PCLOS: Stress Testing CLOS

Experiencing the Metaobject Protocol

Andreas Paepcke
Hewlett- Packard Laboratories
1501 Page Mull Rd.
Palo Alto, CA 94504
paepcke@hplabs.hp.com

Abstract

This paper demonstrates that the CLOS metaobject pro-
tocol approach to defining and implementing an object
model is very powerful. CLOS is an ob ject-oriented lan-
guage that is based on Common Lisp and is in the pro-
cess of being standardized. Implementations of CLOS
are themselves object-oriented with all major building
blocks of the language being instances of system classes.
A metaobject protocol provides a framework for CLOS
implementations by specifying the hierarchy of these
classes and the order and contents of the communi-
cation among their instances. This design has made
CLOS both flexible and portable, two design goals that
traditionally conflict. In support of this suggestion we
present a detailed account of how we added object per-
sistence to CLOS without modifying any of the lan-
guage’s implementation code.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1990 ACM 089791-411-2/90/0010-0194...41.50

194 ECOOP/OOPSLA '90 Proceedings

1 Introduction

We will begin this paper with some introductory
thoughts about the problems of building systems that
are both flexible and portable. This will be followed by
the suggestion that CLOS, a new object-oriented pro-
gramming language, exemplifies a solution to the appar-
ently irreconcilable conflict between the design goals of

flexibility and portability.

‘This claim is then supported with a detailed, nuts-and-
bolts account of some of the author’s efforts to build
PCLOS [1, 2]. The PCLOS system adds database-
independent persistence to CLOS objects and intro-
duces recovery into the language. That account will
be limited to those aspects of the design that made ex-
tensive use of the CLOS Metaobject protocol (MOP)
mechanism. This mechanism defines the internal static
structure of the language, as well as the dynamic, run-

time behavior. It makes it possible to mold the lan-

October 21-25, 1990

guage’s object model and implementation to a very high

degree.

This detailed account requires some prior introduction
to CLOS, the metaobject protocol and PCLOS. Sec-
tion 2 therefore introduces enough material about the
CLOS language itself that the following section on the
metaobject protocol can be understood. Section 4
serves a similar purpose, in that it introduces enough
information on PCLOS that the following section on
the manipulation of the CLOS metalevel for its imple-
mentation can be understood. Reference [1] describes
PCLOS in more detail. Reference [2] discusses the PC-
LOS design and uses it to explain some issues involved

in object persistence.

It is generally agreed that the software component of
our systems needs to change over time. The frequency
and extent of change differs for the various system com-
ponents. In particular, it tends to be different for
databases and their management systems on one hand,
and application programs and their environment on the

other.

All of our efforts in maintaining flexibility to accommo-
date this change are affected by what have been fun-
damental tensions in the design of systems. Figure 1

illustrates this problem.

Ideally we would have our systems be both portable and
flexible at the same time. Unfortunately, these goals
are generally in conflict with each other. Designing for
portability leads us to constraining systems to ensure
the ability of mapping onto the weakest targets. The
final stage of this tendency is usually standardization.
This is contrasted by the tendencies induced by the
flexibility goal. This goal will tend to push the design
towards expansion, towards open, highly customizable
systems. Instead of standardization, the goal of flexibil-

ity has a randomizing effect.

October 21-25, 1990

But a reconciliation of the conflicting design goals of
flexibility and portability can be achieved. The solu-
tion is based on the realization that if the mechanisms
for changing a portable system are themselves part of
that system, then the ideosyncrasies of disparate design

instantiations will port along with the system.

CLOS is a full-scale attempt to reconcile portability and
flexibility. Its implementation is the focus of the more

specific, detailed remainder of this paper.

2 Some CLOS Facts

This paper cannot provide an in-depth tutorial of
CLOS. Reference [3] is the ‘official’ reference for the
CLOS programmer. It explains the concepts and con-
tains manual pages for all the built-in operations. Ref-
erence [4] is an excellent introduction with a good bal-
ance between formal and informal presentation. It also

contains many useful examples.

CLOS consists of the standard Common Lisp [5] with an
object model added to it. We now outline the central
concepts in just enough detail to prepare for a subse-

quent look at the insides of the language.

2.1 Generic Functions and Methods

Like other object-oriented languages, CLOS features
late binding of procedure names to pieces of executable
code. This dynamic dispatch is done through so-called
generic functions which are CLOS’ way of “sending mes-
sages to objects”, a concept that is in one form or other

common to all object-oriented programming languages.

Generic functions, when called, will examine the classes
of the arguments passed in the call. Based on these
classes they will transfer control to an appropriate body
of code which is called a CLOS method.

ECOOP/OOPSLA '90 Proceedings 195

v

Standardize

System Conflict

Portability versus Flexibility
Constrain versus Expand

versus Randomize

v

Figure 1: Tensions in System Design

2.2 Method Combination

In addition to class-sensitive method selection, CLOS
allows the programmer to specify “roles” for methods.
These roles will also impact the chain of events that
comprises. the execution of a generic function. Some
roles are predefined in CLOS, new ones may be specified

by CLOS programmers.

Two of the built-in roles are called :before and :after
methods. They are supplied with CLOS because they
cover the frequently needed case of having some pieces
of code run before or after some primary method. Ex-
amples are preparation and cleanup for file access ac-
tivities, initiating output of diagnostic messages during
debugging sessions, or primary method access restric-

tions.

Selecting and running the methods with different roles

196 ECOOP/OOPSLA '90 Proceedings

in the correct order is called method combination.

3 The CLOS Metaobject Proto-
col

The CLOS language consists of five major concepts:

e Classes

e Slots

Generic functions
Methods

Method combination

Classes contain the descriptions of instance structure
and behavior. Slots! are the ‘containers’ of data in an

instance and hold administrative and other information

1Slots are often called instance variables in other object
systems. :

October 21-25, 1990

about that data. Generic Functions are the mecha-
nism through which run-time, class-sensitive dispatch-
ing is accomplished. Methods are pieces of code which
are associated with generic functions and contain the
code the generic functions will dispatch to. Method
combination, finally, enables CLOS programmers to
structure and augment the execution of methods in use-

ful ways.

The CLOS metaobject protocol describes the design of
the operations and interactions of these five building
blocks in an object-oriented fashion. Its purpose is to
clearly define the semantics of the language in a stan-
dard that allows significant, yet portable changes to it.
The protocol is documented in [6, 7] and we now present

a simplified summary of its important pieces.

Since the building blocks are implemented as an object-
oriented program, their implementation is specified by
a collection of classes referred to as metaobject classes.
The metaobject class that describes CLOS classes is
sometimes called a metaclass. Instances of metaobject
classes are called metaobjects and the details of the com-
munication among these are called protocols. The CLOS

metaobject protocol therefore consists of:

1. Public hierarchies of metaobject classes whose in-
stances implement the five building blocks of the
CLOS language.

2. A public protocol which describes when metaob-
Jects are created, which messages must pass be-
tween them, and which parameters are to be used.

Given this information, a systems programmer may rad-
ically extend or modify CLOS by subclassing metaob-
ject classes and by selectively shadowing methods that

operate on their instances.

Note that subclassing and shadowing at the metalevel
does not require any modifications of existing system
code or even access to system sources! These mech-

anisms are thus non-intrusive and will work on any

October 21-25, 1990

proper CLOS implementation. This, together with the
fact that the meta-level of CLOS is intended to be stan-
dardized, is the reason why far-reaching modifications

or extensions to CLOS are portable?.

Figure 2 illustrates the relationship between the
metaobject protocol, the CLOS language and a pro-
grammer. For the programmer, the concepts of the lan-
guage are fundamental entities whose behavior is laid
down in the CLOS manual. In reality, these entities are

instances of classes at the metalevel.

In addition to portability, this has many advantages for
systems programmers: the object-oriented design car-
ries with it all of the positive effects associated with the
paradigm. In addition, the ability of objects to provide
information about themselves through well-defined in-
terfaces makes it trivial for an expert to cleanly learn
‘systemy’ details about an application’s classes and their

methods or slots.

In order to work with the MOP to modify CLOS, a
systems programmer must, of course, understand the
object-oriented language that is used at this metalevel
to define metaobject classes, to instantiate them and to
send messages among their instances. It is a very elegant
twist that this language is itself — CLOS. After some
bootstraping, the language in which CLOS implemen-
tations are written is therefore CLOS. This approach
of using the product of a system’s implementation to
construct that very product is called metacircular. The
metacircularity of CLOS is very useful because it implies
that a systems programmer does not need to learn a new
language, and that CLOS proficiency may be leveraged

for metalevel comprehension and programming.

We now present an example of using the metaobject

protocol for a non-trivial modification and extension of

2The standardization is not yet complete. This paper is there-
fore based on a snapshot of the standard.

ECOOP/OOPSLA '90 Proceedings 197

Eﬂetalevel Programmingj

CLOS

Produces

4

Generic

Function |Slot

Method

Method

Class |combination

t

ECLOS ProgrammeU

Figure 2: Metalevel Programming Produces the CLOS Language

CLOS. This example is PCLOS, a system that makes
CLOS persistent on a variety of data stores, and which

introduces recovery and queries into the language.

4 A Quick PCLOS Overview

This section very briefly introduces PCLOS. We include
only aspects that are necessary to understand the mate-

rial in section 5 on the details of integrating persistence
into CLOS.

PCLOS is an experimental system that allows CLOS
objects to persist beyond the Lisp session that created
them. This is accomplished by mapping CLOS objects
into information that is stored in a database or ob-
Jject server. It is possible for objects to be stored in

one of several different databases of which PCLOS cur-

198

ECOQP/OOPSLA ‘%0 Proceedings

rently supports three. Figure 3 shows a top-level view
of the PCLOS architecture. This architecture is general
enough to accommodate several different languages, but

we have so far worked exclusively with CLOS.

The layer between the databases and the programming
language provides the insulation that is needed for mak-
ing the system database-independent. It is called the
virtual database layer because it provides a data model
onto which the objects of the programming language are
mapped. Separate mappings are then provided from the
virtual database onto each of the databases to be sup-
ported. In particular, schemas are automatically gen-
erated to reflect the language-level class structure, and
slot access and queries are translated into operations

native to each respective database.

Users express queries in terms of their programming lan-

October 2125, 1990

Language Objects
Implementation

—

Core
Protocol

N—

Protocol
Adapter

Virtual Database

Protocol

Adapter

N

DBMS A

DBMS A
2

DBMS B
1

Figure 3: Top-level View of the PCLOS Architecture

guage. PCLOS then compiles these queries into expres-
sions appropriate for underlying databases. Figure 4

shows an example.

The protocol adaptersin figure 3 make it possible to take
advantage of advanced features of individual databases
which go beyond what is needed to implement the vir-
tual database. Examples of this are richer queries which
might allow multi-valued results, or an ability to define

new operations for an underlying database [8].

PCLOS attempts to provide object persistence trans-
parently whenever possible. This policy has been sus-
pended whenever database-related capabilities other
than persistence were introduced into the programming
language, or when efficiency considerations require pro-
grammer knowledge. Examples of the former are trans-

actions and queries, an example of the latter is the dec-

October 21-25, 1990

laration of individual slots to be transient.

5 PCLOS and the MOP

In this section we show how the metaobject protocol has
been used to build PCLOS without any modification to
the system code. Language-internal manipulations are

necessary to satisfy the following requirements:

o Access to instance slots must be intercepted so

that values can be retrieved from or written to the
databases.

e Some persistence-related information must be kept
with each instance.

o Class hierarchies and the details of individual
classes must be inspectable so that correct schemas

can be generated for the various databases and
queries over CLOS objects can be translated to
database-specific queries.

e Access to all aspects of individual instances is re-
quired for the implementation of state rollback.

ECOOP/OOPSLA '90 Proceedings 199

(defclass BRIDGE-PLAYER ()
((name :initform "")
(age :initform 0))
(:metaclass pclos-class))

;3 Find all instances of CLOS class BRIDGE-PLAYER which are

;; named "Fred" or are older than 30:

(find-all <db-representative>
’BRIDGE-PLAYER
‘{or
(= name "Fred")
(> age 30)))

Figure 4: PCLOS Queries Specified in Terms of CLOS Classes

All of these requirements impact exclusively the part
of the MOP that is concerned with the definition and
manipulation of classes. We therefore describe this part
of the MOP in more detail. Please note again that we

simplify some irrelevant aspects.

5.1 Metaclasses

In this section we examine in some detail how CLOS
class metaobjects are created and manipulated by the
MOP. The modifications that were necessary to satisfy
PCLOS requirements will follow naturally from these

descriptions and will be explained ‘on the way’.

Recall that a CLOS class as defined by a CLOS pro-
grammer is implemented as an instance of a metaclass.

There are five major aspects to a CLOS class:

o The class must be created and initialized.

e Forward references to yet to be created superclasses
must eventually be resolved.

e The class must provide the means to create in-
stances and to access its instances’ slots.

It must be possible to examine all aspects of the
class programmatically.

A class must sometimes be modified.

The following subsections will cover all but the last of

200 ECOOP/OOPSLA '90 Proceedings

these aspects®

Figure 5 shows the path we will take through the process
of defining a CLOS class.

5.1.1 Class Creation

Class creation is triggered when the CLOS programmer
evaluates a defclass statement®. CLOS begins its work
with a call to make-instance on a metaclass. It returns
a metaobject which will eventually hold in its state all
the information that is relevant to the CLOS class being
created. This includes super and subclasses, slots, a

precedence list and more.
PCLOS-specific aspects:

The choice of which metaclass to instantiate for the
creation of a class is the first point at which PCLOS
enters the picture. Classes whose instances will have
the potential of being persistent need to hold informa-
tion about open databases, about which of its slots

are persistent or transient and other relevant mate-

3CLOS does allow existing classes to be modified. The ORION
system [9] handles class redefinition in the context of persistence.
PCLOS does not currently support this.

All operations described in this section may be initiated both
programmatically and interactively. Without loss of generality we
will use the interactive CLOS macros — such as defclass — in all
examples and explanations.

Oclober 21-25, 1990

‘Class’ Metaobject Creation
Superclass Validation
Local Slot Processing

Class Initializ'ation Arguments

Computing the Class Precedence List

Final Slot Analysis

Figure 5: Steps For Defining a Class

rial. Metaobjects that are CLOS classes therefore need
some additional slots beyond those provided in standard

CLOS class metaobjects.

Apart from these structural requirements, persistent

classes will need modified and extended behavior.

PCLOS therefore defines a new metaclass which inherits

from a standard CLOS metaclass but:

e Adds additional slots.
e Shadows some methods.

o Adds some methods.

When a programmer defines a CLOS class whose in-
stances will have the potential of being made persis-
tent, he specifies that his class is to be implemented not
by the metaclass that generates standard CLOS classes,

but by a new metaclass called pclos-class. Figure 6

October 21-25, 1990

shows a small example class hierarchy which we will use

in the following material.

The only difference between a standard class definition
and the one shown in the figure is the specification that
the metaobject which will implement the steam-ship

class is to be an instance of pclos-class.

5.1.2 Superclass Validation

After a class metaobject has been created, its future su-
perclasses are examined to ensure that they are suitable
to be parents of the class being defined. In particular,
the system checks whether all superclasses are of the
same metaclass as the one being defined. In our exam-
ple, this process will check whether class ship also has

metaclass pclos-class.

ECOOP/OQPSLA '90 Proceedings 201

(defclass ship ()
((name :initform ""))
(:metaclass pclos-class))

(defclass steam-ship (ship)
((color tinitform ’red)
(registration :initform "Liberia"))
(:metaclass pclos-class))

Figure 6: A CLOS Class Definition

The CLOS method validate-superclasses imple-
ments superclass validation. The default behavior of
this method is to indicate incompatibility whenever the
metaclass of any parent-to-be is not the same as that of

the new class.
PCLOS-specific aspects:

PCLOS accepts the default behavior and therefore does
not shadow this method. This means that PCLOS
will behave just like the standard CLOS as far as

class/superclass compatibility is concerned.

5.1.3 Local Slot Processing

After the superclasses are validated, the slot specifica-
tions in the defclass statement are checked for errors,
and a metaobject of metaobject class slot-descriptor
is created for each of the slots. Please refer to figures 7
and 8 for a graphical presentation of the following ma-

terial.

Note that at this point only the slots directly specified
for the class being defined are processed. We call these
local slots. The merger with slots inherited from super-

classes happens later.

Each slot-descriptor metaobject holds all relevant
information about the slot it represents. Examples are
the slot’s name, any type limitations for values stored
in it, or how it is to be initialized. The metaobject that

implements the class will contain references to all these

202 ECOOP/OOPSLA '90 Proceedings

slot definition metaobjects.

The creation of a slot-descriptor happens in two
stages: first, the system finds out which metaobject
class the new descriptor is to be an instance of. Then

the instance is created and initialized.
PCLOS-specific aspects:

PCLOS needs to interact with this default behavior in

the following ways:
o Three slots must be added to the standard slot de-
scriptor metaobjects.

e These new slots must be initialized.

e One new slot option must be added to the built-in
CLOS slot options.

Slot descriptor metaobjects for persistent slots must be

made to contain information on:

1. Whether the slot is persistent.
2. Whether its value is currently cached.

3. Whether its value has been saved since the last
savepoint.

PCLOS

metaobject class persistent-slot-descriptor which

defines a new

inherits from the CLOS default slot-descriptor and
adds this information. Here is why the information is

needed.

PCLOS allows individual slots to be transient, even if

an instance as a whole is persistent. This is sometimes

October 21-25, 1990

Metaclasses

CLOS Default Metaclass

PCLOS Metaclass

Metalevel
<= inheritance

Metalevel

f Steam-Ship-Class\

Instantiation

‘Class' Metaobject

Virtual-Table

Program-ievel Steam-Ship
Objects E J

Superciasses (<Ship—Class>)

Slots{<name> <color> <registration>)

—

Program-level
Instantiation

Steam-Shipj

Figure 7: Metaclasses

done to improve efficiency (e.g. loop-counters), for slots
holding values that PCLOS cannot store in databases
(e.g. Common Lisp compiled function objects) or for
slots whose values make no sense across sessions (e.g. a

current window object).

Programmers must therefore be able to specify tran-
sience for slots. This is done through a new slot op-
tion called :transient. CLOS slot options are declara-
tions which may be specified for individual slots when
a class is defined. Examples for built-in options are
‘tallocation’ and ‘:type’. The first allows the pro-
grammer to specify whether the associated slot is to be
shared among all instances of the class that contains
the slot, or whether each instance is to have a private

copy. The :type option restricts the values that may

be stored in the associated slot.

October 21-25, 1990

Figure 9 shows a new version of our steam-ship class

that includes a transient slot.

In order to extend slot option error checking and slot
initialization to include the new :transient option,
PCLOS specializes CLOS’ shared-initialize method
to persistent-slot-descriptor. This new method
takes care of PCLOS-related items but leaves the re-
mainder of the error checking and initialization to the
standard, built-in mechanisms. This is done by explic-
itly invoking the parent method which handles these

affairs for regular, default slot descriptors.

5.1.4 Class Initialization Arguments

After the locally specified slots have been processed
as described above, class initargs are checked for er-

rors. Initargs let the designer of a class specify which

ECOOP/OOPSLA '90 Proceedings 203

Metaobject
classes

/4

CLOS Default Slot Descriptor

PCLOS Siot Descriptor

Metalevel
Q-'-‘ inheritance

“ <& Metalevel

_J

Instantiation
/ ‘Color' Slot-Desc mgistration' Slot-Desc
Type Type
hlﬁo;m ‘red initform “Uiberis®
Poul.stom? Persistent?
Cached? Cached?
\ Saved? Saved?

‘Slot-Descriptor’ Metaobjects

\

Figure 8: Slot Descriptors

(defclass steam-ship (ship)
((color tinitform ’red)
(registration :initform "Liberia')

(current-speed :initform 0 :transient T))

(:metaclass pclos-class))

Figure 9: Example of a Transient Slot

slots may be initialized ‘in-line’ as part of the call to

make-instance on the class being defined.

PCLOS does not need to modify this built-in default

mechanism.

5.1.5 Computing the Class Precedence List

Class inheritance can lead to conflicts among inher-
ited slots and methods which must be resolved before
a new class is put to use. This is done by the method

compute-class~precedence-list which is called with

204 ECOOP/OOPSLA '90 Proceedings

the class metaobject being defined. This method re-
turns a list of class metaobjects in most-specific-first
order. It flattens a multiple inheritance hierarchy into
a linear ordering imposed for the purpose of resolving

name conflicts and selecting methods at run-time.
PCLOS-specific aspects:

Instances of persistence-ready classes must respond

to many persistence-related messages. Examples are

October 21-25, 1990

cache, write-back® or unprotect®. Typically, such
operations would be inherited from some appropriate
superclass that programmers explicitly included in the
inheritance specification of their classes. PCLOS avoids
the necessity of listing such a superclass with every class
specification by ensuring that this superclass automat-

ically becomes the maximal element in the class prece-

dence list.

5.1.6 Final Slot Analysis

Near the completion of a class definition, all con-
flicts between slot specifications must be resolved in
accordance with the previously computed class prece-
dence list. This is done by a method which exam-
ines slot aspects, such as typing, in slots that are de-
fined in several classes. The method then produces
effective-slot-descriptor metaobjects for each lo-
cally defined slot and for the slots inherited from super-

classes.

PCLOS does not need to modify this default mecha-

nism.

After all the above steps have been completed, a newly
defined class is said to be finalized. Finalized classes are

ready to be instantiated.

This review of the class definition process and its mod-
ification on behalf of PCLOS have shown that all
persistence-related needs have been met by simple, ju-

dicious shadowing of metalevel methods.

SThis writes an instance’s slot values to the underlying
database without uncaching it.
6 This causes the instance to no longer be persistent.

October 21-25, 1990

5.2 Inspecting CLOS Language Ele-
ments

We have seen how CLOS internal data structures and
processes can be modified. To attain any degree of per-
sistence transparency, we also need the ability to inspect
many normally unavailable language elements: When
preparing a database for receiving objects to be stored,
PCLOS must, for instance, examine details of the in-
stances and their classes: the list of a class’ slots must
be available to determine how to generate an appro-
priate schema. For the same reason PCLOS must find
out whether a slot is :class or :instance allocated,

whether it is typed and whether it is persistent.

The process of translating queries phrased in CLOS-
like expressions to queries understood by the underly-
ing databases also requires language elements to be in-

spectable.

When objects are cached into main memory, the roll-
back guarantees of PCLOS imply that slot values must
be copied before they are modified for the first time af-
ter a savepoint. This implies that slots must have an
attribute that indicates whether the slot is still ‘clean’
and must therefore be saved before an impending up-
date, or whether it is already ‘dirty’ and has therefore

been saved earlier.

An important implication of the CLOS design is that all
this information may be kept and retrieved in an orderly

and modular fashion. The expression
(find-class <symbol>)

returns the metaobject that implements the class with
the specified name <symbol>. With that class metaob-
ject in hand, all necessary information may be retrieved
through ‘officially sanctioned’ means: a list of all ef-

fective slot descriptors may, for instance, be obtained

ECOOP/OOPSLA '90 Proceedings 205

through
(class-slots <class-metaobject>)

The allocation specification of a slot may be obtained

through

(slot~descriptor-allocation

<slot-descriptor-metaobject>)

5.3 Run-time Operation

There are three sets of activities that relate to run-time

operations and that affect PCLOS:

e Instance allocation and layout.

o Slot access.

o Slot access optimization.

In CLOS the low-level mechanics of reading and writing
slots are imple-
mented by the methods slot-value-using-class and
These

methods are just below the programmer-visible

setf-slot-value-using-class respectively.

slot-value method and are the only means to read or
write slots, except for access optimizations which will

be considered later in this section.
PCLOS-specific aspects:

Figure 10 shows the details of how PCLOS reads a slot
value. The terms C-slots and I-slots in the figure refer

to :class and :instance allocated slots respectively.

This algorithm is implemented in a PCLOS-specialized
slot-value-using-class method. At this level, writ-
ing a slot value is symmetric to slot reading that is
shown in the figure. If an instance is not persistent,
reading immediately proceeds along the standard CLOS

slot access algorithm. Access to both non-persistent

206 ECOOP/OOPSLA '90 Proceedings

instance-private and globally visible slots are roughly

on the order of a vector element read.

Slot access to non-persistent instances therefore suffers
the cost of one conditional branch beyond the default
CLOS implementation. The information necessary to

evaluate that conditional is an in-line vector element
fetch.

A slot value of a persistent instance is memory-resident

under several conditions:

e The slot in question is transient.

e The entire instance is cached.

o The slot is individually cached.

If the slot value is memory-resident, the access continues
as for non-persistent instances. Otherwise a database
query — or update in the case of slot value modification

— Is neccessary to complete the slot access.

Note that some databases themselves cache informa-
tion, so a query may still be reasonably fast, although
of course slower than a vector fetch. PCLOS tries to
take advantage of query compilation on databases that

support such optimizations.

CLOS itself provides a framework for slot access opti-
mization. This enables metaobject programmers to pro-
vide in-line, highly optimized, albeit non-portable slot
access mechanisms based on their knowledge about the
system implementation. PCLOS cannot take advantage
of this capability, because the location of slot values is

generally not known at compile time.

Instance allocation, finally, is accomplished by the
method allocate-instance on class metaobjects.
This method allocates space for the slot values of new
instances and any other slot-related information. Note
that Lisp’s automatic memory management makes allo-

cation much easier than it would be for a language in

October 21-25, 1990

YES

Allocation Allocation Fast Fast

olass class Memory Memory

YES NO YES NO Acoess Aoccess
C~slots }-slots

Fast Fast
Memory Memory
Aococess AoOoes
C-slots j-slots

Detabase Detsbase
Query Query
C-siots slots

Figure 10: Reading a Slot Value

which a programmer himself is responsible for allocat-
ing and managing memory space. Since slot values may
vary in size, such data management will be unpleasant

for those languages, unless they are very strictly typed.

Instance allocation is of interest to PCLOS for two rea-
sons:

e The structure of the allocated space must accom-
modate all of an instance when it is cached.

e PCLOS needs to maintain some per-instance ad-
ministrative information.

Once a PCLOS instance is created either explicitly by
the CLOS call to make-instance, or implicitly because
a database query brought the instance into the current
environment, a husk is created which is the placeholder
for the instance in the current session. When slot val-
ues of an instance reside in a database, the husk con-

tains no useful data, but it looks like a valid CLOS in-

October 21-25, 1990

stance. This is important for making memory-resident
references to the instance work properly”. When an in-
stance is cached, the slot values will be placed in the
husk.

For each memory-resident instance PCLOS must there-
fore maintain information, such as which database the
instance is associated with, whether the instance has
been cached or whether it is dirty. An instance is con-
sidered dirty if its slot values or any of its administrative

information have been modified since it was cached.

PCLOS allocates extra space for this information when-
ever it allocates an instance. This is simply accom-

plished by specializing the CLOS allocate-instance

7When an object reference is stored in a database, the memory
pointer is replaced by a special, database-dependent encoding.
Upon retrieval of the reference, a correspondence is established
between the encoded reference and the current location of the
referenced, memory-resident object husk. If such a husk does not
yet exist, it is created.

ECOOP/OOPSLA '90 Proceedings 207

method for the pclos-class metaclass. An alternative
approach would have been to add ‘hidden slots’ which
were ‘censored’ out of all the public means for describ-
ing and manipulating instances. In the final analysis,

the two approaches are probably equivalent?.

6 Related Work

Two domains of related work suggest themselves as ma-
terial supplementary to this paper. One is CLOS’s ar-
chitectural base in the metaobject protocol approach,

the other is the area of object persistence.

6.1 Language-Related Work

The idea of making seemingly fundamental components
of systems in reality be elements of a meta-level ‘world’

has been explored in various earlier systems.

Like CLOS, Smalltalk [10] includes the notion of meta-
classes. But the concept, though equal in name, is quite
different in the two languages: Each Smalltalk class is
an instance of exactly one metaclass which may only
have that one class as its instance. A class thereby acts
like ‘regular’, program-level objects in the sense that it
responds to messages whose effects are determined by
its (meta)class. In particular, the metaclass controls the
initialization of class variables. It also manufactures the
class’ instances. But in contrast to CLOS, the program-
mer cannot modify metaclasses and use object-oriented

programming at the metalevel to produce special effects.

ObjVlisp [11], which is very similar to CLOS [12], has
worked on introducing a full metalevel class mechanism
into Smalltalk-80 [13]. This has led to a kind of ‘meta-
class workbench’ called Classtalk which helps with the
construction of metaclass libraries and provides a meta-

class browser,

8But I like mine better...

208 : ECOOP/OOPSLA '90 Proceedings

An interesting angle to metalevel architectures is added
by [14] which shows how the principle can be used in

the construction of operating systems.

There is a rapidly accumulating body of literature about
CLOS and its uses. Another report on the use of the
metaobject protocol can be found in [15]. The authors
illustrate how the MOP could be used to implement
concurrency control for shared objects. Their second
example outlines how persistence could be implemented
through metalevel manipulations. This is in several
ways similar to PCLOS, except that their example tar-
gets a single data store and does not concern itself with
transparency. Their final example explains how graphic
objects could be implemented with the CLOS metaob-

ject protocol.

The first and second “CLOS Users and Implementors
Workshops” of 1988 and 1989 are good sources for in-

formation on a wide spectrum of CLOS aspects.

6.2 Persistence-Related Work

A broad survey of language persistence can be found in
[16]. An earlier paper about PCLOS [2] also provides a
long list of references. In this paper we will limit our-
selves to pointing out some research reports that specifi-
cally exemplify different techniques for introducing per-
sistence into programming languages. The main tech-
niques are full integration by modifying the language,
construction of persistence-related mechanisms within
the regular boundaries of the language, and the inven-

tion of a new language.

PCLOS and [17] are examples of full language integra-
tion attempts. They rely on the metaobject protocol
facility for their implementation. Avalon [18, 19] is rad-
ically different in its approach to transparency and in
its C++ affinity, but it also attempts to introduce per-

sistence by modifying a language. This is done through

October 21-25, 1990

preprocessing. Reference [20] in particular, addresses

the issue of language integration.

PS-Algol [21] was an early effort in providing language
persistence. The implementation of persistence was
done by functional extensions to an Algol-like language.
It therefore stayed ‘within’ the language. In [22] the
authors added guidelines for the use of typing to intro-
duce persistence into languages. Reference [23], finally,
examines how procedures may be treated as persistent

data objects, a facility not addressed by PCLOS.

In some ways similar to PS-Algol is the Coral 3 system
[24] which provides persistence for Smalltalk. Although
the respective languages are very different, the approach
of both is to develop some model of persistence and to
implement it without modifying the language. In the
case of Coral 3, an added touch of ‘go with what’s at
hand’ has storage be provided by the file system instead

of using a database.

The GemStone system [25] introduces a new language,
OPAL, to deal with persistence. This can be used as the
sole application language, or it can be used in conjunc-
tion with Smalltalk [26] or C. The advantage of this ap-
proach is that data processing and storage can be tuned
to each other. The disadvantage is that a programmer
must learn a new language to enjoy the full power of the

system.9 .

7 Conclusion

We began with the observation that the tension between
the goals of system portability and system flexibility
may be reconciled by standardizing not only the sys-
tem, but also the mechanisms for introducing — possi-

bly fundamental — modifications. The portability of a

9There are Smalltalk and C interfaces to Opal which can ease
this problem.

October 21-25, 1990

standardized piece of machinery is thereby extended to

cover multiple, different variations of that machinery.

We then put forth the suggestion that the design of the
object-oriented Common Lisp Object System (CLOS)
is an example for the technique of organizing the static
elements and the dynamic processes of a system in such
a way that significant modifications can be accommo-
dated through well-planned, pervasive degrees of free-

dom.

The remainder of the paper was dedicated to supporting
this suggestion by showing how the existing PCLOS sys-
tem adds persistence to CLOS without modifying any
CLOS implementation code.

Such major modification would normally require signif-

icant incisions into the language implementation:

o All slot access must be intercepted, for both reads
and writes.

e Close to all aspects of the fundamental language
elements must be extensively self-describing.

o The representations of basic elements, such as slots
and instances must be extended.

We showed in some detail that CLOS can satisfy all of
these requirements through well-known object-oriented
techniques applied at the CLOS metaobject level: Spe-
cialization of existing classes, shadowing of inherited

methods and the addition of new methods.

PCLOS has shown that the CLOS metaobject protocol
mechanism for implementing a language is very pow-
erful. As the CLOS metaobject protocol continues to
evolve and CLOS is made available on a growing num-
ber of machines, we can look forward to other interesting
applications. We can also hope that these applications
will generate insights and experience that will enable
us to generalize the metaobject protocol idea to benefit

system components other than programming languages.

ECOOP/OOPSLA '90 Proceedings 209

8 Acknowledgments

Credit goes to the Xerox Corporation for making the
PCL implementation developed at Xerox PARC avail-
able to the research community. This availability has
enabled CLOS to benefit from the suggestions of a broad

base of researchers everywhere.

In the early days, Jim Kempf and Roy D’Souza ported
CLOS to our workstations and made many improve-
ments there. While others then had problems with their
ports and the maintenance of CLOS, we were able to get

an early start thanks to their efforts.

My local CLOS co-users who helped to understand, test
and debug the language included Mike Creech, Cathy

Fletcher, Dennis Freeze, and Craig Zarmer.

Users of PCLOS, finally, were of particular value to
me and included the colleagues above, as well as Lucy
Berlin, Vicki O’Day and Bob Leichner. Charles Hoch
and Peter Lyngbaek of the Iris database group at HP-
Labs, finally, helped me to understand and use their
object-oriented database which can be accessed through

PCLOS.

Warren Harris suggested many important improvements

to an early draft of this paper.

210 ECOOP/OOPSLA '90 Proceedings

References

[1] Andreas Paepcke. PCLOS: A Flexible Implementa-
tion of CLOS Persistence. In S. Gjessing and K. Ny-
gaard, editors, Proceedings of the European Confer-
ence on Object-Oriented Programming, pages 374

389. Lecture Notes in Computer Science, Springer
Verlag, 1988.

[2] Andreas Paepcke. PCLOS: A Critical Review. In
Proceedings of the Conference on Object-Oriented
Programming Systems, Languages and Applica-
tions, 1989.

[3] Daniel G. Bobrow, Linda DeMichiel, Richard P.
Gabriel, Gregor Kiczales, David Moon, and Sonya
Keene. The Common Lisp Object System specifica-
tion: Chapters 1 and 2. Technical Report 88-002R,
X3J13 standards committee document, 1988.

[4] Sonya E. Keene. Object-Oriented Programming in
Common Lisp. Addison-Wesley Publishing Com-
pany, 1989.

[6] Guy L. Steele Jr. Common Lisp: The Language.
Digital Press, second edition, 1990.

(6] Gregor Kiczales and Daniel G. Bobrow. The Com-
mon Lisp Object System specification: Metaobject
protocol. Technical Report 88-003, X3J13 stan-
dards committee document, 1988.

[7] Daniel G. Bobrow and Gregor Kiczales. The Com-
mon Lisp Object Ssystem metaobject kernel: A
status report. In Conference on Lisp and Func-
tional Programming, 1988.

[8] D. Fishman et al. Iris: An object-oriented database
management system. ACM Transactions on Office
Information Systems, 5(1):48-69, April 1987.

[9] Jay Banerjee, Won Kim, Hyoung-Joo Kim, and
Henry F. Korth. Semantics and implementation of
schema evolution in object-oriented databases. In
Umeshwar Dayal and Irv Traiger, editors, Proceed-
ings of the ACM Special Interest Group on Man-
agement of Data. Association of Computing Ma-
chinery, 1987.

[10] Adele Goldberg and David Robinson. Smalltalk-
80: The Language and Implementation. Addison
Wesley, 1983.

[11] Pierre Cointe. Metaclasses are first class: The Ob-
jVlisp model. In Norman Meyrowitz, editor, Pro-
ceedings of the Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications.
Association of Computing Machinery, 1987.

October 21-25, 1990

[12] P. Cointe and N. Graube. Programming with meta-
classes in clos. In Proceedings of the First CLOS
Users and Implementors Workshop, 1988.

[13] Jean-Pierre Briot and Pierre Cointe. Programming
with explicit metaclasses in Smalltalk-80. In Pro-
ceedings of the Conference on Objeci-Oriented Pro-

gramming Sysiems, Languages and Applications,
1989.

(14] Yasuhiko Yokote, Fumio Teraoka, and Mario
Tokoro. A reflective architecture for an object-
oriented distributed operating system. In Pro-
ceedings of the European Conference on Object-
Oriented Programming, 1989.

(15] Guiseppe Attardi, Cinzia Bonini, Maria Rosaria
Boscotrecase, Tito Flagella, and Mauro Gaspari.
Metalevel programming in CLOS. In Proceedings of
the European Conference on Object-Oriented Pro-
gramming, 1989.

[16] Malcolm P. Atkinson and O. Peter Buneman.
Types and persistence in database programming
languages. Computing Surveys, 19(2):105-189,
June 1987.

[17] Lawrence A. Rowe. A shared object hierarchy. In
Klaus Dittrich and Umeshwar Dayal, editors, Pro-
ceedings of the International Workshop on Object-
Oriented Database Systems. Association of Com-
puting Machinery, 1986.

(18] Jeannette M. Wing, Maurice Herlihy, Steward
Clamen, David Detlefs, Karen Kietzke, Richard
Lerner, and Su-Yuen Ling. The Avalon/C++
programming language. Technical Report CMU-
(CS-88-209, Carnegie Mellon University, December
1988.

(19] Richard A. Lerner. Reliable servers: Design and
implementation in Avalon/C+4+. In Int’l Symp.
on Databases in Parallel and Distributed Systems.
IEEE, 1988.

[20] David Detlefs, Maurice Herlihy, Karen Kietzke,
and Jeannette Wing. Avalon/C+4: C++ ex-

tensions for transaction-based programming. In
USENIX C++ Workshop, 1987.

[21] M.P. Atkinson, P.J. Bailey, K.J. Chisholm, W.P.
Cockshott, and R. Morrison. An approach to
persistent programming. The Computer Journal,
26(4):360-365, 1983.

[22] M.P. Atkinson and R. Morrison. Integrated persis-
tent programming systems. In B.D. Shriver, editor,
Proceedings of the 19th Annual Hawai: Conference
on System Sciences, pages 842-854, 1986. Vol. IIA,
Software.

(23]

[24]

[25]

[26]

M.P. Atkinson and R. Morrison. Procedures as per-
sistent data objects. ACM Transactions on Pro-
gramming Languages and Systems, 7(4):539-559,
October 1983.

Thomas Merrow and Jane Laursen. A pragmatic
system for shared persistent objects. In Norman
Meyrowitz, editor, Proceedings of the Conference
on Object-Oriented Programming Systems, Lan-
guages and Applications. Association of Computing
Machinery, 1987.

David Maier, Jacob Stein, Allen Otis, and Alan
Purdy. Development of an object-oriented DBMS.
In Norman Meyrowitz, editor, Proceedings of the
Conference on Object-Oriented Programming Sys-
tems, Languages and Applications. Association of
Computing Machinery, 1986.

G. Copeland and D. Maier. Making Smalltalk
a database system. In Proceedings of the
ACM/SIGMOD International Conference on the
Management of Data, 1984.

October 21-25, 1990 ECOOP/OOPSLA '90 Proceedings 21

