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Abstract

Queries in object-oriented databases can return non-
homogeneous sets of objects when no type restrictions
are placed on the inputs to the query. The tradition
has been to force homogeneity on the result by restrict-
ing the types of the inputs. This restricts the range of
permissible, and possibly useful, queries. We propose
a type consistency theory for queries in object-oriented
databases which supports the existence of multiple
types in the query result. The technique is illustrated
by developing type inference rules for an object alge-
bra. The main result is that the loss of type infor-
mation associated with a query operation is reduced
in most cases. We also show how type information
is increased when queries are qualified by conjunctive
predicates.

1 Introduction
An information system can be viewed as a large

database of persistent facts and a collection of appli-
cation programs which are run against this database
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[5]. A common problem in such a system is impedance
mismatch [14] which results from incompatibilities be-
tween the application programming language and the
database query language. An application language is
best suited for specifying operational semantics while
the database language is designed for managing con-
currency and specifying queries.

One approach to this problem is the design of
database programming languages which combine data
definition, flow of control and query constructs in a
consistent syntax [2]. A common requirement, inde-
pendent of any particular language, is that a program
variable be iteratively bound to each element in the
set of objects returned by a query, e.g., portals in [17)
and cursors in [1]. Ideally, a compiler should insure
that this binding is type consistent in order to detect
improper use of data as early during query processing
as possible. This paper presents a set of type inference
rules for queries in object-oriented databases (OODB)
which make such type checking possible.

The topic of this paper is part of our broader re-
search which aims at developing a query processing
methodology for object-oriented databases (Figure 1).
Briefly, the steps of the methodology are as follows.
Queries are expressed in a declarative language which
requires no user knowledge of object implementations,
access paths or processing strategies. The calculus ex-
pression is first reduced to a normalized form by elim-
inating duplicates, applying identities and rewriting
[11). The normalized expression is then converted to
an equivalent object algebra expression. This form of
the query is a nested expression which can be viewed
as a tree whose nodes are algebra operators and whose
leaves represent the extents of classes in the database.
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Figure 1. Query processing methodology

The algebra expression is next checked for type con-
sistency to insure that predicates and methods are not
applied to objects which do not support the requested
function. The next step in query processing is the ap-
plication of equivalence preserving rewrite rules [18] to
the type consistent algebra expression. Lastly, an ac-
cess plan which takes into account object implemen-
tations is generated from the optimized algebra ex-
pression. The scope of this paper corresponds to the
dashed box in Figure 1.

A distinguishing feature of our object model is that
types (classes) inherit behavioral specifications as op-
posed to structural representations, e.g., record types
[6, 7, 8]. This provides the following benefits [9]:

1. a type may have multiple representations and im-
plementations,

2. subtypes may have representations and imple-
mentations which differ from their supertypes,

3. an implementation hierarchy may exist separate
from the type hierarchy [12].

As a result, previous notions of type consistency based
on the existence of record fields is inappropriate. Our
type consistency of queries is based on the notion that
each member of a query result supports a set of type
specifications.

We investigate types and type consistency in the
context of object algebra queries for an object-oriented
database. Operators in the algebra consume and pro-
duce sets of objects which are instances of types in a
type lattice supporting multiple inheritance. Previous
algebras have imposed type restrictions such as union
compatibility [16, 19] on the algebra operators to insure
the type consistency of the result. Union compatibil-
ity states that members of the sets being operated on
must be instances of types which are in a subtype re-
lationship with one another. The type of the result is
the most general supertype of the types involved in the
operation. Such restrictions are too strong and can be
avoided by a notion of type consistency which allows
for multiple types.

For example, what is the objection to taking the
union of a set of Apple objects and a set of Orange
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objects? The result of the union is a set of non-
homogeneous objects in the sense that they are not
necessarily related by type inclusion. The real prob-
lem lies not with the union operation, but with opera-
tors which consume the result of this union and apply
methods to each object therein. We propose a type
consistency theory for object algebra expressions with
multiple types which resolves this issue.

The type consistency theory is developed as a series
of type inference rules for object algebra expressions.
We do not propose a type checking algorithm. Instead,
an algorithm can be shown to be correct is it computes
types which are also derivable by the inference rules.
A system which is capable of performing type checking
of expressions using just the inference rules as input is
documented in [10]. In addition to the inference rules,
this paper shows how the predicates which qualify al-
gebra operators cause type information to be lost or
gained. Type information is lost when the types as-
sociated with the result of a query are more general
(higher in the type lattice) than the types associated
with the query inputs. When the types associated with
a query result are more specific (lower in the type lat-
tice) than those of the inputs, type information has
been gained.

The paper proceeds as follows. Section 2 outlines
our OODB data model and formally develops the no-
tion of a set of objects having multiple types. Denota-
tions and predefined functions for use in the inference
rules are presented in Section 3. Section 4 introduces
predicates which can be used to qualify object alge-
bra operators and their type inference rules. Section 5
presents the algebra operators and their corresponding
inference rules. We conclude in Section 6.

2 Types in Object Oriented
Databases

2.1 Data Model Overview

We briefly summarize the OODB data model in order
to provide a foundation for the subsequent discussion.
The model and object algebra are described in more
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detail in [18]. We emphasize that the focus of our
research is on query processing issues in OODBs as
opposed to data model issues. The key features of the
model are as follows. Objects are viewed as instances
of abstract data types (ADT) which can only be ma-
nipulated via functions defined by the type. Types
are organized in a lattice which allows multiple inheri-
tance. Each object has a time invariant identity which
is independent of its state. Representations of objects
are visible only to type implementors. Any aspect of
the object representation which is required by users of
a type should be revealed by the implementor via a
method.

A class defines both an ADT interface via methods
and stands for all the objects which are instances of the
type. Methods are named functions whose arguments
and result are objects. Each method has a signature of
the form #; X ... X t;, — tyesunt Where t;...%, specify
the types of the argument objects and t,.su1: speci-
fies the type of the result object. All types in the
database form a lattice where the root node represents
the most general type of objects and any individual
type may have multiple parents. Subtypes inherit be-
havior from their parents and may define additional
methods. Thus, the type lattice provides inclusion
polymorphism [8] which allows an object of type ¢ to
be used in any context specifying a supertype of ¢ [16].
A type s conforms [4] to a type t, denoted s < ¢, if

1. s provides at least the operations of £, and

2. the types of the results of s’s operations conform
to the types of the results of the corresponding
operations of ¢, and

3. the types of the arguments of ¢’s operations con-
form to the types of the arguments of the corre-
sponding operations of s.

Assuming a set of primitive types and their known
conformity, any non-primitive type can be tested for
conformity by recursively examining the types refer-
enced by signatures of their methods until only primi-
tive types remain. We extend the notion of conformity
to apply to objects as well as types in the following
manner. We say ‘object o conforms to type ¢’ to mean
the same as ‘object o is an instance of a type which
conforms to type ¢’.

2.2 Types and Queries

Black et. al. [4] show how the conformity relation-
ship is sufficient for developing a type checking algo-
rithm for expressions denoting single objects and vari-
able assignment. As demonstrated in the introduction,
object-oriented database query languages introduce a
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new problem in that the result of a query is a set of
objects which may not be homogeneous. In this case,
what can be said about the types that each member
of the query result supports?

Example 2.1 Consider the fragment of a type hier-
archy in Figure 2 where types are labeled ¢;. Assume
we wish to take the union of the instances of types tg
and tg. The following can be said about the objects in
(ts U tg).

1. Some objects conform to t3 (immediate supertype
of t3),

2. Some objects conform to t; (immediate supertype
of tg),

3. All objects conform to t4 (immediate supertype
of both g and tg).

Intuitively then, we may say that the type of (ts Uts)
is t4 since this is the only type that all objects in the
union conform to. This case is somewhat trivial as all
objects in the query result conform to just one class.
Referring again to Figure 2, assume we wish to take
the union of the instances of types t1g and #;;. In
this case the following can be said about the objects
in (tlg U tu).

1. Some objects conform to {t3,14,t2} (immediate
supertypes of t10),

2. Some objects conform to {ts,%s,t7} (immediate
supertypes of 1),

3. All objects conform to {¢1,t2} (not necessarily im-
mediate supertypes).

The last statement holds because an object conforms
to the type it is an instance of, and via inheritance,
any of its supertypes. &

Figure 2: A type hierarchy fragment.

Definition 2.1 Conformance: A conformance is a
set of types. A set of objects O has conformance
{t1,...,t,}, denoted by O:{ty,...,t,}, when each ob-
ject o € O conforms to every type t; € {t1,...,t,}. O
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Definition 2.2 Conformance Inclusion Relationship:
The conformance inclusion relationship on two sets
of types Cy and C; is defined as CyCC; iff
Vt; € Cz,atj € Cy | t; 2. In other words, Cy C Cy,
if for every type in Cj there is a conforming type in
C,. 0O

Note that C; may contain types which do not con-
form to any type in C3 under this definition.

The notion of finding the set of types to which all
members of a second set of types conforms to is central
to determining the type consistency of operations on
sets of objects. However, we do not always want to
know all the types which are conformed to as this set
would contain redundant information. In Example 2.1
the conformance of (t;0Ut1,) was determined to be
{t1,t2}. Including parents of t; and t; in the confor-
mance would add no new type information since t;
and 1 define at least, if not more than, the behav-
ior of their parents, i.e., t; and t; are specializations
of their parent types. Similarly, placing more general
types in the conformance, for example parents of £,
and t; but not ¢; or t5 themselves, introduces a loss of
type information.

Loss of type information is undesirable when type
checking a query. Consider again the type hierarchy
fragment of Figure 2. Assume all objects in a query
result conform to both 15 and ¢, but the conformance
was nonetheless specified as {¢1,¢2}. This would cor-
respond to the case where types more general than
necessary are placed into the conformance. It is pos-
sible that the query in question was just a subquery
and that further operations are to be performed on its
result. Some of the object algebra operators are qual-
ified by predicates. One form of predicate involves
applying a method to each member in the query set.
If the method referenced in the query is defined on #;;
but not on 13, the query will fail during type checking
when in fact each member of the query set does sup-
port that method. Thus we have the requirement that
the conformance of a set of objects used in type check-
ing include only the most specific types which satisfy
the conformance definition.

Definition 2.3 Most Specific Conformance:  The
conformance of a set of objects O, O:{t1,...,ta}, is
defined to be the most specific conformance when there
does not exist a subtype s < ¢; such that all elements
of O conform to s. O

The function MSC(t,...,t,) is defined to return
the most specific conformance of the types ti,...,t,.

Example 2.2 Referring to Figure 2:

MSC(tlo) = {tm}
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MSC(tlo,tll) =
MSC(tm,ts)

{t1,t2}
{t2} ©

The need will arise during type checking to deter-
mine the inverse M SC relationship. Letting s and ¢
refer to subtypes and types respectively, the function
MSC~! is defined as

MSC™ ty,...,ta) = {s1,...,5¢ |

MSC(S]_,-uqsk) = {tla"'ttﬂ}}

In other words, the inverse function MSC~! returns

the most general set of subtypes all of whom conform
toty,... th.

Example 2.3 Referring to Figure 2:

MSC™\(t;) = {t1}
MSC~Yty,t2) = {tio,t11}
MSC'I(ts,h) = {tu} ©

Algorithms for MSC and M SC~! have been devel-
oped but are omitted here due to space considerations.

3 Type Inference Rules

The notion of typing in object algebra expressions
is formalized by providing a set of type inference
rules. Although we call them type inference rules, they
are really conformance inference rules since results of
object algebra expressions are sets of possibly non-
homogeneous objects. The rules determine the con-
formance of an expression from the conformance(s) of
its subexpressions. The rules themselves do not imply
a specific type checking mechanism. Instead, a type
checking algorithm is considered correct if it computes
types that are derivable by these rules. An expression
is considered type inconsistent if the rules can not be
used to derive a type (conformance) for all variables
in the expression.

A syntax for inference rules similar to that of [8] will
be used:
Rule Name: ¥

v (1)

where the horizontal line is a logic implication. If we
can infer X, then we can infer Y. Variables are used
in a consistent fashion to denote similar items in each
of the rules. Upper case variables denote sets while
lower case variables denote single entities. For exam-
ple, O, P, Q, and R are object set variables while o, p,
q, and r are object variables with the implication that
0 €0, pe€ P, etc. Iis aset of conformance inclusion
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constraints and A is a set of conformance assumptions
for free variables. C is a conformance variable denot-
ing a set of types. A.e:C is the set A extended with
the assumption that expression e has conformance C.
Al expr is an assertion meaning that from A we can
infer exzpr. Table 1 summarizes the variable denota-
tions.

The following predefined functions are used by the
typing rules.

unique(m,t,C): This boolean function evaluates to
True if t € C and method m is defined only on
type t and not on any other type in C.

arg_-type(m,t,i): This function returns the declared

type of the i** argument of method m on type
t.

num_args(m,t): This function returns an integer rep-
resenting the number of arguments required by
method m defined on type t.

res_type(m,t): This function returns the declared re-
sult type of method m on type t.

We present some conformance inclusion rules in or-
der to familiarize the reader with the rule format.
Top:

I+ CC {Root} (2)

This rule states that every conformance is related via
inclusion C to the set containing just the Root type.
This can be derived from the conformance inclusion
definition and recognizing that all types are a subtype
of the Root type.

Transitivity:

IFC,ECyCr ECy (3)
IFGC G

Provable by definition of the T relationship.
Reflexivity:
ItCcCC (4)

Provable by definition of the C relationship and reflex-
ivity of <.

We are now ready to develop a family of type in-
ference rules for the object algebra. Section 4 first
introduces rules for predicates of the object algebra.
This is followed by Section 5 which develops rules for
complete algebra expressions.

4 Predicates for Algebra Oper-
ators

Operands and results in the object algebra are sets of
objects. Let © be an operator in the algebra and P,
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Q and @; denote sets of objects. The algebra contains
both binary operators denoted by P © @ and n-ary
operators denoted by P © (Q1...Qx).

Some of the algebra operators are qualified by
a predicate. Such operators will be written
P OF (Q1...Q¢) where F is a formula consisting
of one or more atoms connected by A, V or — us-
ing parenthesis as required. Atoms represent primi-
tive operations of the data model which evaluate to
a boolean. Atoms reference lower case, single let-
ter variables which range over argument sets named
with the corresponding upper case letter. For exam-
ple, the object variables p, q; and ¢ in the predicate
of P OF(p,q,,402) (@1, Q2) range over the sets of objects
denoted by P, Q, and Q5 respectively.

Argument sets P and @Q;...Q can be the results
of previous algebra operations and thus have a confor-
mance associated with them. This means that each
P € P and ¢; € Q; conforms to each type in the par-
ent set’s conformance. In this sense then, each object
variable has many types and we can associate a confor-
mance with object variables as well as argument sets.
In general, we will assume that an object variable’s
conformance is the same as that of the set from which
it is drawn. In other words, if we use the notation
Q;:C to mean that the conformance of set Q; is C,
then Q;:CAq €Q; = ¢;:C.

4.1 Atoms and Query Primitives

Atoms, the building blocks of predicates, are defined
as follows:

e 0;00; where:

— o; and o; are object variables or denote a
method application on object variables.

— 8 is one of the operators ==, € or =,.
e aflo; where:

— 0; is an object variable or denotes a method
application on object variables.

~ a is the textual representation of an atomic
value or a set of atomic values.

— 0 is one of the operators =, € or =,.

The relational operators ==, €, and =, are query
primitives on object identity supported by the data
model. The == operator tests for object identity
equality, i.e., (0; == 0;) evaluates to true when o; and
o; denote the same object. The € operator can only be
used with objects with a set value. Set valued objects
have a value which is a set of object identifiers. For
example, (0; € 0;) evaluates to true when o;’s object
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Table 1: Definition of variables used in the inference rules.

€ object algebra expression

f predicate subexpression
(i.e., ths or rhs of an atom of the form (lhs 6 rhs))

1,5,k index variables and subscripts
m method name variable
0,D0,q,7 object variables
Ffl01:Cy,..] predicate F is a set of atoms connected by A and/or v

with all occurrences of o; having conformance Cj, etc.

t type variable

A set of conformance assumptions for free variables

C conformance variable

I set of conformance inclusion constraints

O,P,QR object set variables

identifier is contained within the set value of object o;.
The =, operator is similar to € only it tests if two
set valued objects are pairwise equal. For example,
(0i = 0;) evaluates to true when o; and o; are both
set valued objects containing the same set of object
identifiers. The = operator applies to atomic objects
only, i.e., objects whose value is drawn from a prim-
itive domain supported by the database system such
as integer, string, etc. For example, (“33” = o;) eval-
uates to true when o; is an atomic object whose value
component is the integer “33”.

The dot notation <oy ...0,>.mi.mg - m,, is used
to denote method application and method composi-
tion. For example, assume methods m; and m,,
take three arguments each, and method my takes 2
arguments, then Figure 3 illustrates the processing
denoted by <o;1...0,>.my.my---my;. Method m,
is applied to objects <o;,09,03> resulting in object
r1, method my is applied to objects <r;, 04> return-
ing object r, and so on until the final result object,
rm, 1s obtained by applying method m,, to objects
<Pm—1,0n-1,0n>. Note that the dot notation denotes
method application and composition, not the tradi-
tional record field selection (attribute selection) as in
(3, 7, 13]. <0y ...0,>.mlist will be used when the list
of method names is unimportant.

03,03 04 On-1,0n

! |

"l ome 172 =l my b T

01— T

Figure 3: Composition of method applications.
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Example 4.1 Let p,q and r be object variables.
Then the following are examples of legal atoms and
their semantics:

1. (p == q) — Are the objects denoted by p and ¢
the same object?

2. (p €<q,r>.mlist) - Is the identifier of p contained
in the set value of the object obtained by applying
the methods in mlist to the objects <q,r>?

3. (<p,g>.mlist = r) — Is the set value of the
object obtained by applying the methods in mlist
to the objects <p, g> pairwise equal to the set
value of the object denoted by »7

4. (“59” = p) - Is the atomic value of the object
denoted by p “59”7

5. (“69” € p) — Does the set value of the object
denoted by p include an identifier for the object
whose atomic value is “59”7

6. ({“59”,“61”} =, <p, q,r>.miist) — Does the set
value of the object obtained by applying the meth-
ods in mlist to the objects <p, g, > contain only
two identifiers for objects whose atomic values are

“59” and “6177 ©

4.2 Predicate Typing Rules

As stated above, predicates qualify algebra operators
and are composed of legal atoms connected by A, Vv
and —. Each atom is of the form (lhs 6 rhs) where
lhs and rhs are either an object variable, a constant
value, or a method application on object variables and
6 € {=,==,€,=(}. The following predicate typing
rules can be used to determine the type consistency of
object variables when used as either the lhs or rhs of
an atom.
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Defining Set:
ILAFO:C
I, AFo.C (%)

This rule states that an object variable conforms to
the same types as the set from which it is drawn.
This is a restatement of the implication given earlier:
O0:CAo€0 =o0:C.

"This rule is fundamental to the notion of type consis-
tency. While arguments to algebra operators are sets
of objects, predicates on algebra operators reference
individual object variables. Since at query execution
time the predicate is evaluated once for each object in
the argument sets!, the entire algebra operator is type
consistent only if the predicate is type consistent for
each type which exists in the argument sets, i.e., the
conformance.

The next two rules determine the result type of a
sequence of method applications. The first rule, for
single methods only, insures that the types of the ar-
guments to the method match those specified in its
signature. The second rule recursively determines the
result type of a sequence of method applications of
length n by defining itself in terms of a sequence of
methods of length n—1. When (n—1) = 1, the recur-
sion terminates and the first rule is applied.

Single Method:

unique(m, t, Cy),

num_args(m,t) = k — 1, 6
C: C {arg-type(m,t, i)} 2<i<k (O
I,AF<0;1:C1.. .0k :Cr>.m:{res_type(m, 1)}

IAF

This rule determines the conformance of the result of
a single method application. The method application
is legal if three conditions are met:

1. unique(m,t,Cy) insures that there exists a type ¢
which is a member of conformance C; and that
method m is defined only on ¢t and not on any
other members of C;. This restriction insures that
there is no ambiguity as to which type’s method
m is to be applied.

2. num_args(m,t) = k — 1 insures that the signature
of method m on type ¢ requires the same number
of parameters (03...0;) as are provided in the
operand list of the method application.

3. Ci € {arg_type(m,t,i)},2 < i < k insures that
the types of the #** argument, represented by the
conformance Cj, are subtypes (and therefore sub-
stitutable) of the type stipulated by the signature
of method m on type t.

1Act:ually, the predicate is evaluated once for each element
in the cross product of the argument sets.
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If all of the above conditions are met, then the confor-
mance of the result of the method application is the
singleton set containing the result type as specified by
the signature of m on ¢.

Multiple Methods:

<01:Cy...05_1:Cj_1>my - ‘mu_y:{t},
unique(mp, t, {t}),
num_args(mp,t) = k — j + 2,
Ci c {arg_type(mn,t, 1)}1] <i < k
I,AI—<01:C1..‘0j:C]- 0 CE>my - omy,
res_type(mp, t)}
(7)
This recursive rule determines the conformance of a
sequence of method applications based on the con-
formance of the sequence which applies methods m;
through m,_;. The multi-operation

I,AF

<O1...0k>my---my

is considered to be logically equivalent to the multi-
operation
<01...0>.mM -+ Mmp_y

followed by the single operation
<res, 0541 ...0r>.my,

where res is the result of the first multi-operation.
The first condition of rule 7 stipulates that the confor-
mance of the multi-operation which applies methods
my - -my_y is known. This conformance is denoted
as the singleton set {t} since the signature of method
Mn-1 defines a single result type. The second con-
dition insures that method m,, is actually defined on
type ¢, an ancillary result of the unique function. The
third condition guarantees that the proper number of
arguments are present for method m, while the last
condition insures that each argument conforms to the
types declared by m,’s signature.

If all of the above conditions are met, then the con-
formance of the result of the sequence of method appli-
cations m - - -my, is the set containing the result type
of method m, on type t.

Object Identity:

I,AF f:C )
ILAF o0:C==f:C

This rule states that if there is a predicate subexpres-
sion f whose conformance is known to be C, then the
use of f in the atom o == f implies that o has confor-
mance C as well. This should make sense intuitively
based upon the meaning of the == relationship. If two
expressions are identity equal, i.e., denote the same ob-
Ject, then they conform to the same types.
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Set Inclusion:

I,AF f:C
I,AFo:{Root} € f:C ©)

This rule states that if there is a predicate subexpres-
sion f whose conformance is known to be C, then the
use of f in the atom o € f implies that o conforms to
the Root type. This apparent loss of type information
is due to the fact that the data model does not include
a parametrically polymorphic set type definition oper-
ator such as Sett] [16]. The data model supports only
‘generic’ set valued objects which make no restrictions
on the type of the objects in the set.

Set Equivalence:

I,AF f:C
I,AF 0:{Root} = f:C (10)

This rule states that if there is a predicate subexpres-
sion f whose conformance is known to be C, then the
use of f in the atom o =, f implies that o conforms to
the Root class. The reasoning is the same as in rule 9.
Atom Disjunction:

I,Al"F]/[OiCd,Fg/[OJCg] (11)
I,AF (F1 V F5)/[o: MSC(C; U Cy)]

This rule states that if o has conformance C; for all
occurrences in predicate F) and conformance Cy for
all occurrences in predicate F3, then the conformance
of o in the disjunction (Fy V Fy) is MSC(C; UCs).
Consider that Fy and F both independently define a
set of types for o. Their disjunction then implies that
o represents objects which conform to types in C; or
types in Cy. This is similar to the case of Example 2.1,
The only statement one can make about all instances
of o in the disjunction is that they conform to the most
specific common ancestors of types in C; and Cy which
is given by MSC(Cy U C,).

Atom Conjunction:

I,A}"Fl/[O:Cﬂ,Fz/[OICﬂ (12)
ILAF (F1 AF2)/[O:MSC_1(01 UCz)]

This rule states that if o has conformance C; for all
occurrences in predicate F; and conformance Cj; in all
occurrences of predicate Fy, then the conformance of
o in the conjunction (Fy A F3) is MSC~}C1 U Cy).
The MSC~! can be rationalized as follows. Consider
that Fy and F, both independently define a set of
types for o. Their conjunction then implies that o
represents objects which conform to types in C; and

The previous two rules, atom disjunction and atom
conjunction, are important results. They show that
the manner in which atoms are combined in a predicate
affects whether type information is lost (disjunction)
or gained (conjunction). Type information can be lost
in the case of disjunction since the inference rule de-
rives a conformance for the variable in question which
contains types which are more general, i.e., higher in
the type hierarchy. Type information can be gained in
the case of conjunction since the inference rule derives
a conformance for the variable in question which con-
tains types which are more specific, i.e., lower in the
type hierarchy.

5 The Object Algebra and its
Typing Rules

This section presents the algebra operators and their
associated typing rules. First some general inference
rules for algebra expressions are needed.
Top:

I,AF e:{Root} (13)

This rule states that all object algebra expressions
minimally conform to the type {Root}. This is clear
since algebra expressions denote sets of objects and all
objects conform to the Root type.

Transitivity:

I,A.e:Cl + C1 [; Cz
I,AFe:C, (19)

This rule is the same as the conformance inclusion
transitivity rule applied to algebra expressions.
Basis:

I, At instances_of (t): {t} (15)

Leaves of object algebra expression trees denote all in-
stances of some type t in the database. This rule states
that since all objects in instances_of(t) conform to t,
the conformance of a leaf node is {t}. This rule is
called Basis since the only type information initially
available in a query is the types it references explic-
itly. Just as query processing proceeds from the leaves
of the query tree to the root, one can think of type
inference as proceeding from the leaves to the root as
well.

The union operator, denoted P U @, returns the set
union of P and Q.

yPes ’ Union:
types in Cj. Clearly, only subtypes which inherit from
all types in C; and Cy can conform in this manner. ILAFP:C,Q:Cy (16)
MSC~1(Cy UCy) determines that set of types. I,AF(PUQ):MSC(CLUC,)
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This rule states that the conformance of a union op-
eration is the MSC of types contained in the con-
formances of its operands. The reasoning is that
MSC(C1UC3) denotes the most specific types to
which all members of (P U Q) conform.

The difference operator, denoted P — Q, returns
those objects which are in P and not in Q.
Difference:

I,A*‘PZCDQZCQ (17)
I,LAF (P=Q).C;

This rule states that the conformance of a difference
operation is the conformance of the first operand. This
should be clear as the result of a difference is a subset
of the first operand.

The select operator, denoted P op (Q; .. .Q%), re-
turns the p elements of each vector <p,q;...qx> €

P x @ x -+ x Q which satisfies the predicate F.
Select:

LARF/[p:Ch, q1:C'y...q:C"%]
LAF(P:Cpor {Q1:Cr...Gr:Cx)) : CFy

Here F denotes the predicate of the select operation.
The rule states that if the input sets P, Q;...Q;
have conformances Cp, Cy,...,C; respectively, then
the result of the select operation has conformance
C'p as derived for occurrences of p in predicate F.
Since F' may have multiple atoms connected by A
and/or V, the atom conjunction and atom disjunc-
tion rules may determine conformances for variables
in F (C'p,C’y, etc.) which are different from the con-
formances of the input argument sets (Cp, C, etc.).
This allows for predicates which restrict or enhance
the types of p.

The generate operator, denoted Q; 7% (Q2...Qx),
returns the objects represented by r in predicate F for
each vector <g; ...qx> € Q1 X+ - -x Q. In other words,
r does not range directly over one of the argument
sets. Instead it represents objects which are returned
by method applications or other operations in F.
Generate:

LAFF/[r:C\,q1:C'1...qx:C%] (19)
I,A I-(lecl ‘y;-‘ (Qz:Cz...QkZCk)) : C'r

Similar to the rule for select expressions, this rule
states that the result of a generate operation has the
same conformance as that derived for variable r in the
predicate F, C’,.

The map operator, denoted Q1 —miist (Q2...Qk),
is a special case of the generate operator whose predi-
cate is the multi-operation r ==<gq; ... qz>.mlist.
Map:

(18)

I, AF<q1:Cy...qp:Cr>mlist: {t}
L,AF (Q1:Ct miist (Q2:C:...Qr:Cr)) : {t}
(20)
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This rule states that the result of a map operation has
the same conformance as that derived for the multi-
operation <g;...qr>.mlist. expression results based
on the conformances of the argument sets.

6 Conclusion

We presented a theory of type consistency for queries
in object-oriented database systems. This issue arises
when the object data model allows multiple inheri-
tance and the query language does not restrict the
types of the inputs to a query. These two conditions
are necessary for the development of languages with
sufficient expressive power, but they cause retrieval of
non-homogeneous sets of objects as a result. If meth-
ods are to be applied to the retrieved objects, 1t is
necessary to determine their type, and thus their ap-
plicable methods.

The type checking theory presented in this paper fol-
lows the approach proposed in [8]. We demonstrate the
theory on an object algebra which is object-preserving
[15, 18]. We do not address the problem of determining
the types of newly created objects by object-creating
operators (e.g., join and project in [16]). We have cho-
sen to restrict our study to object-preserving algebras
since our fundamental aim is to investigate query pro-
cessing issues, not the development of a full language.
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