehicle;
aBus: = Bus;
aTruck: ~ Truck;

The classes Bus, Truck, and Car are subclasses of
class Vehicle. The attributes owner, licenseNo,
noDfSeats, and tonnage are local integer variables,
while aVehicle, aBus, and aTruck are references (or
pointers) to objects.

A reference is qualified by a class. The qualification
restricts the set of objects that the reference may refer
to. The reference aVehicle is qualified by Vehicle. This
implies that aVehicle may denote instances of class
Vehicle and instances of subclasses of Vehicle. The
reference aBus may denote instances of class Bus and
instances of possible subclasses of Bus. It is, however,
not possible for the reference aBus to denote instances
of class Vehicle, Truck, and Car.

In order to describe the type system more precisely
we will introduce some formal, but yet very simple no-
tation. )

The class hierarchy in Beta (and other object-oriented
languages) can be described as a lattice since the classes
are partially ordered by the relation subclass of or the
symbol C (the relation D is used for superclass of ). A
pre-defined class with the property of being the super-
class of all other classes are sometimes explicitly avail-
able in the language (class Object in Smalltalk and
Beta). In the lattice this class plays the role of Top.

Object

NoClass

The special class NoClass is a subclass of all other
classes. It plays the role of bottom in the Lattice. A ref-
erence that refers to no object has the value NONE. The
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class of NONE is NoClass. Class NoClass is introduced
for purely technical reasons.

We also introduce two functions with the following
definitions: object() returns the object that a reference
actually denotes, qual() returns the formal class of a
reference or the actual class of an object.

The declaration

R: = T

implies that qual(R) = T. This means that qual(R),
where R is a reference, may be computed at compile-
time. If X is an object, then qual(X) is also constant.
Consider

new T[] -> R[]

The action new T generates an object X such that
qual(X) =T.

The purpose of NoClass is to make sure that
qual(object(R)) is well defined for any reference R. For
the value NONE we have qual(NONE) = NoClass C T for
any class T which is not NoClass.

The function object(R) varies at run-time, since R
may denote different objects. The role of the function
object() is to express dependency on run-time behav-
ior.

The idea of qualified references can now be stated
with the following relation that always must be true for
all references in a program:

qual(object(ref)) C qual(ref)

As an example consider the reference aVehicle.The re-
lation

qual{object(aVehicle)) C qual(aVehicle)

expresses the same restriction on what objects the ref-
erence aVehicle may denote as expressed above in En-

glish.

3 Remote access of attributes

The qualification of references is used to check at
compile-time that remote-access of attributes is legal.
The following remote-identifiers are legal:

aVehicle.owner;
aBus.owner;
aBus.no0fSeats;
aTruck.owner;
aTruck.tonnage;

As an example the first remote access is legal since
qual(aVehicle) = Vehicle and the class Vehicle
specifies an attribute owner and so on. The following
remote-identifiers are illegal:
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aVehicle.noOfSeats;
aBus.tonnage;

In these simple examples the attributes have all been in-
stance variables, but procedures may also be attributes
with the same rules for legal attribute access. Re-
mote access of procedure attributes correspond to mes-
sage sending in Smalltalk. In Smalltalk reference vari-
ables are not qualified, so it is not possible to check at
compile-time that a message is legal. Assuming that
no0fSeats is a method attribute, a Smalltalk expres-
sion like

aVehicle noOfSeats

will give rise to the run-time error: “Message not unde:-
stood”. The qualification of references makes it possible
to check at compile-time that this kind of error does not
occur. There is still the possibility that a reference may
be NONE, which gives rise to an error, but this is not
considered a type-checking problem,

4 Reference assignment

Qualified references provide less flexibility than unqual-

ified references which may denote objects of any class.

The cost of this flexibility is @ run-time check for each

message sending. The comparable cost for qualified ref-

erences is significantly smaller: A run-time check that

will take place at some cases of reference assignment.
Consider the following example:

new Bus[] -> aBus[]; {1}
aBus[] -> aVehicle[] {2}
aVehicle[] -> aBus[] {3}
aTruck[] -> aBus[] {4}

In {1} a new instance of Bus is generated. The instance
reference is assigned to the reference aBus. This state-
ment is trivially legal and this can be checked during
compilation. From

qual(object(new Bus)) = Bus

and
qual(aBus) = Bus

it follows that
qual(object(newBus)) C qual(aBus)
This ensures that
qual(object(aBus)) C qual(aBus)

holds true after the assignment.
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The assignment in {2} is legal since aVehicle may
denote Bus objects. The legality may be (and is) deter-
mined at compile-time, i.e. no run-time checking will
take place. The legality can be statically checked since

qual(object(aBus)) C Bus

and
Bus C qual(aVehicle) = Vehicle

The assignment in {3} is legal if aVehicle denotes an
instance of Bus. In general this may not be detected at
compile time. This implies that a run-time type check
will be performed in this case. This can be seen since
the static information

qual(object(avehicle)) C Vehicle
cannot be used to guarantee that
qual(ob ject(aBus)) C Bus

is true after the assignment. The compiler must thus
emit a run-time check to ensure that

qual(object(aVehicle)) C Bus

The assignment in {4} is illegal, since it is not possible
for aTruck to denote a Bus object. This is statically
checkable since

qual(object(aTruck)) C qual(aBus)

give rise to comparison between Truck and Bus and
these two classes are not ordered.

In general an assignment statement A[1->B[] (B:-A
or B:=A in other languages) must be checked to fulfill

qual(object(4)) C qual(B)
in order to ensure that
qual(object(B)) C qual(B)

holds after the assignment.

If qual(4) C qual(B) this is statically correct, but if
qual(4) O qual(B) then the compiler must ensure that
qual(object(A)) C qual(B) at run-time.

In most cases assignments are as in {2} (or qualifi-
cations are equal) and no run-time checking is needed.
The ability to weaken the type information on an ob-
ject as in {3} is very usable in order to write general
code like queue and list manipulation etc. The problem
of managing a queue of Vehicles is described already in
[4]. The result of a queue operation, like returning the
first object, is such a weakly qualified reference. The
possibility to explicitly strengthen the type information
again (as in {3}) is vital. This gives the programmer
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the possibility to view an object at different levels of
abstraction. In the example above one would typically
use the following views: as an element in a queue, as a
Vehicle, and as a Bus or Truck.

Consider the example of three registers: A Vehicle
register, a Bus Register, and a Truck register. The Vehi-
cle register may contain references to both Bus objects
and to Truck objects. The qualification of references
used to build up the Vehicle register will therefore be
Vehicle. The parameter to an insert operation on the
Vehicle register will be qualified by Vehicle, and op-
erations for getting references to objects in the register
will deliver references qualified by Vehicle. Similarly
the Bus register will use references qualified by Bus.
The task of extracting Bus objects from the general Ve-
hicle register and entering them into the Bus register
will necessarily involve an assignment like that of {3}.

In Simula, BETA and C++ this kind of assignment
is possible. Release 2.2 of Eiffel offers a new assign-
ment operator. The assignment in {3} will be aBus ?=
aVehicle in Eiffel. This operator assigns the object to
aBus if legal according to the rules given above, NONE
otherwise. The execution of this operator thus gives rise
to an implicit run-rime check.

5 Value assignment

In this section the notion of value assignment is handled.
Rules similar to those for reference assignment apply,
and the same kind of run-time type checking apply.

By value assignment is meant some form of copy-
ing of state of the objects. The exact way of copying
differs from language to language. For the purpose of
this paper we will assume that value assignment means
copying the state of the source object to the state of
the destination object. We introduce two functions:
copy(xr1,r2) copies the contents of r1 to r2 assum-
ing that qual(ri)=qual(r2), while project(r,qual)
selects the qual-part of r. The variables r1, r2 and r
all denote objects.

Value assignment in BETA has the form:

aBusi -> aBus2

The assignment above will have the effect that the val-
ues of the attributes owner, licenseNo and no0fSeats
of aBus1 are copied to the corresponding attributes of
aBus?2, that is

copy(aBus1, aBus2)

We are here assuming that aBus1 and aBus2 are quali-
fied by Bus, that is

qual(aBus1) = qual(aBus2) = Bus
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Consider the following value assignment:

aBus -> aVehicle {1}

The reference aBus refers to an object that is at least
a Bus object and aVehicle refers to an object that is
at least a Vehicle. Only the Vehicle attributes of the
object denoted by aBus may be copied to the object
denoted by avVehicle. This is stated by the expression:

copy(r1,r2)
where
r1 = project(object(aBus), Vehicle)
and
r2 = project(object(avVehicle), Vehicle)

The following picture illustrates the situation. Only the
“Yehicle bits” of the object referred to by aBus are
copied to the corresponding “Vehicle bits” of the ob-
Jject referred to by aVehicle. The dots ... indicates
that these objects may in fact be “larger” than can be
deferred from the formal qualification of their references.

F 1

Vehicle Vehicle

Bus

aBus aVehicle
Consider next an assignment of the form:

aVehicle -> aBus {2}

The situation here is opposite to the previous situa-
tion. A potential “smaller” object is copied to a poten-
tial “larger” object. At compile-time it is known that
the two objects at least have the Vehicle attributes in
common. Another possibility would be to require that
aVehicle denotes an object qualified by Bus. (This
would be analogous to the situation with reference as-
signments of the form aVehicle[] -> aBus[].) In this
case the Bus attributes could be copied.

With the above semantics of value assignment it is
determinable at compile-time which bits to copy from
the source object to the destination object. This is es-
sentially the semantics of value assignment in BETA.!
This semantics has the disadvantage that in some sit-
uations some information (bits) may be lost. Consider
case {1}: If aVehicle actually refers to a Bus object,

1See, however, [7] for a more precise description of value
assignment
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then all the attributes of the Bus object referred to by
aBus could be copied to the Bus object referred to by
aVehicle. In general one could find the largest com-
mon subclass of the actual objects being denoted and
then copy the common attributes.

In most languages value assignment is defined as a
pure copying of bits. In this way the state of one ob-
Jject may be forced upon another object. Often different
object states may denote the same abstract value. It
is therefore not always desirable to define the semantics
of value assignment as a bitwise copying. The situation
is even worse when considering equality. Here a bitwise
comparison of two objects may not correspond to equal-
ity of the abstract values represented by the two objects.
In general it is difficult to suggest language constructs
for handling value assignment and equality.

Finally we notice that in most work on hierarchical
type-systems the distinction between reference seman-
tics and value semantics of assignment and equality does
not seem to be explicit. In relation to object-oriented
programming this distinction is, however, crucial.

6 Classes with “type” parame-
ters

Virtual classes in BETA and generic classes in Eiffel
makes it possible to define classes parameterized with
other classes or types. These are very powerful lan-
guage mechanisms, but they also complicate the rules
for checking the legality of assignments.

The following examples show that subclassing and the
rules for assignment associated with subclasses may well
be used for expressing types of parameters. We will
use it as basis for the analysis. The discussion will be
generalized at the end of the section.

Consider a procedure for entering any vehicle into
some kind of register. As part of entering, the vehicle is
going to get a license number (the owner of the vehicle
is supposed to be given). newLicenseNo is a function
that delivers a new integer value:

Insert: proc
(# par: - Vehicle
enter parl[]
do newLicenseNo -> par.licenseNo;
{enter par into register}
#)

As the parameter par is known to denote instances of
at least class Vehicle, it is safe to access the licenseNo
attribute.

If aBus denotes an instance of class Bus, that is a sub-
class of Vehicle, which is the “type” of the parameter,
then the following invocation of Insert should be legal:
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aBus[] -> Insert

Type legality of this is handled by the rule for refer-
ence assignment (from aBus[] to the par[] parameter
of Insert).

Consider the Insert to be part of a general Register
class, parameterized by the type of vehicles to be
in the register. The intention is to define special-
ized Registers restricted to hold objects of class Bus
(and its subclasses), and similar specialized registers for
Truck and Car objects. The qualification, Type, of the
parameter, par, to the procedure Insert is declared vir-
tual. This is done in order to strengthen its qualification
in specializations of Register.

A general Register is able to hold any vehicle, i.e.
references to objects of the classes Bus, Truck, Car and
also Yehicle objects.

Register: class
(# Type: virtual class Vehicle;
Insert: virtual proc
(# par: "Type
enter par[]
do ...;
newLicenseNo->par.licenseNo;
.; INNER;
#);
#);

Given this general class the following subclass of
Register is a class of registers that may only hold
buses. This is accomplished by restricting the virtual
class Type to Bus:

BusRegister: class Register
(# Type: extended class Bus;
Insert: extended proc
(#
do (par.noOfSeats,par.owner[])
->checkValidity;
INNER
#)
#);

Restricting the type Type to Bus serves two purposes.
It enables us to say that the parameter to the procedure
Insert must be at least a Bus which will then guarantee
that non-Buses will not be inserted (there is most likely
also some internal data structures in the Register, not
shown in the example, where the same restriction ap-
ply). The problem of how to enforce this restriction is
the topic of the rest of this section. The second purpose
is that inside the BusRegister it will be safe to access
attributes of class Bus. The expression Par.no0fSeats
is an example of that. This add to the expressiveness of
the language and can be statically type-checked.
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The qualification of a virtually qualified reference is
in general not known at compile time since the qualifi-
cation can be extended to a more specific class. In our
example par is qualified Vehicle in a Register, but as
Bus in a BusRegister. For a reference like par qualified
by a virtual class we have the following relation:

qual(par) = Type C Vehicle

Since Type may have different extensions in different
subclasses of Register, we cannot determine qual(par)
at compile-time.

The qualification aRegister.Type depends on the
qualification of aRegister. We have the following as-
sertions:

aRegister.Type = Vehicle
if qual(object(aRegister)) = Register

and

aRegister.Type = Bus
if qual(object(aRegister)) = BusRegister

In general each subclass of Register gives rise to an
assertion of this kind. We use the notation

object(aRegister).Type

to denote this virtual qualification.
The qualification of the parameter par also depends
on the qualification of aRegister. We use the notation

qual{object(aRegister).Insert.par)

to denote the qualification of a specific par.
We can deduce that

object(aRegister).Type C Vehicle
and
qual{object(aRegister).Insert.par) C Vehicle

but these relations are of little practical use when de-
termining the legality of assignments to par as will be
seen below.

For an assignment

aVehicle[] -> aRegister.Insert[]

we must prove that after the assignment the following

holds:

qual(object(aRegister.Insert.par))
C qual(object(aRegister).Insert.par)
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This relation states that the qualification of the object
referred to by par must be a subclass of the qualification
of par associated with the object actually referred to by
aRegister. Since the left-hand side of this relation is
C Vehicle we can conclude that the demand on the
object referred to by aVehicle is at least a Vehicle,
but it may be stronger.

In the following we analyze three situations of assign-
ment to virtually qualified references. In case 1 we con-
sider an assignment independent of its context. In cases
2 and 3 we take the context of the assignment into con-
sideration. In all 3 cases we assume the following dec-
larations:

aVehicle: “Vehicle;
aRegister: “Register;

Case 1: Consider the assignment

aVehicle[] -> aRegister.Insert; {1}

The problem here is that the qualification of

object(aRegister) cannot be determined at
compile-time. If

qual(object(aRegister)) = Register
then
aRegister.Type = Vehicle

and the assignment {1} is legal.
If on the other hand

qual(object(aRegister)) = BusRegister

then
aRegister.Type = Bus

and the assignment {1} is legal only if

qual(object(aVehicle)) C Bus

This implies that in the general case assignments
to virtually qualified references can not be stati-
cally checked. Given more information from the
program it is in principle possible to calculate an
upper bound on the needed qualification. This is
done in the next two cases.

Case 2: Consider the imperatives:

new Register[] -> aRegister([];
new Bus[] -> aVehicle(];
aVehicle[] -> aRegister.Insert; {2}
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Here we have:
qual(object(aRegister)) = Register
qual(aRegister.Insert.Par)

= aRegister.Type
Vehicle

qual(aVehicle) = Bus

and the reference relation will be fulfilled since
Bus C Vehicle.

Case 3: Consider the imperatives:

new BusRegister[] -> aRegister[];
new Vehicle[] -> aVehicle[];
aVehicle[] -> aRegister.Insert; {3}

Here we have:

qual(object(aRegister)) = BusRegister

qual(BusRegister.Insert.par)
= BusRegister.Type
= Bus

qual(aVehicle) = Vehicle
so the reference relation is violated in this case.

The examples 1-3 shows that the assignment can not be
statically type checked in the general case. If the com-
piler can infer the type of an object using dataflow anal-
ysis it can statically check both 2 and 3. Full dataflow
analysis is not possible, but a limited form, only tar-
geted to recognize the case when a reference can be
guaranteed to have exactly its declared qualification has
been proposed for Eiffel [11]. This effect can also be
achieved in Beta with part objects that are statically al-
located. (See below). In [13] the same effect is achieved
for so-called homogeneous variables which are type ex-
act.

The type checking problem described above is gen-
eral and occurs in a couple of different language con-
structions. The use of virtual qualification was chosen
to illustrate the problem above. Classes with type pa-
rameters shows the same problem when subclasses are
allowed to strengthen the qualification on the type pa-
rameter. The same effect can also be achieved with self-
relative types as ”like Current” and ”thisClass”. Yet
another example is classes with virtual procedures. If
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subclasses are allowed to restrict the type of the pa-
rameters to re-implementations of procedures the same
problem occurs again.

The heart of the problem can be explained by observ-
ing that the notion of qualified references does not help
us in this case. The essence of qualified references is to
guarantee that a reference is denoting at least an ob-
Jject of a certain class. This is useful because it is then
safe to assume that the object has attributes of that
class. When assigning an object to such a reference the
compiler need to calculate the qualification of the ref-
erence as described in section 4, and the legality of the
assignment can in many cases be checked statically.

Qualified references allows us to determine a least
qualification of an object, but the group of construc-
tions described earlier in this section introduces objects
where the demands may increase with the qualification.
The notion of qualified references can not help us to
calculate an upper bound on these demands. We have
found the following three different ways to safely handle
type-checking of type-parameterized constructions:

1. Not allowing the type-demands to be strengthen
2. Introducing references that are type exact

3. Run time checks

The first solution has been adopted for example in Sim-
ula for virtual procedures with specified parameters and
for arrays of references used as parameters which must
conform exactly. For these situations it works also in
practice due to the possibility of dynamically strength-
ening the qualification of an object. This solution have
also been proposed in [2] where it is suggested that it
should not be allowed to strengthen the type demands in
subclasses, but only weakening them. Weakening type-
constraints is also possible in Trellis/Owl [14], but seems
to be of very limited practical value and will in practice
mean that a fixed type will be used.

In BETA a virtual class can be fixed in a subclass
(see below) with the meaning that a declaration can
not be further strengthen in a subclass. [2] suggests the
technique with weakening the demands to be used also
for classes with type parameters. Also here weakening is
of questionable practical value. It should be noted that
BETA offers this as an alternative, while [2] suggest this
to be the only alternative.

The second solution is exemplified with part objects
in Beta and the suggested type-enforce rule in Eiffel.
One can also consider to introduce a new kind of refer-
ences which always denote objects belonging to exactly
the declared class.

The choice is between expressive power and statically
type-checkable constructions. In Beta the choice has

been to allow also constructions that require run-time
type checking. This route has been followed here, but
also for dynamic strengthening of qualification as de-
scribed in section 4.

Limiting run-time checks

In general the use of virtual classes will involve run-
time checking. BETA has constructs that makes it pos-
sible to avoid some of these run-time checks. In class
BusRegister, the virtual class Type may be defined us-
ing fixed instead of extended. This implies that Type
is not a virtual class in BusRegister, so it cannot be
further extended in subclasses of BusRegister.

The same effect can be obtained by declaring a static
(part) object like:

aFixedBusRegister: QBusRegister

Here it is also known that no further extension of Type
is possible, so the qualification of par in Insert is fixed
to the class Bus. The reason is that virtual classes and
procedures may only be extended in subclasses, and
aFixedBusRegister is not a class, but an object. Note
that aFixedBusRegister is in fact a type exact refer-
ence.

7 Subclassing versus subtyping

In [1} it is claimed the need for a special inter-
face inheritance hierarchy that is different from the
class/subclass hierarchy, and that the interface hierar-
chy should be used for type checking purposes (and not
the class/subclass hierarchy).

The following example is the BETA version of some
of the examples from [1], and it demonstrates that it
is possible to use the class/subclass hierarchy for type
checking. As the previous examples in this paper it also
introduces the need for run-time type checking.

Even though the BETA approach is to use the
class/subclass hierarchy for type checking, this is not
the same as to say that we do not want to distinguish
between interface and implementation of a class. The
language has a separate mechanism for that [6], but this
will not be covered here.

The example demonstrates that it is possible to let
a ColorPoint be a subclass of Point, and still have
procedures local to Point, such as e.g. Equal, also work
for objects of the subclass.

Point: class
(# X,Y: Q@integer;

Move: virtual proc
(# dx,dy: Qinteger;
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P: ~“ThisClass

enter (dx,dy)

do new ThisClass[] -> P[];
x +dx -> P.x; y +dy -> P.y;
INNER

exit P[]

#);

Equal: virtual proc

(# P: “ThisClass;
eq: @boolean

enter P[]

do ((x=P.x) and (y=P.y)) -> eq;
INNER

exit eq

#)

#);

In the same way as the language contains the special
reference expression ThisObject giving the object in
which the expression is evaluated, it also makes use of
the pseudo-name ThisClass. The class ThisClass is
the class of ThisObject, i.e.

ThisClass = qual(object(ThisObject))

In order for the parameter P of Equal to work not only
for Point, but also for subclasses of Point, it is quali-
fied by ThisClass. In a Point object the qualification
ThisClass is Point. Consider the subclass ColorPoint
of Point:

ColorPoint: class Point
(# c: Qcolor;

Move: extended proc
(# do ¢ -> P.c; INNER #);
Equal: extended proc
(#
do (eq and (c=P.c)) -> eq;
INNER
#)
#)

In objects of the subclass ColorPoint the ThisClass is
ColorPoint. This implies that the qualification of the
parameter P is then ColorPoint, so Equal may also be
extended to test for the equality of the ¢ attribute of
ColorPoint objects. This can also be expressed as:

qual(object(P)) C qual(object(ThisObject))
It should be noted that the notion of ThisClass may

be obtained as a virtual class. In Point it would be
defined as a virtual class, e.g.
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thisClass: virtual class Point
and in ColorPoint it would be extended by
thisClass: extended class ColorPoint

See [9] for a further discussion of this.

The above example illustrate the same problem as
discussed in section 6. This time the construction
ThisClass is the cause of qualification strengthening.
The following examples of use of the classes will illus-
trate the type-checking problems.

P1,Pr: * Point;
Cl,Cxr: = ColorPoint

P1[]->Pr.Equal; {1}
C1[]1->Cr.Equal; {2}
C1[]->Pr.Equal; {3}
P1[]->Cr.Equal; {4}

In all these four cases there has to be inserted run-time
tests analogous to that of the example in section 6. As-
suming that Pr and P1 actually denote Points while €1
and Cr denote ColorPoints only the last case will ac-
tually fail during run-time. This is because we try to
compare a Point object and a ColorPoint object by ex-
ecuting the Equal procedure of the ColorPoint object
with the Point object as the parameter P. As pointed
out in [1] this would lead to evaluation of the expression
P.c, with P denoting a Point object, and this is invalid
because a Point object does not have an attribute c.

The following is examples of situations where run-
time checking may be avoided by using part objects.
Suppose that the following objects are given:

P1,P2: QPoint;
C1,C2: @ColorPoint;

P1[]->P2.Equal; {5}
€1{1->C2.Equal; {6}
C1[]->P1.Equal; {7}
P1[]->C2.Equal; {8}

Here it is known at compile-time that P1 and P2 refer to
instances of Point and that C1i and €2 refer to instances
of ColorPoint. In other words P1,P2,C1 and C2 are
constant references. The effect is that case 5-8 can be
statically type-checked. Case 5-7 will pass but in case 8
there will be found a type-error.

Recalling the three different solutions to this type-
checking problem we will find the following:

1. Not allowing the type-demands to be
strengthened.

Adopting this attitude, the definition of class
ColorPoint is wrong since it is strengthening the
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demands on the parameter P of the procedure
Equal (and Move as well). This is the attitude
taken in [1]. It has the effect that the above and
many other programs will be illegal. In [1] it is
phrased slightly different, the two classes Point and
ColorPoint are found not to be type compatible.

2. Introducing references that are type exact.

The effect of this possibility is shown above using
part objects. All the expressions above are stati-
cally checkable. If this is the only alternative we can
not write general code managing ColorPoints (and
possibly many other sub classes) as Points which
is of great practical value. This is also the effect of
the suggested restriction for Eiffel [11]. The pro-
posal in [13] for homogeneous variables is another
example of this. Although type exact variables is a
useful mechanism in many situations, we find it a
too strong restriction to be the general case.

To conclude this discussion we finally also show the
BETA formulation of one other example in [1].

Test: proc
(# X,Y: - Point;
enter(X[1,Y[])
exit X[]->Y.Equal
#);

{a run-time check}

Since it is not statically known whether or not X and Y
refer to instances of Point or ColorPoint it is necessary
to perform a run-time check in the call X[]->Y.Equal.
If X refers to a ColorPoint, then Y must also refer to
an instance of ColorPoint or:

qual(object(X)) C qual(object(Y).Equal.P)

The procedure Test may be called in the following way:

(P10],Pr[])->Test {1}
(ci1ll,crl[]1)->Test {2}
(c1ll,pr[1)->Test {3}
(P10],Cr[]1)->Test {4}

In none of these cases there is a need for a run-time check
at the call since the procedure Test only requires its
arguments to be of class Point. The execution of Test
will in all cases perform a run-time test when executing
X[]->Y.Equal. In the fourth case the run-time test
in procedure Test will fail since the class of X (P1)
is Point, while the the relation will demand at least
a ColorPoint (again assuming that P1 is denoting a
Point object).

Again using the first solution only case 1 will be ac-
cepted by the compiler since ColorPoint is not con-
sidered a subclass of Point. This would require the
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programmer to write one version of the Test procedure
for each combination of argument types.

The second solution would lead to exactly the same
sitnation since the pointers X and Y would be considered
to have exact qualification match.

8 Conclusion

Issues regarding typing and programming language de-
sign have been the subject of this paper. Programming
is regarded as modeling a real or imaginary part of
world. From this point of view we conclude that the
most important feature of the class mechanism is the
ability to model concepts. Subclassing models special-
ization and inheritance of properties from the applica-
tion domain. Used in this way, the class hierarchy de-
fines a type system that is understandable in terms of
the application domain.

A type system based on the class concept has been
described together with a discussion of how strong typ-
ing can be supported in a flexible way. The strength
of a type system is regarded as the amount of infor-
mation conveyed with the type of an expression. This
information can be used for compile-time type checking
and early error reporting. Several examples are given
of weakening and strengthening the type of an expres-
sion. It is argued that a certain amount of such flex-
ibility is needed in order to support different levels of
abstraction. Type strengthening expressions gives rise
to run-time type checking.

The problems arising when classes are parameterized
with types (i.e. classes) have been analyzed and it has
been shown that the traditional approach with run-time
checks in certain situations can also be used here. It has
also been discussed how the amount of run-time checks
can be decreased and even completely removed by intro-
ducing certain restrictions in the language (type exact
references, forbidding type strengthening). Finally it
has been argued that these restrictions can be very use-
ful in many situations, but only allowing these restricted
cases will hamper the expressiveness of the language.
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