A Parallel Object-Oriented Language
with Inheritance and Subtyping

Pierre America
Frank van der Linden
Philips Research Laboratories
Eindhoven, the Netherlands

July 12, 1990

Abstract

This paper shows that inheritance and subtyping can
be introduced advantcgeously into a parallel object-
oriented language, POOL-1. These concepts are clearly
distinguished, because they deal with different aspects
of programming. In this way several problems tradi-
tionally adhering to inheritance can be solved. The
language POOL-1 is a parallel object-oriented lan-
guage with a strong typing scheme which includes
genericity and dynamic binding. A novel and par-
ticularly powerful mechanism offers the possibility to
manipulate and analyse types dynamically.

1 Introduction

The parallel object-oriented language POOL [1, 4]
has been designed to support writing programs for
large-scale parallel machines, even without shared
memory. At this moment one such machine, the
100-node DOOM (Decentralized Object-Oriented Ma-
chine) [6, 8] is already executing programs written in
POOL. In this paper we discuss the language POOL-I,
which is the latest member of the POOL family of lan-
guages. We shall pay particular attention to the way
in which subtyping and inheritance are incorporated
in POOL-I.

In POOL parallelism is introduced by giving each ob-
ject a body. This body is a local process that the ob-
ject executes in parallel with other objects. At spe-
cific places during the execution of the body the ob-

This work was done in the context of ESPRIT Basic Re-
search Action 3020: Integration

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

® 13990 ACM 089791-411-2/90/0010-0161...$1.50

Oclober 21-25, 1990

ject is willing to communicate with other objects. The
communication is by synchronous message passing. A
message consists of a method call to another object.
The object that sends the message is blocked until
the receiver answers the message, executes the corre-
sponding method, and returns the result to the caller.
Both sending and receiving a message take place ex-
plicitly (by send statements and answer statements).
For many objects, no specific body is specified. In this
case they execute the default body, which answers all
messages one after the other, in the order in which
they arrive. It turns out that in POOL-I there is only
a weak interaction between inheritance and subtyping
on the one hand and parallelism on the other, see sec-
tions 2 and 5. Therefore, in this paper we do not deal
extensively with aspects of parallelism.

At any moment during the execution of a program,
new objects may be created. This is done by exe-
cuting a routine called new. A routine is a kind of
procedure different from a method. It is not associ-
ated with a specific object but with a class and it can
be called by any object in the system without sending
messages. Every class has a routine with the name
new that creates a new object. Objects are never de-
stroyed explicitly in POOL (but they may be removed
by a garbage collector).

At this point we wish to draw attention to the very
important distinction between types and classes. A
type is a collection of objects that share the same ex-
ternally observable behaviour. That means that in
deciding whether an object belongs to a type, the only
important aspects are which messages the object an-
swers (and sends), in which order, and which relation-
ships exist between the arguments and results of those
messages. On the other hand, a class is a collection
of objects that have exactly the same internal struc-
ture, that is, the same instance variables, the same
body, and the same methods. One could say that a
class describes how its instances are built, and a type
describes how its elements can be used. Distinguish-

ECOOP/OOPSLA '90 Proceedings 161

ing these concepts is just as vital as distinguishing be-
tween the specification and the implementation of an
abstract data type. Of course, the internal structure
of an object determines its external behaviour, and
therefore class membership determines type member-
ship, but not the other way round. This distinction
between types and classes is reflected in the distinc-
tion between subtyping and inheritance: subtyping is
an inclusion relationship between types, and inheri-
tance is a form of code sharing between classes. For
more details, see 2, 3].

In the following sections we concentrate first on sub-
typing. Section 2 introduces the basic concepts of
types and of the subtyping relationship. Section 3
discusses generic types and their interaction with sub-
typing. Then, in section 4 we present the powerful
mechanisms for dynamic type manipulation present in
POOL-I. Next we direct our attention towards in-
heritance, which is dealt with in section 5. Finally,
section 6 draws some conclusions from our work.

2 Types and subtypes

As already said above, a type is a collection of ob-
jects that have the same behaviour, in so far as that
behaviour can be observed by sending messages. In
POOL-], every variable and every parameter and re-
sult of a method or routine is typed, which means
that it can only refer to objects that belong to a cer-
tain type. By looking at these types, the reader of a
program can determine the scope of applicability of a
method and the range of possible results, and a com-
piler can ascertain the absence of a certain class of
programming errors.

One could say that a type is a specification of the
behaviour of its elements. However, it does not nec-
essarily specify this behaviour in complete detail, but
it can let certain possibilities remain undecided. Thus
there may be another type that is more specific: a
subtype. We say that a type o is a subtype of the
type T when each object of type o is also an object of
type 7. The subtype relationship is important in two
situations: assignments and parameter passing.

In POOL the behaviour of objects is determined by
the messages they can answer. The messages corre-
spond to methods, which can be distinguished by their
names, the number and types of the arguments, and
the type of the result, if present. This collection of
method names with their parameter and result types
comprises the signature of the type.

Example 1: The type Person.

162 ECOOP/OOPSLA '90 Proceedings

TYPE Person

METHOD get_name () : String
METHOD get_address () : String
END Person

TYPE Employee

METHOD get_name () : String

METHOD get_address () : String
METHOD get_salary () : Int
END Employee

We see that the type Employee is a subtype of Person:
An object is an element of type Person precisely if it
has the methods get_name and get_address with no
parameters and with String as their result type. All
objects of type Employee have these methods, so they
are also elements of the type Person. Objects of type
Employee are required to have an additional method
get_salary, and therefore Person is not a subtype of
Employee.

‘We have already seen that POOL-I makes a distinc-
tion between types and classes: A class is a collection
of objects that look exactly the same on the inside.
‘We say that a class tmplements a type ¢ when each
object of the class has type o. There may be many
classes that implement a certain type and many types
that are implemented by a certain class. In fact, if a
class implements a type, it automatically implements
all the supertypes of this type. The following class
implements the type Person:

Example 2: The class My_Person.

CLASS My_Person
NEWPAR (name, initial_address :
VAR address :

String)
String := initial_address

METHOD get_name ()
BEGIN RESULT name

: String
END get_name

METHOD get_address ()
BEGIN RESULT address

: String
END get_address

METHOD put_address (a :
BEGIN address

String)
:= a; RESULT SELF

: My_Person
END put_address

- END My_Person

Each instance of the class My_Person has one instance
variable, address, and two so-called new-parameters,
name and initial_address. An object can change its
instance variables at any iime (by an assignment), but
the new-parameters are fixed at the creation of the ob-
ject. As their name suggests, they are the parameters
of the routine new of the current class, which can be
called by an expression like My_Person.new("Laura",
"Rome"), the result of which is a newly created and
initialized object of class My_Person.

October 21-25, 1390

Since the class My_Person has the methods get_name
and get_address with the correct parameter and re-
sult types, it implements the type Person. In fact,
POOL-I automatically associates with every class a
type with the same name, which can be specified by
collecting the headers of all the methods defined in the
class. In this way, saying that the class My_Person im-
plements the type Person amounts to the same thing
as saying that the type My_Person is a subtype of
Person. For the convenience of the reader of a pro-
gram, this fact can be made explicit in the class defi-
nition (in which case the compiler can also check it).

Another convenient thing is that these simple put
and get methods are included automatically when re-
quested by certain keywords. Thus the above class
definition is completely equivalent to the following one:

CLASS My_Person < Person

NEWPAR (name GETTABLE, initial_address :

VAR address GETTABLE PUTTABLE : String
:= initial_address

String)
END My_Person

There are more things that can be used to distinguish
types. For instance, not all methods may be answer-
able at any moment, or the results may depend on the
order of calling. The designer of the type may want
to write a specification that gives more information
than the signature only. Ideally, such a specification
language should at least have the power of first-order
predicate logic [3]. However, it is inherently impossi-
ble for a compiler to check the subtyping relationship
if the specification language is so powerful. Therefore
instead of first-order logic the specification of a type in
POOL-I is augmented with a collection of properties,
which are just identifiers.

Example 3: The type Int_Stack (integer stack) and
the class AIS (array integer stack).

TYPE Int_Stack

PROPERTY LIFD %% Last in, first out
METHOD get () : Int

METHOD put (Int) : Int_Stack

END Int_Stack

CLASS AIS
VAR a := Array(Int).new(1,0)

METHOD get () : Int

BEGIN IF aQub = 0
THEN RESULT NIL
ELSE RESULT athigh %% also decreases ub
FI

END get

October 21-25, 1990

METHOD put (n: Int) : AIS
BEGIN athigh := n; %) increase ub and place n
%% at high end
RESULT SELF
END put
PROPERTY LIFO
END AIS

Here we see that the class AIS implements the type
Int_Stack, because it has the required methods get
and put with the right argument and result types and
the property LIF0. As far as the compiler is concerned,
there is no special meaning associated with the identi-
fier LIFD; in particular it has no means to check that
the item that has been entered into the stack last is
the one that will be retrieved first. This interpretation
exists only in the mind of the programmer, who should
explain it to the readers (and users) of his types and
classes by means of comments. Ideally, such a prop-
erty identifier serves as an abbreviation for a formal
specification of some aspect of an object’s behaviour.
The only point where the compiler pays attention to
these properties is in determining whether one type is
a subtype of another one.

Example 4: The type Int_Bag.

TYPE Int_Bag

METHOD get () : Int

METHOD put (Int) : Int_Bag
END Int_Bag

Like a stack, a bag is used to store and retrieve ob-
jects. The only difference is that the specification of
a bag does not say anything about the order in which
elements are retrieved. Therefore the type Int_Bag
has the same signature as the type Int_Stack, but it
does not have the LIFO property. Therefore the type
Int_Stack is a subtype of the type Int_Bag and the
class AIS also implements the type Int_Bag.

Example 5: The type Int_Queue.

TYPE Int_Queue

PROPERTY FIFO %% First in, first out
METHOD get (O : Int

METHOD put (Int) : Int_Queue

END Int_Queue

The type Int_Queue only distinguishes itself from the
type Int_Stack by having the object property FIFO
instead of LIFO: they have exactly the same signature
(and they are therefore both subtypes of Int_Bag).
Nevertheless, they are different types and neither of
them is a subtype of the other one. In particular, the
class AIS does not implement the type Queue. We can

ECOOP/OOPSLA 90 Proceedings 163

express the subtyping relationships in the following di-
agram:

Int_Bag

Int_Stack Int_Queue

Example 6: The class Blocking_Stack (stack that
delays when empty).

CLASS Blocking_Stack
VAR a := Array(Int).new(1,0)

METHOD get () : Int
BEGIN RESULT aGhigh %% alsoc decreases ub
END get

METHOD put (n: Int)
BEGIN aGhigh := n;

: Blocking_Stack
%% increase ub and place n
%% at high end
RESULT SELF
END put

BODY DO IF #a = 0
THEN ANSWER (put)
ELSE ANSWER ANY
FI
oD
YDOB

PROPERTY LIFO,
Blocking %% The method get blocks if
%4 the stack is empty.

END Blocking_Stack

Here we have an example of a class with an explicit
body (describing the local process of each instance).
In this case it only determines in which order the mes-
sages are answered. When the stack is empty, it ac-
cepts only put messages. All get messages are de-
layed until the stack is filled. The behaviour of the
body is indicated by the property Blocking. Notice
that the class Blocking_Stack implements the type
Int_Stack. The class AIS could be decorated with
the property Return_NIL_if_empty, which informs
the user that the stack answers promptly, but that
NIL is returned when the stack is empty. This would
ensure that the types Blocking_Stack and AIS are
incomparable, but both are subtypes of Int_Stack.

The body is an essential feature determining the be-
haviour of objects. Therefore, in general, the type of
an object depends on its body. But since a formal de-
scription of this dependence would be intractable for a
compiler, in POOL-I the behaviour of the body is indi-
cated by property identifiers and the programmer has

164 ECOOP/OOPSLA '90 Proceedings

the responsibility to implement the behaviour accord-
ing to the properties. This is completely analogous to
those aspects in the behaviour of methods than are not
comprised in their signatures.

We can define the subtyping relationship rigorously as
follows:

Definition 1: Subtyping
The type 7 is a subtype of o if

1. The object properties of o are among those of 7.

2. For each method m,, of & there is a corresponding
method m, of 7, such that

® m, and m, have the same name.

¢ m, and m, have the same number of argu-
ments.

e The ith parameter type of m, is a subtype
of the ith parameter type of m, (the con-
travariant parameter type rule).

o Either both m, and m, have a result type
or neither has one.

e If there is a result type then the result type
of m; is a subtype of the result type of m,
(the covariant result type rule).

This is a recursive definition of the subtyping relation,
which may have many solutions. We require the great-
est solution. Informally speaking, this means that 7 is
a subtype of o if there is no reason why it should not
be a subtype.

The use of the contravariant rule for the parameter
types and the covariant rule for the result type can
be understood from the requirement that any object
of type 7 should fulfil the expectations pertaining to
the type 0. In particular, if a caller expects to invoke
the method m,, the method m, should be able to
do the job. Therefore m, must accept at least all the
arguments that m, accepts, and the result of m, must
be acceptable in any context where an object of the
result type of m, is expected. In fact, this is the only
sound rule for the subtyping relationship [9, 11].

3 Genericity

In section 2 we introduced stacks of integers. Of
course, stacks are not only useful for storing integers.
There are many applications where we want to have
stacks of other types. Generic types are a means to
model types that are dependent on other types.

October 21-25, 1990

October 21-25, 1990

Example 7: The generic type Stack.

TYPE Stack (C)

PROPERTY LIFO %% Last in, first out
METHOD get () : C

METHOD put (C) : Stack (C)

END Stack

The type Stack has a type parameter C, which denotes
the type of the elements that are stored in the stack.
For instance, the type Stack(Person) is the type of
stacks that stores persons. There are no objects of type
Stack, but there are objects of type Stack(Person).
If s is a (nonempty) object of type Stack(Person),
then s!get() is an object of type Person.

Notice that the type Int_Stack is equivalent to the
type Stack(Int), i.e., each object of type Int_Stack
is also an object of type Stack(Int) and vice versa.
Therefore the class AIS is an implementation of
Stack(Int). It is also possible to write a generic
class AS that implements the generic type Stack, which
means that for each type C the class AS(C) implements
the type Stack(C).

What happens when we substitute two parame-
ters that are subtypes of each other? We can-
not conclude that Stack(Person) is a subtype of
Stack(Employee), because the method put requires
an argument of type Person in the first case and an
argument of type Employee in the second case. Should
it be the other way around? No, because this is forbid-
den by the result type of the method get. Therefore
in general we do not have a subtyping relationship be-
tween different instantiations of the same generic class.
However, in certain cases such a subtyping relationship
exists; it may be either covariant or contravariant in
the type parameter. This can be made explicit to the
reader of a program by writing a keyword COVAR or
CONTRA with the type parameter, in which case the
compiler will check whether this is correct.

Example 8: The type Dispenser.

TYPE Dispenser (COVAR C)
METHOD get (O : C
END Dispenser

The keyword COVAR before the parameter indicates
that the type Dispenser(C) is covariant in the ar-
gument C. This is correct since the argument C
does not occur at a parameter place of any method.
Therefore, e.g., Dispenser (Employee) is a subtype of
Dispenser(Person).

The type Dispenser (C) may not seem very useful, but
note that it is a supertype of the type Stack(C). It

may be the case that some object a has a reference
to an object s of type Stack(C), but delivers it to
another object b as being of type Dispenser (C). Then
b can take elements from the stack s but it cannot
1l s itself, because it never knows that s is really of
type Stack(C). This is a simple, but powerful way of
working with capabilities (see, e.g., [14]).

The above generic types are not allowed to use any
feature of their parameters, because nothing is known
of them. In many applications, however, it is useful
to have more information about the parameter types,
for instance, the presence of certain methods or prop-
erties. To achieve this, the parameters can be bounded
from above by a given type.

Example 9: The types Ordered and Sorter.

TYPE Ordered

METHOD less (Ordered) : Bool

PROPERTY Static %% result independent of

%/ moment of calling.

Antisymmetric %% a < b -> “(b < a)
Transitive %% a<be&eb<c->ac<c
Linear % a<blb<ala==b9

END Ordered

TYPE Sorter (X < Ordered)
METHOD sort (1: Array (X)) : Array (X)

%% Returns 1, sorted according to less.
END Sorter

The type Ordered has a method less, with properties
to denote that it is an ordering. The type Soxrter ac-
cepts as parameters only subtypes of Ordered. There-
fore in the implementation it may use the fact that
for objects of type X the method less is available,
which has the properties Static, Antisymmetric,
Transitive and Linear. For instance the types Int
and Float have such a method less. Therefore we
can create objects of type Sorter (Int) to sort integers
and Sorter(Float) to sort floating point numbers.

4 Dynamic type manipulation

Not only types and classes can be generic, but methods
may also have type parameters. The other parameter
types and the result type may be dependent on a type
parameter. As with generic classes the type parame-
ters of the metkod can be bounded from above by a

given type.

Example 10: The type Universal_Sorter.

ECOOP/OOPSLA '90 Proceedings 165

TYPE Universal_Sortex
METHOD sort (X < Ordered, Array (X)) : Array (X)
END Universal_Sorter

In contrast to the type Sorter, objects of the type
Universal_Sorter can sort all kinds of arrays with
ordered elements according to their ordering method
less. In addition, in the declaration of variables
of the type Universal_Sorter the programmer does
not bave to decide for which types the sorter should
act. These types can be computed during pro-
gram execution. Suppose we have an object s of
type Universal_Sorter and two arrays, the one,
ia, containing integers and the other, fa, contain-
ing floating point numbers. Then we can per-
form s!sort(Int,ia) to sort the first array and
s!sort(Float,fa) to sort the second array.

It is also possible to use a type as a new-parameter.
In this case the type is known to the object during
its whole life time, and the types of, e.g., its instance
variables can depend on this new-parameter.

In order to make use of the different substitutions for
the type parameters, the language allows some form of
dynamic type analysis. This can test whether a type o
is a subtype of a type 7, where both ¢ and 7 may
depend on some type parameters. If the test succeeds,
any object of type o can be considered to be an element
of .

Example 11: The type case statement.
TYPE Has_Int

METHOD get_ Int () : Int

END Has_Int

TYPE Has_Float

METHOD get_Float () : Float
END Has_Float
METHOD sum (T : TYPE, a : Array(T)) : Int
TEMP isum : Int := 0, fsum : Float := 0.0
BEGIN

CASE T

OF Has_Int %) i is a subtype of Has_Int,

%4 so it has a method get_Int
THEN FOR i FROM a®lb TO a®ub
DO isum := isum + afi]'get_Int() OD;
RESULT isum
OR Has_Float %% T is a subtype of Has_Float,
%% so it has a method get_Float
THEN FOR i FROM a®lb TD aQub
DO fsum := fsum + a[i]'!get_Float() 0D;
RESULT fsum@Int %)% round only here
ELSE RESULT NIL
ESAC
END sum

Note the difference between this scheme and another,

166 ECOOP/OOPSLA '90 Proceedings

more common scheme where each object carries its
own type, which can be determined dynamically. In
the above example, only one type comparison is nec-
essary, and then the corresponding operations can be
applied to a large number of objects. If every object
carries its own type, then the type must be checked be-
fore every individual operation. In addition, note that
the POOL-I scheme does not compromise the safety of
the capability mechanism (see example 8 in section 3):
a type can only be analysed if it is explicitly given, not
if only an object is given.

5 Inheritance

Inheritance is a means for code sharing between
classes. If a class C inherits from another class C’ ,
it gets all the methods, properties, instance variables
and new-parameters from C’. Moreover, the initial-
ization expressions of the variables are inherited as
well. Only the body, the code that an object exe-
cutes in parallel with the other objects, is not inher-
ited. Note that, in contrast with most other strongly
typed object-oriented languages, the mere fact that
one class inherits from another one does not imply
anything about a subtyping relationship between the
corresponding types.

Example 12: The class Linkable (inspired by [12]).

CLASS Linkable(T)

NEWPAR (initial: T) %% The initial contents

%% of the linkable

VAR value GETTABLE PUTTABLE := initial
%% the contents of the link
right GETTABLE PUTTABLE : MYTYPE
%% the neighbour of the link
END Linkable

The class Linkable(T) can be used to build linked
lists containing elements of type T. The GETTABLE and
PUTTABLE attributes provide the type Linkable(T)
with the following methods:

METHOD get_value() : T

METHOD put_value(T) : MYTYPE
METHOD get_right() : MYTYPE
METHOD put_right(MYTYFE) : MYTYPE

In the definition of the class Linkable(T) we see the
occurrence of the type MYTYPE as the type of the vari-
able right. This type is just another notation for the
type that corresponds to the current class definition,
viz. Linkable(T). This notation is used with regard to

October 21-25, 1990

October 21-25, 1990

future inheritance. The class Bi_Linkable(T) below
inherits from Linkable(T). Therefore, it gets the key-
word MYTYPE at the same places, but now this keyword
denotes the type Bi_Linkable(T).

Example 13: The class Bi_Linkable.

CLASS Bi_Linkable(T)
%% not a subtype of Linkable(T)

PROPERTY Left _right_id

%% left ~== NIL -> leftoright = SELF
Right_left_id
%% right “== NIL -> right@left = SELF

INHERIT Linkable(T)

REDEFINE put_right OLD put_right_dangling
%% put_right is not inherited, but
%% newly defined. The old version is
%% available as put_right_dangling.

VAR left GETTABLE : MYTYPE
%% left neighbour of the link

METHOD put_left (1: MYTYPE) : MYTYPE
%% put 1 to the right of the answering
%% object.
BEGIN left := 1;
IF 1 “== NIL
THEN 1 ! put_right_dangling (SELF)
FI;
RESULT SELF
END put_left

METHOD put_right (r: MYTYPE) : MYTYPE

METHOD put_left_dangling (1: MYTYPE) : MYTYPE

END Bi_Linkable

The class Bi_Linkable(T) inherits everything ex-
cept the (default) body from the class Linkable(T).
The method put_right, derived from the at-
tribute PUTTABLE in Linkable(T), is redefined,
but the old method is available under the name
put_right_dangling. This is necessary, because we
want to have the old version available, e.g., in the def-
inition of put_left. In addition a new variable left
and some methods, including the redefined put_right
are added to the class Bi_Linkable(T).

The type Bi_Linkable(T) is not a subtype of
Linkable(T), nor the other way around. This is due to
the parameter type of the method put_right, which is
MYTYPE in both cases. This type behaves covariantly
during inheritance, whereas we need a contravariant
behaviour for the subtyping relationship. In fact, it

is a typical phenomenon that with inheritance param-
eter and result types behave covariantly, whereas for
subtyping a contravariant behaviour of the parame-
ter types is necessary. This is an important source of
trouble for languages where inheritance and subtyping
coincide (see, for example, [10}).

In POOL-I multiple inheritance is also supported, i.e.,
a class can inherit from more than one other class. The
conflict that arises if several of the inherited features
happen to have the same name can and must be re-
solved explicitly by renaming (all but one of) them.
Since inheritance is not coupled with subtyping, re-
naming methods does not lead to problems or to pe-
culiar behaviour (as in [12]). If several of the inherited
methods must be combined into a new one, we have
the experience that it is simpler and more reliable if
the programmer does this explicitly than if this is left
to a complicated automatic mechanism, which is hard
to understand (as in [7]).

There is no natural and practically useful automatic
way to make an old body work well with new methods,
or to combine several bodies into a new one. There-
fore in POOL-I bodies are not inherited and every class
must be given a body of its own. Since most classes
only have the default body anyway, this does not lead
to much extra work. Moreover, in those cases where an
explicit body is necessary, it is well worth the trouble
of paying extra attention to it. Thus the interaction
between inheritance and parallelism is limited to the
obligation for the programmer to provide a body. Be-
cause subtyping and inheritance are not combined the
new body does not need to be compatible with the
bodies of the inherited classes.

6 Conclusions

‘We have shown how subtyping and inheritance are in-
cluded in the language POOL. The notions of sub-
typing and inheritance are treated separately because
they deal with different views of objects. Types and
subtyping look at an object from the outside, where
the only relevant question is in what way the object
can be used. Classes and inheritance deal with the in-
ternal structure of the object, where it is only impor-
tant to realize the desired external behaviour by com-
bining the right instance variables, new-parameters,
methods, and body. It has long been recognized that
the distinction between the external interface of an ob-
ject and its internal realization is one of the most im-
portant aspects of object-oriented programming, but
the awareness that this distinction logically implies an
analogous distinction between subtyping and inheri-
tance is much less widespread in the object-oriented
community {2, 11].

ECOOP/OCPSLA '90 Proceedings 167

Decoupling inheritance and subtyping gives consider-
ably more freedom to the programmer. For example,
it becomes possible to implement a stack by inheriting
from the class Array without implying that a stack is
a special kind of array so that all operations applica-
ble to arrays are also applicable to stacks. It is also
possible to group together a heterogeneous collection
of objects which have only a part of their behaviour in
common (e.g., having a method print), without the
necessity that all of them have been constructed by
inheriting from a fixed single class.

Furthermore such a decoupling makes it possible to
solve several problems in the design of a strongly typed
object-oriented language. A .well-known problem is
the occurrence of name clashes in multiple inheritance.
Several complicated mechanisms have been proposed
to resolve these clashes, but the simplest and most re-
liable mechanism, resolving the clashes by explicit re-
naming, leads to a conflict in subtyping (or to strange
behaviour, as in [12]). If inheritance and subtyping are
separated, this conflict disappears. Another problem
is that inheritance tends to lead to a covariant subtyp-
ing relationship between parameter types of methods,
whereas the only sound subtyping rule requires a con-
travariant behaviour. Coupling inheritance with sub-
typing can only lead to either an unsafe type system
[10] or to unconvenient restrictions in inheritance, as

in Trellis/Owl [13].

Note that these issues have nothing to do with paral-
lelism. The above considerations are equally valid in
a purely sequential object-oriented language. In fact,
the POOL-I mechanisms for subtyping and inheritance
interact only very weakly with its concepts for paral-
lelism. The impossibility of a natural way of inheriting
bodies is not particular to parallelism, but it is related
to the difficulty of finding adequate automatic mecha-
nisms for method combination in multiple inheritance.

The basic mechanisms for subtyping and inheritance
in POOL-I are very simple, but in combination with
the facilities for genericity and dynamic type manip-
ulation they result in a very powerful language, with
a flexible but absoluiely safe type system. We are
presently implementing POOL-1. First we make a se-
quential implementation, but we are planning to make
a parallel implementatjon as well. Moreover, we in-
tend to develop a formal semantics for POOL-I, based
on the the earlier semantics defined for POOL [5], but
giving a better insight in the fundamental properties
of objects.

References

(1] P.H.M. AMERICA, POOL-T: A parallel object-
oriented language. In A. Yonezawa, M. Tokoro

168 ECOOP/OCPSLA '90 Proceedings

(eds.): Object-Oriented Concurrent Programming,
MIT Press, 199-220 (1987).

(2] P.HM. AMERICA, Inheritance and subtyping
in a parallel object-oriented language. In Proc.
ECOOP’87, Paris, Springer LNCS 276, 234-242
(1987).

[3] P.H.M. AMERICA, A Behavioural approach to
subtyping in object-oriented programming lan-
guages. Workshop on Inheritance Hierarchies in
Knowledge Representation and Programming Lan-
guages, Viareggio, Italy, February 6-8, 1989. Also
in Philips Journal of Research 44(2/3):365-383,
(1989).

[4] P.H.M. AMERICA, Issues in the design of a par-
allel object-oriented language. Formal Aspects of
Computing 1(4):366-411 (1989).

(5] P.H.M. AMERICA, J.W. DE BAKKER, J.N. KoK,
J.J.M.M. RUTTEN, Denotational semantics of a
parallel object-oriented language. Information and
Computation 83(2):152-205 (1989).

[6] J.K. ANNOT AND P.A.M. DEN HAAN, POOL and
DOOM: The object-oriented approach. Chapter 3
in P. Treleaven (ed.), Parallel Computers: Object~
Oriented, Functional and Logic, Wiley (1989).

[7] D.G. BoBrOW, L.G. DEMICHIEL,
R.R. GABRIEL, S. KEENE, G. KICZALES, D.A.
MooN, Common Lisp Object System specification.
Doc. 88-003, X3J13 Standards Committee (ANSI
Common Lisp) (1988).

(8] W.J.H.J. BRONNENBERG, A.J. NUMAN, E.A.M.
Obpuk, R.A.H. vAN TwisT, DOOM: A decen-
tralized object-oriented machine. TEEE-MICRO
7(5):32-69 (1987).

[9] L. CARDELLI, A semantics of multiple inheritance.
Information and Computation 76:138-164 (1988).

(10] W. Coox, A proposal for making Eiffel type—éafe.
Proc. ECOOP ’89, Nottingham, England, July 10—
14, 1989, 57-70, Cambridge University Press.

[11] W. Cook, W. HiLL, P. CANNING, Inheritance
is not subtyping. Proc. POPL (1990).

[12] B. MEYER, Object-Oriented Software Construc-
tion. Prentice-Hall (1988).

[13] C. ScuAFFERT, T. COOPER, B. BuLLIs, M.
KiuiaN, C. WiLpci1, An introduction to Trel-
lis/Owl, Proc. OOPSLA 86, Portland, Oregon,
September 1986, pp. 9-16.

[14] W.A. WurF, R. LEVIN, S.P. HARBISON, HY-
DRA/C.mmp: An Experimental Computer Sys-
tem. McGraw-Hill (1981).

October 21-25, 1990

