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Abstract

Behavioral compositions, groups of interdependent ob-
Jjects cooperating to accomplish tasks, are an important
feature of object-oriented systems. This paper intro-
duces Contracts, a new technique for specifying behav-
ioral compositions and the obligations on participating
objects. Refinement and composition of contracts allows
for the creation of large grain abstractions based on be-
havior, orthogonal to those provided by existing class
constructs. Using contracts thus provides a basis and
vocabulary for Interaction-Oriented design which greatly
facilitates the early identification, abstraction and reuse
of patterns of behavior in programs. Contracts differ
from previous work in that they capture explicitly and
abstractly the behavioral dependencies amongst cooper-
ating objects. By explicitly stating these dependencies,
contracts also provide an effective aid for program un-
derstanding and reuse.

1 Introduction

144

. no object is an tsland.
All objects stand in relationship to others,
on whom they rely for services and control”

Beck & Cunningham 1989[2).

Indeed, not only are objects not islands, but within an
object-oriented system, groups of related objects will of-
ten cooperate to perform some task or maintain some
invariant. We call such groups of cooperating objects
behavioral compositions. Some examples are: a set of
Radio Buttons coordinating with each other to ensure
that only one of the buttons is “on” at any time; a Scroll-
bar coordinating with a Viewport to maintain a View of
a window consistent with the shape and location of the
Scrollbar’s elevators; a parent window coordinating re-
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sizing and reshaping operations with its child windows
to ensure that it always properly surrounds them. Pat-
terns of communication within a behavioral composition
are often repeated throughout a system with different
participating objects. They represent a reusable domain
protocol or programming paradigm. For the purposes of
extending, modifying or re-using programns, it is clearly
important to understand these behavioral compositions
and the inter-object dependencies they imply.

While the recent literature recognizes the importance of
inter-object behavior (expressed in terms of collabora-
tion graphs [25], responsibilities [26], mechanisms [3],
or views [20], for example), there is surprisingly little
language support for its specification and abstraction.
This means the existence of behavioral compositions in
a system, and in particular the behavioral dependen-
cies that they imply, cannot be easily inferred; they
are spread across many class definitions in method im-
plementations. This causes subsequent problems in the
design, understanding and reuse of object-oriented soft-
ware.

Addressing the issues of specifying the behavior of object-
oriented systems, this paper proposes Contracts: a con-
struct for the explicit specification of behavioral com-
positions. Contracts aim to formalize the collaboration
and behavioral relationships between objects, thereby
making precise the intuition “no object is an island”.
A contract defines a set of communicating participanis
and their contractual obligations. Contractual obliga-
tions extend the usual type signatures to include con-
straints on behavior which capture the behavioral de-
pendencies between objects. As an example, the MVC
paradigm[13] essentially defines behavioral composition
in which Model, View and Controller objects participate
to ensure that the View always reflects the state of the
Model. The statement “a View displays itself in response
to the message update: from its Model,” defines a behav-
ioral dependency between these participants. A contract
also defines preconditions on participants required to es-
tablish the contract, and the invariant to be maintained
by these participants.
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Two important operations on contracts are refinement
and inclusion. These provide two distinct means to ex-
press complex behavior in terms of simpler behavior.
Refinement allows for the specialization of contractual
obligations and invariants of contracts. Inclusion allows
contracts to be composed from simpler sub-contracts.
Through these mechanisms, contracts enable us to cre-
ate and reuse large grain abstractions based on behavior,
orthogonal to those based on structure defined by class
constructs.

The specification of how a particular class implemen-
tation meets a participating object’s obligations is de-
clared via a conformance declaration. Conformance dec-
larations define how classes can participate as “Black
Boxes” in a contract. For abstract classes, conformance
declarations describe how a participants obligations are
apportioned between that class and its subclasses, thus
describing how abstract classes can be reused as “White
Boxes”. Using contracts to specify behavioral composi-
tions, and conformance declarations to specify how ab-
stract classes implement the corresponding obligations,
allows for the explicit representation of application frame-
works [6] [12], which are considered important for reuse.

Behavioral compositions are created through the instan-
tiation of contracts. This binds concrete objects, which
satisfy the required contractual obligations to partici-
pants. Through new language constructs for the instan-
tiation of contracts, the existence of behavioral composi-
tions in a system can be made explicit, greatly assisting
the comprehension of its architecture.

Explicitly specifying inter-object relationships is not en-
tirely new. Class invariants in Eiffel [19] or “relations” in
DSM [21] define constraints among class instances and
methods. The contributions of contracts are: firstly,
to generalize these to multi-object dependencies; sec-
ondly, to capture the behavioral dependencies between
cooperating objects; and thirdly, provide a formalism
for their abstraction. Other constructs to support gen-
eralized patterns of communication among multiple pro-
cesses have also been proposed in the area of distributed
computing and reactive systems [7, 11, 8]. Our experi-
ence in using contracts to design and specify a number
of object-oriented applications suggests that an initial
shift away from class-based design to one based on con-
tracts greatly facilitates the early identification, abstrac-
tion and subsequent reuse of patterns of interactions be-
tween objects. Behavioral compositions expressed via
contracts thus provide a rich vocabulary for Interaction-
Oriented Design.

This paper is organized as follows. Section 2 introduces
contracts and their composition and refinement through
a number of examples, drawn from the domain of window-
based user interfaces. Section 3 describes the binding
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of classes to participants via conformance declarations.
Section 4 describes how contract instantiation makes ex-
plicit the behavioral compositions in applications. Fi-
nally, in section 5 we briefly describe how behavioral
compositions and contracts may be used as the basis for
an Interaction-Oriented design methodology. We also
discuss some future research directions.

2 Contract Specification

A contract defines the behavioral composition of a set
of communicating participants. Each contract specifies
the following important aspects of behavioral composi-
tions. Firstly, it identifies the participants in the be-
havioral composition and their contractual obligations.
Contractual obligations consist of type obligations, where
the participant must support certain variables and exter-
nal interface, and causal obligations, where the partici-
pant must perform an ordered sequence of actions and
make certain conditions true in response to these mes-
sages. Through causal obligations, contracts capture the
behavioral dependencies between objects. Secondly, the
contract defines invariants that participants cooperate to
maintain. It also defines what actions should be initiated
to resatisfy the the invariant, which as a matter of course
during program execution will become false. Lastly, the
contract specifies preconditions on participants to estab-
lish the contract and the methods which instantiate the
contract.

As an example, consider the behavioral composition in
which a Subject object, containing some data, and a col-
lection of View objects, which represent that data graph-
ically, say as a dial, histogram and counter (see Figure 1),
cooperate so that at all times each View always reflects
the current value of the Subject. This behavioral com-
position is described by the contract Subject View shown
in Figure 2.

View View
— 75 %
GOo~—

Subject

Figure 1: Subject and Views
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contract SubjectView
Subject supports |
value : Value

SetValue(val:Value) — Awvalue {value = val}; Notify()

GetValue() : Value + return value
Notify() + (|| v : v € Views : v—Update() )

AttachView(v:View) — {v € Views}
DetachView(v:View) — {v & Views}

Views : Set(View) where each View supports [
Update() — Draw()

Draw() — Subject—GetValue() {View reflects Subject.value}

SetSubject(s:Subject) + {Subject = s}

]

invariant

Subject.SetValue(val) — (Vv : v € Views : v reflects Subject.value)

instantiation
(] v:v € Views :
end contract

(Subject—AttachView(v) || v—SetSubject(Subject)) )

Figure 2: Contract SubjectView

Contract SubjectView requires certain obligations of its
participants Subject and the set of Views. Type obliga-
tions require a certain interface and data: Subject, for
example, is required to support a variable of the un-
specified type Value and the method Notify(). Causal
obligations require that receipt of a message leads to cer-
tain behavior. For example, the expression Draw() —
Subject — GetValue() specifies that each View, on re-
ceipt of a Draw() message, is required to behave in a way
which leads to the sending of a GetValue() message to
Subject.

Causal obligations are the essential feature of behavioral
compositions. Through them we can infer that sending
Subject the Notify() message will lead to the sending of
a Update() message to each View. Each View, upon re-
ceipt of an Update() message, is required to behave in a
way which leads to the sending of Draw() to itself. The
View is then required behave in way which leads to the
condition View reflects Subject.value! becoming true.
Thus the contract, via the causal obligations, makes ex-
plicit the behavioral dependency between Subject and
each View.

Participants in behavioral compositions often cooperate
to maintain some invariant. However, during execu-
tion, this invariant can become false, requiring its re-
satisfaction. The invariant along with the actions which

lreflects is some predicate over values of variables of Subject
and View, the details of which do not concern us here.
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lead to its satisfaction appears in the the contract in
the invariant section. For Subject View, the expression
Subject.SetValue(val) preceding the +— symbol signi-
fies the action that will lead to the satisfaction of the
invariant “for each View in Views, View reflects Sub-
ject.value”.

Finally, the instantiation statement specifies that to
initiate this contract between a set of View objects and
a Subject object, the methods AttachView() and SetSub-
ject() must be executed with the appropriate arguments.

Contracts are defined in a high-level language which al-
lows abstract description of behavior in terms of ordered
sequences of actions to be performed and conditions to
be made true. The language only supports the actions of
sending a message, denoted by P — M, and the setting
of an instance variable v, denoted by Av. The order-
ing of actions can be explicitly given by the operator
“» an if-then-else construct, or be left unspecified by
the operator ||. The language also provides the construct
{ov:c:e)for the repetition of an expression e separated
by the operator o for all variables v which satisfy ¢. For
example (||v: v € Views : v—Update()) from Notify()
above, which should be read as for vy, vq, v3, ... € Views,
v; — Update()|jv; — Update()|lva — ... . Conditions
which participants are obliged to make true appear in
parentheses {...} and are expressed as logical formula
over the signatures of participants.

Note that each participant can refer to other participants
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in the contract. For example, in the Notify() body, mes-
sages are sent to Views and in the Draw() body a mes-
sage is sent to Subject. The contract does not specify
how these objects come into the scope of the action bod-
ies. We assume that each participant maintains a local
reference to each of the other participants. How such a
reference is resolved, via an instance variable, parameter
or global data structure is left to the implementation.

2.1 Contract Refinement and Inclusion

Contracts provide constructs for the refinement and in-
clusion of behavior defined in other contracts. Refine-
ment allows for the specialization of contractual obliga-
tions and invariants of other contracts. Inclusion allows
contracts to be composed from simpler contracts. These
constructs provide two distinct means to specify complex
behavioral compositions in terms of simpler ones.

2.1.1 Contract Refinement

Contracts are refined by either specializing the type of a
participant, extending its actions, or deriving a new in-
variant which implies the old. Refinement of a contract
essentially defines a more specialized behavioral compo-
sition. Refinement is expressed in a contract by the re-
fines statement. Obligations which are refined in a con-
tract, override those from the contract identified in the
refines statement. All other obligations are inherited
from this contract.

Consider the contract ButtonGroup in Figure 3 which
specifies how a ‘Radic Button’ collection might be im-
plemented. Each button in the collection independently
reflects the value of the current setting, which we call the
State. Depending whether or not the value represented
by a button equals that of the State, the button would
be visually represented as ‘on’ or ‘off’. The relationship
between the State and each button is basically a Sub-
ject View relationship refined with the semantics specific
to radio buttons, i.e. only one button can be on at any
time and each button represents a distinct value.

Contract ButtonGroup refines contract SubjectView in a
number of ways. Firstly, the definition of Update() is
more specific than and overides that in SubjectView. A
call to Update() will still lead to a call to Drawy(), as
prescribed in Subject View, however other methods, spe-
cific to radio button semantics, are called in between.
Secondly, additional obligations, for example the new
method Select(), are required. Thirdly, the instanti-
ation clause has also been extended by a precondition
on the set of buttons. This ensures that each button
in the set represents a unique value and thus only one
button is “on” at a time. Lastly, the invariant implied
by ButtonGroup implies that specified in Subject View,
but includes more conditions. Participant State inherits
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all its obligations from Subject in Subject View. They are
not refined further in ButtonGroup.

Specialization of behavioral compositions appear to be
common in practice. Consider a contract ParentChild
where a Parent window cooperates with a collection of
Child windows to ensure that at all times the Parent
displays an arbitrary layout of its Child windows. Possi-
ble specializations of contract ParentChild could require
that all Child windows be enclosed in their Parent. Fur-
ther specialization could require that all children be laid
out vertically. Note that in contrast to the usual notions
of specialization via sub-classing or sub-typing, special-
ization of behavioral compositions involves the obliga-
tions of multiple participants, which are specialized in
concert.

2.1.2 Contract Inclusion

Often, the behavior of a subset of the participants in a
complex behavioral composition may itself be described
in terms of simpler compositions. The specification of
this decomposition is expressed by including sub-contracts
in a contract definition. These sub-contracts are denoted
by the include statement which identifies a subset of a
contract’s participants and how they participate in the
sub-contract. Participation in a sub-contract imposes
additional obligations on participants over and above
those defined in the contract. Rather than rewriting
these obligations, they are implied by the included sub-
contract. The instantiation and invariant clauses of
a contract with sub-contracts are formed from the union
of the corresponding statements from the sub-contracts.

Consider the behavioral composition, illustrated in figure
4, where an Adjuster, say the UpMover object, coordi-
nates with a Viewer to display a portion of a Picture.
A Perspective object is responsible for controlling which
portion of the Picture is visible in the Viewer at any
given time. Therefore, when the value of the Perspec-
tive changes, after being acted upon by the UpMover,
the Viewer must be updated. The relationship between
the Perspeciive and the Vieweris exactly that between a
Subject and a View in the contract SubjectView. Clearly
we wish to exploit this similarity by including the behav-
ior defined by Subject View as part of some more complex
behavior.

The contract AdjustView in Figure 5 defines this behav-
ioral composition. It is composed from sub-contracts
SubjectView and a new contract PareniChild. The lat-
ter defines a behavioral dependency between a Parent
graphical object, a window say, and the layout of its
Child components,i.e. its sub-windows. It is defined in
section 3.

Contract AdjustView captures the following behavioral
dependencies amongst its participants. When the Ad-
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contract ButtonGroup
refines

SubjectView(Views = Buttons, Subject = State)

State supports [ ]

Buttons : Setof(Button) where each Button supports |

myvalue : Value
chosen : Boolean

Select() — State—SetValue(myvalue)
Refresh() — Draw()

Update() — if State—GetValue() = myvalue then

Choose() else UnCoose()

Choose() — Achosen {chosen = true}; Refresh()

UnChoose() +— Achosen {chosen = false}; Refresh()

invariant

Button.Select() — (Vb : b € Buttons : b.chosen & b.myvalue = State.value)A

(3% : b € Buttons : b.chosen)

instantiation

{Vb1,b : by, by € Buttons : by # by = by .myvalue # by myvalue}A
{3!b : b € Buttons : b.myvalue = State.value}
(Il b: b € Buttons : State—AttachView(b) || b—SetSubject(State) )

endcontract

Figure 3: Contract ButtonGroup

Juster receives an Activate() message, it changes its ad-
justment accordingly. This adjustment is passed to the
Viewer via the Adjust() message. The Viewer computes
a new value for the Perspective based on the total shape
of the Picture and the adjustment, and then calls No-
tify(). The inclusion of the Subject View contract implies
the Viewer is a View of Perspective. It thus receives
an Update() message, whereupon it calls Draw() on it-
self. The SubjectView sub-contract implies the invariant
Viewer reflects Perspective.value.

At this high level of specification we are not concerned
with the precise details of the adjustment update or the
function used to compute the new value of the perspec-
tive (denoted by fcn). These details would be filled in
during further design refinement or left until implemen-
tation.

The mechanisms of inclusion and refinement can be sim-
ply combined when needed. Figure 6 defines the con-
tract Adjust ViewWithFeedback, which is a refinement of
contract AdjustView extended with the new obligations
that the Adjuster also reflect the current value of the
Perspective. For example, a Scrollbar elevator reflects
the position of the currently visible portion of a picture
with respect to the total size of the picture (see Figure
4). This extended behavior can be specified by includ-
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ing a SubjectView contract between the Perspective and
Adjuster. A result of this specialization is that Adjuster
must now support Update() messages.

3 Contract Conformance : Satisfying
contractual obligations

Contracts are defined independently of classes. How-
ever, class implementations must ultimately be mapped
to participant specifications. This mapping is specified
through conformance declarations.

A conformance declaration is a specification (ideally ver-
ifiable) of how a class, and thus its instances, supports
the role of a participant in a contract. It describes the
variables and methods the class provides to the role.
Abstractly, a conformance declaration contains a set of
bindings of the form a : ¢ « b : 7, which maps an iden-
tifier b of type 7 defined in a class, to an identifier a of
type o in a participant. In our examples, class identi-
fiers are always mapped to identically named participant
identifiers (though this need not be the case in practice)
and the explicit detailing of the mapping is omitted.

Intuitively a class conforms to a participant definition
in a contract only if its methods and instance variables
satisfy both the typing and causal obligations required
by the participant definition. However, in defining con-
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contract AdjustView
Viewer supports |

Adjust(a:Adjustment) — Perspective—SetValue(fcn(Picture—getShape(),a))

Adjuster supports [
a : Adjustment
Attach(v:Viewer) — {Viewer = v}
Activate() — Aa; Viewer —Adjust(a)

Perspective supports [ ]
Picture supports |
shape : Shape
getShape() : Shape ~ return shape

includes

SubjectView(Views = {Viewer}, Subject = Perspective)
ParentChild(Children = {Picture}, Parent = Viewer)

instantiation
Adjuster —Attach(Viewer)
end contract

Figure 5: Contract AdjustView

Picture
UpMover
view
\/\ L B Scrollbar
R e
DownMover

SubjectView

4————

Perspective

T

Figure 4: Adjusters and Views

tract conformance we must allow for the fulfillment of
these obligations to be distributed among the implemen-

tations of an abstract class and its subclasses. This is

accomplished by declaring explicitly in a conformance
declaration which obligations are fulfilled by the imple-
mentation of the abstract class, what is implemented
in the subclasses, and what relationships exist between
the implementations, if any. This aspect of conformance
declaration is crucial for class reuse.
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contract AdjustViewWithFeedback
refines AdjustView
includes
SubjectView(Views = {Adjuster},
Subject = Perspective)
end contract

Figure 6: Contract AdjustViewWithFeedback

Conformance declarations are an important part of the
documentation of an application. A complex class may
conform to participants in multiple contracts. This re-
sults in a large number of methods in its public interface.
The conformance declarations factor this large interface
into meaningful related subsets. For example, in the
InterViews[18] library, class Interactor which has over a
100 methods, conforms to the participants of many con-
tracts including View in contract SubjectView and Child
in ParentChild.

3.1 Example: Graphical composition

To illustrate how conformance declarations can describe
the distribution of a participant’s implementation along
an inheritance hierarchy, we use the contract ParentChild
(Figure 7) and associated conformance declarations.
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class Scene conforms to Parent in ParentChild
Scene supports
Change(c:Child) ~ if propagate then
DoChange(c) else Rearrange() ;
Reshape();
Reconfig();
Place(c:Child, loc:Location);
requires subclass to support
Rearrange();
DoChange(c:Child) — Reconfig();
end conformance

Figure 8:

Contract ParentChild> defines a behavioral composition
where a Parent graphical object, say a window, cooper-
ates with a set Child graphical objects, say sub-windows,
to manage their respective layouts, shapes and display.
One aim of this contract is to ensure that the Parent
shape always reflects the shape of its Children by en-
larging its shape, or rearranging or reshaping its chil-
dren. Note that for purposes of this exposition, we have
only presented that portion of ParentChild relevant to
maintaining the relative shapes of the Parent and Chil-
dren.

In the InterViews class library, graphical composition
objects are members of the abstract class Scene. The
conformance declaration in Figure 8 specifies that Scene
conforms to the Parent participant in the contract®. The
methods that Scene implements are listed in the declara-
tion. However, this declaration makes it clear that Scene
is an abstract class, and does not conform completely to
the role of Parent. Firstly, the implementation of the
Change() method does not fully conform to the obliga-
tion defined in the contract. The call to Reconfig() is de-
ferred, via DoChange(), to the implementation of Scene’s
subclasses. When an implementation does not fully con-
form to the specification, the differences are described
in terms of the original specification. This makes ex-
plicit the inter-class dependencies between subclass and
abstract class in the context of the contract.

Secondly, subclasses of Scene customize the graphical
layout of their children. Class Deck places its compo-
nents one on top of the other, while class Boz places its
components one alongside the other. To allow for this
flexibility, the implementation of Rearrange() function is
deferred from Scene to its subclasses.

2This specification is a simplification of the complex behavioral
relationship between classes Interactor and Scene in InterViews
2.6.

3For clarity, we have slightly renamed and simplified the details
of the conformance of Scene as implemented in InterViews.
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class Box conforms to Parent in ParentChild

inherits from Scene;

Box supports
Rearrange() —

(llc: ¢ € Children: PlaceElement(c));

DoChange();

requires subclass to support
PlaceElement(c:Child) — Aloc; Place(c, loc);

end conformance

class VBox conforms to Parent in ParentChild
inherits from Box;
VBox supports
PlaceElement(c:Child);
end conformance

Figure 9:

The conformance of the Boz subclass is described in
Figure 9. It has implementations for all the methods
required by the Parent participant. Some of these are
inherited from Scene, and others, including Rearrange()
and DoChange(), are implemented locally. However, as
with Change(} above, the implementation of Rearrange()
does not fully conform to the specification. This is be-
cause Boz is itself an abstract class. The component lay-
out and placement algorithm is deferred to the concrete
subclasses, HBoz(horizontal layout) and VBoz{vertical
layout). These classes are required to implement PlaceEle-
ment() to accomplish this task. Finally, the last declara-
tion in Figure 9 declares that the class VBoz completely
conforms to the role of Parent in the contract. Thus
the implementation of Paerent is spread over these three
classes (Figure 10).

Understanding the implementation dependencies between
abstract classes and their subclasses is central to the
successful use of application frameworks. Frameworks
such as Choices [5] for operating systems, InterViews[18]
for user interfaces, Unidraw[23] for graphics editors and
MacApp [1] for Mactintosh applications, are libraries
of classes which implement skeleton portions of appli-
cations which can be fleshed out to build a particu-
lar application. The skeletons are typically customized
by subclassing particular abstract classes and providing
the required implementation in the new subclass. How-
ever, it has been our experience that it is often difficult
to identify which abstract class to subclass and which
method to override, when customizing a particular be-
havior. Detailed knowledge of the library implementa-
tion is required.

We have identified many examples of behavioral compo-
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contract ParentChild
Parent supports |
shape : Shape
propagate : Boolean

Reconfig() — {shape = (+c : ¢ € Children : c.shape)}
Change(c:Child) = if propagate then Reconfig() else Rearrange()
Reshape(s:Shape) — Ashape {shape = s}; Rearrange(); Reconfig()

Rearrange() ~ (|| ¢ : ¢ € Children :

Aloc; Place(c,loc) )

Place(c:Child, loc:Location) ~— ¢—SetLocation(loc)

Children : Set(Child) where each Child supports [

shape : Shape;
location : Location;

Reshape(s:Shape) — Ashape {shape = s} Parent—Change(self)

SetLocation(loc:Location) — {location = loc}

]

Invariant

Parent.Reshape() V Child. Reshape() — {Parent.shape = (+c : ¢ € Children : c.shape)}

end contract

Figure 7: Contract ParentChild

Participant Class
Specification Implementation
Scene
Parent
Box
VBox

Figure 10: Conformance to Parent

sitions in InterViews and Unidraw and expressed them as
contracts. It is our view that the abstract behavior rep-
resented by an application framework should be formally
described in terms of contracts. This would provide the
application builder with a vocabulary with which to de-
scribe their application. The classes implemented by the
framework should be described in terms of conformance
declarations which relate the library implementation to
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the associated behavior. As illustrated by the above ex-
ample, the conformance declarations will also show the
hooks for customization. We believe that the contract
approach will greatly assist in the understanding and use
of these “White Box” frameworks.

Note that causal obligations specify the minimum ac-
tions required by the contract to be performed in some
method implementation. Typically, a method implemen-
tation may implement more than required by the con-
tract. Indeed, the same method implementation may
conform to more than one action body if the class to
which the method is attached participates in more than
one contract.

4 Contract Instantiation

We have shown how behavioral compositions are speci-
fied by contracts, and how conformance declarations de-
termine the legal types of objects allowed to participate
in a particular composition. What remains to be dis-
cussed is the creation of behavioral compositions within
an application.

Behavioral compositions are created by instantiating con-
tracts. This requires identifying objects as participants
in the desired contract, and then establishing the con-
tract via the methods specified in the contract’s instan-
tiation statement. These methods typically ensure that
participant objects have references to other participants
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and that initial conditions are set up.

We envisage programming language constructs that make
explicit the creation of behavioral compositions via the
instantiation of contracts, rather than calling the meth-
ods of the instantiation statement directly. These con-
structs would have the same name as the contract and
the participating objects would be supplied as param-
eters. The advantage of such constructs is that they
explicitly show the behavioral composition, the objects
involved in it, and where it is established. Qur ini-
tial experience providing such constructs (in the form
of procedure calls) within applications and classes in the
InterViews toolkit suggests that they make for better
and easier understanding of the application architecture.
They facilitate the replacement of objects by functionally
equivalent objects when a change is needed. This con-
trasts with our previous experience where the creation
of behavioral compositions was either hidden inside class

constructors or implicit in certain sequences of method
calls.

As an example of the descriptive power of explicit con-
tract instantiation, consider the partial class definition
of a graphics editor (Figure 11) which has four instance
variables and a function create() which builds the graph-
ical view of the editor. We make extensive use of the con-
tracts discussed earlier and assume all classes satisfy the
obligations of the relevant participants. This example
makes use of a new contract called DirectManipulation,
adapted from [23]. Rather than give its full description,
we give a brief summary, identifying participants in ital-
ics font.

The DirectManipulation contract establishes this behav-
ioral composition between four participants, a Tool, a
Command, a DrawingArea, and a Manipulator. To edit
the picture, the editor provides a number of tools to
manipulate graphical components such as lines and rect-
angles. Each Tool provides a Command, say to move or
create graphical components. To allow for direct ma-
nipulation of the Tool on the DrawingArea, to select
the position and size of a new rectangle for example,
a Manipulator, such as a ‘rubber rectangle’, tracks the
mouse events and updates an appropriate representa-
tion on the DrawingArea. When the desired size and
shape have been selected, the Tool uses the information
in the Manipulator’s state to execute the Command on
the DrawingArea.

In Figure 11, binding of objects of particular participants
is implicit in the ordering of objects in the instantiate
statement. This ordering is given as a comment at the
top of the figure.

Some of the relationships created by this class are given
by the dashed lines in Figure 12 where DM, SV, AV,
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and AVF stand for DirectManipualtion, Subject View, Ad-
justView and AdjustView WithFeedback respectively. Of
course, in practice, there would exist many more behav-
ioral compositions defined by this class: not only those
which provide the full functionality of the editor, but
also many based on PareniChild and its specializations
to lay out all the graphical objects.

Picture

Tool
UpMover
Viewer

E ..... ug O Pqrspective
bl » ill- ‘Illl e
| i Qi

‘.‘
‘.'
: ' AV,
W
‘ DownMover
sv.
Y

Figure 12:

The contracts define the building blocks of the appli-
cation domain. The explicit instantiation of contracts
clearly show which blocks are being used to build a par-
ticular application. The important object relationships
are visible directly in the application code. We believe
that this approach leads to easier application develop-
ment and maintenance.

5 Conclusion

We have presented contracts for the abstraction, com-
position and specialization of behavioral compositions.
Through conformance declarations we explicitly state
how a class and possibly its subclasses support the role of
a participant, and through contract instantiation make
explicit the creation of behavioral compositions. We
have described how these features each contribute to pro-
gram design, understanding, maintenance and reuse.

We are currently building on the ideas presented in this
paper in the areas of formal theory, language support,
design methodology and tools. We are developing a for-
mal semantics of the contract construct and a formal
correctness criterion to check conformance declarations
at compile time. The latter is based on extended def-
initions of type and type conformance which allow for
causal obligations. We envisage direct programming lan-
guage support for the definition and instantiation of con-
tracts and the monitoring of contract invariants.
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// SubjectView(Subject, View)
// AdjustView(Viewer, Picture, Adjuster, Perspective)

// AdjustViewWithFeedBack(Viewer, Picture, Adjuster, Perspective)
// DirectManipulation(Tool, Manipulator, DrawingArea, Command)

class EditorFramework has parts
picture : PictureView;
frame : ViewPort;
pictureData : PictureData;
perspective : Perspective;

void create() {

instantiate AdjustView(frame, picture, new UpMover, perspective);
instantiate AdjustView(frame, picture, new DownMover, perspective);
instantiate AdjustViewWithFeedBack(frame, picture, new VScrollbar, perspective);

instantiate SubjectView(pictureData, {picture});

instantiate DirectManipulation(new RectTool, new RubberRectangle, picture, new NewRectCommand);
instantiate DirectManipulation(new LineTool, new RubberLine, picture, new NewLineCommand)

end class EditorFramework

bl

Figure 11:

Behavioral compositions provide a rich, high-level vo-
cabulary for design which shifts emphasis away from
classes and implementation details, to interactions be-
tween objects. We call this paradigm shift Interaction-
Oriented design. In Interaction-Oriented design, interac-
tions between objects are first class entities in the design
space. Our experience in using contracts for the design
of a number published problems, the Car Controller[24],
Data-Logging Buoys[4], suggest that this shift of empha-
sis greatly facilitates the early identification and abstrac-
tion of patterns of interaction between objects and their
reuse. Design then becomes a two-step process. Firstly,
behavioral compositions are defined via contracts. Then
contracts are factored into class definitions and hierar-
chies via conformance declarations. With Interaction-

Oriented design, the specification of a class becomes spread

over a number of contracts and conformance declara-
tions, and is not localized to one class definition. This
Interaction-Oriented approach to the design of object-
oriented systems will be the subject of a forthcoming
paper([10].

Our experience also suggests that a lack of a suitable
vocabulary for expressing behavioral compositions can
lead to non-optimal programming techniques where, for
example, many spurious classes are created. A repre-
sentative example we have encountered is when a pro-
grammer, who did not fully understand the behavioral
compositions in InterViews, subclassed a VerticalScroll-
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bar class to provide an additional UpMover and Down-
Mover. This subclass is totally unnecessary. Equally
unnecessary was their next attempt which involved the
new class VerticalScrollbar WithMovers which contained
the VerticalScrollbar, UpMover and DownMover as in-
stance variables. As we have seen in the editor frame-
work, exactly the the same functionality can be achieved
through instantiating behavioral compositions based on
AdjustView and AdjustViewWithFeedback. Building ap-
plications from behavioral compositions via the instan-
tiation of contracts is a form of reuse which contrasts
with those based on “buying” or “inheriting” behavior
discussed in [22].

Application frameworks[12], such as Unidraw, define do-
main specific application skeletons in terms of interac-
tions, that is behavioral compositions, between abstract
classes. It is evident that achieving wide applicability for
a framework is difficult as it requires careful class and in-
terface design. It is also evident from recent published
examples, for example InterViews and Unidraw, that the
behavioral dependencies involving multiple classes, such
as those defined by DirectManipulation, are an impor-
tant part of application frameworks. Behavioral com-
positions expressed via contracts, provide a means to
describe and specify these relationships and factor out
some of this complexity. The examples of contracts in-
troduced in this paper essentially provide a vocabulary
for the design of window based application frameworks.
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This Interaction-Oriented approach to design is currently
being investigated in Sculptor, a reuse assistant for win-
dow based interfaces9]. In Sculptor, portions of appli-
cation designs are expressed abstractly in terms of pre-
defined behavioral compositions. Once an abstract de-
sign is completed, each participant is required to par-
ticipate in a number of different contracts. This con-
strains the set of candidate classes which can implement
that participant. This information, along with that in
conformance declarations, is used to help retrieve candi-
date classes from a class repository which can be reused
as “Black Boxes”, or if there are none, abstract classes
which can be reused as “White Boxes”.

Constructs to express behavioral composition are being
incorporated into the Demeter [14] [17] language which
currently provides high level constructs for structural
composition. The Demeter CASE system provides a pro-
gramming language independent development environ-
ment for object-oriented software. This system is being
extended to support continued system development and
maintenance [15] [16]. The contract mechanism provides
essential information about inter-class dependencies and
module coupling which is needed for these extensions.
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