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Abstract

Presto is an object-oriented threads package for writing
parallel programs on a shared-memory multiprocessor.
The system adds thread objects and synchronization
objects to C++ to allow programmers to create and
control parallelism. Presto’s object-oriented structure,
along with its user-level thread implementation, simpli-
fies customization of thread management primitives to
meet application-specific needs.

The performance of thread primitives is crucial for par-
allel programs with fine-grained structure; therefore,
the principal objective of this effort was to substantially
improve Presto’s performance under heavy loads with-
out sacrificing the benefits of its object-oriented inter-
face. We discuss design and implementation issues for
shared-memory multiprocessors, and the performance
impact of various designs is shown through measure-
ments on a 20-processor Sequent Symmetry multipro-
cessor.

1 Introduction

Explicit support for threads (multiple streams of exe-
cution within a single address space) has become com-
mon in experimental and commercial operating sys-
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tems for both uniprocessor and multiprocessor archi-
tectures. For example, Mach [Accetta et al. 86] and
Topaz [Thacker et al. 88] provide explicit kernel-level
thread support. On a uniprocessor, an application uti-
lizes threads simply as a program structuring tool, or
possibly to overlap I/O or other asynchronous events
with processing. On a multiprocessor, however, the
various threads of an application can execute simulta-
neously on different processors, providing true parallel
execution of the application. A substantial speedup can
thus be realized in properly written applications.

While threads can be supported by the kernel, they can
also be provided completely at the user level. In either
case, the thread interface is typically presented as a col-
lection of callable library routines, and thus the imple-
mentation is transparent to the programmer. However,
the difference between kernel-implemented and user-
implemented threads may be crucial to parallel pro-
grams with fine- or medium-grained structure. User-
level threads can provide higher performance because
kernel calls are avoided; the lighter weight the thread
mechanism, the more freely the programmer can use
threads to achieve speedup in parallel programs. Fur-
thermore, user-level threads permit application-specific
customization.

At the University of Washington we have developed two
different user-level threads packages: Presto and Fast-
Threads. Presto [Bershad et al. 88a, Bershad et al.
88b] is an object-oriented environment that allows the
programmer to customize the threads package to reflect
the specific needs of the application. Presto is imple-
mented in C++ [Stroustrup 86]. FastThreads, which is
implemented in C, evolved from the work of Anderson
[Anderson et al. 89, Anderson 90]; it has a less flexible
interface than Presto but provides higher performance.
On the Sequent Symmetry, Presto is nearly two orders
of magnitude faster than the process-based parallelism
of Sequent’s Dynix operating system, and FastThreads
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is another order of magnitude faster than Presto.

Anderson achieved performance improvement over
Presto through several means, including fine tuning
through the use of C, the reduction of layering in the
implementation, and the reduction of synchronization
overhead through the use of more complex data struc-
tures. Our experience with Presto, however, has shown
a number of advantages to its object-oriented interface.
Therefore, the objective of the current work was to im-
prove the performance of Presto by integrating some of
the more successful ideas in FastThreads while main-
taining Presto’s object-oriented interface. The ideal
goal was to achieve the same level of performance as
FastThreads, or, failing that, to understand the intrin-
sic costs and limitations imposed by Presto’s object-
oriented approach and its use of C++.

This paper describes Presto, the techniques used to
improve Presto’s performance, and results of applying
those techniques. It demonstrates the levels of perfor-
mance that can be achieved using an object-oriented
threads package. The following section presents a brief
overview of Presto and its object-oriented interface.
Section 3 covers specific areas in which Presto perfor-
mance was tuned: spinlocking, atomic integers, thread
creation and deletion, and thread startup. In each part
of section 3, the performance of the original version of
Presto will be presented, problem areas will be identi-
fied, modifications will be discussed, and resultant per-
formance increases will be displayed. Finally, section 4
presents conclusions and areas for further work.

All measurements reported in this paper were obtained
on a Sequent Symmetry multiprocessor with 20 Intel
80386 processors. The Symmetry has shared memory
and a shared bus and utilizes a write-back invalidation-
based cache coherency scheme [Lovett & Thakkar 88].

2 An Overview of Presto

Presto is a system designed to simplify parallel pro-
gramming on a shared-memory multiprocessor through
the use of object-oriented abstractions. The system
applies our experience with distributed object-oriented
systems [Almes et al. 85, Jul et al. 88] to multiproces-
sors. The basic idea behind Presto is the encapsulation
of parallelism. That is, in conventional object-oriented
systems, an object hides both its representation and its
implementation. In Presto, an object hides its execu-
tion as well; the implementor of an object may choose
either a parallel or sequential execution for an opera-
tion, but the choice is invisible to the invoker of that
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object.

The Presto programming environment consists of C++
with the addition of several classes useful for writing
parallel programs. In particular, these classes provide
the programmer with comfortable abstractions for deal-
ing with parallelism and concurrency. Programmers
write in C++, creating C++ objects of their own, and
using Presto-provided classes (or customized versions
of those classes) for parallelism.

Thread objects (threads) are the building blocks of
Presto parallel programs. As the basic unit of execu-
tion, threads conceptually consist of a program counter
and a stack of invocation records. There are two es-
sential operations that can be performed on a thread.
A thread can be created, allowing the creator to spec-
ify the thread’s qualities, such as its name and storage
requirements. Once created, a thread object can be
started by invoking its start operation. The start invo-
cation specifies as parameters an object, an operation in
that object, and zero or more parameters to that oper-
ation; the started thread object then executes the spec-
ified operation in parallel with the invoking thread. In-
vocations in Presto are always synchronous, but a new
thread can always be created to perform the equivalent
of an asynchronous invocation.

When a Presto program is loaded, it receives one thread
for its main program execution. The main program
then creates more thread objects for parallelism, and as
other objects are invoked, they may create more thread
objects to do their work, and so on. All Presto ob-
jects execute within a single address space shared by all
processors actively executing the application. Threads
synchronize through the use of Presto-provided syn-
chronization classes, such as relinquishing locks, non-
relinquishing locks, and monitors [Hoare 74].

In Presto, threads are scheduled and controlled by spe-
cial scheduler and processor objects. The system main-
tains a single scheduler object to keep track of all
runnable threads. The scheduler object allows ready
threads to be inserted and removed from a pool of ready
threads according to the current scheduling discipline
(the scheduling discipline can be easily changed using
normal C++ inheritance mechanisms). Each allocated
processor is represented by its own processor object.
The processor object creates and executes a “sched-
uler” thread whose only task is to request a runnable
thread from the scheduler object. When a runnable
thread is obtained, the processor object stops running
the scheduler thread and starts running the new thread.
When the newly run thread blocks or terminates, the
scheduler thread resumes and continues to check for
more runnable threads. When a thread blocks, for ex-
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ample on a synchronization object, its next execution
may occur on a different processor.

On systems like Dynix, Presto runs a thread by map-
ping it onto a preexisting Dynix process created dur-
ing Presto initialization. The Dynix kernel then maps
the process onto a physical processor for execution. In
Dynix, processes can be permanently bound to a pro-
cessor, so kernel-level process scheduling need only be
performed once.

Because Presto is implemented entirely at the user
level, any of its objects, including thread objects and
scheduler objects, are open to customization by the
programmer. Thus, thread objects can be easily cus-
tomized for performance instrumentation, or sched-
uler objects can be customized to provide specialized
scheduling algorithms. For example, in a parallel sim-
ulation system built from Presto [Wagner et al. 89],
the standard scheduler was customized to handle dead-
lock detection during/idle periods. Performance instru-
mentation was added to Presto’s thread and locking
constructs to integrate support for Quartz [Anderson
& Lazowska 90}, a parallel program tuning tool, into
Presto. Customization is accomplished through the
normal C++ inheritance mechanisms — the program-
mer creates a more specialized subclass of an existing
Presto class, redefining the implementation of opera-
tions defined on that class, or adding new operations
as required.

It is important to contrast Presto to recent efforts in
object-oriented concurrent programming (e.g., [Agha &
Hewitt 87, America 87, Yokote & Tokoro 87, Kaiser
et al. 89, Agha et al. 88]). In general, these efforts have
been focused on programming support for concurrency
within objects. Presto, on the other hand, has focused
on the implementation of inexpensive parallelism. Our
objective was to build an object-oriented framework to
simplify parallel programming of “conventional” appli-
cations, in order to maximize speedup on medium-scale
multiprocessors (those with 5 to 30 processors).

The crucial issue in such an environment is perfor-
mance, and in particular, the cost of parallelism. For
example, in Sequent’s Dynix operating system, the en-
tities for parallel programming are Dynix processes,
which cost on the order of 5 to 10 milliseconds to cre-
ate. This leads to a static programming style with the
number of processes equal to the number of processors.
If parallelism can be provided cheaply, however, pro-
grammers can use a level of parallelism that is natural
to the application, as opposed to that dictated by hard-
ware and software constraints.
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3 Improving the Performance
of Presto

While the first implementation of Presto achieved close
to two orders of magnitude improvement over Dynix
processes, there was still much room for improvement.
Of interest were both the latency of operations (on
one processor) and the speedup achieved as more pro-
cessors are added. In order to achieve another order
of magnitude speedup, Anderson built a more stream-
lined thread system, called FastThreads, in C [Ander-
son et al. 89, Anderson 90]. While FastThreads has
lower latencies and better performance under loads, it
lacks several advantages of Presto, namely the object-
oriented interface and the simple methods for applica-
tion programmers to customize and add to the base
structure.

As previously stated, the objective of this work was
to improve Presto’s performance without sacrificing its
object-orientation. This section describes some of the
changes made to the original Presto implementation in
order to improve its performance characteristics, and
presents the performance achieved by those means. In
particular, we examine the implementation of prim-
itives for locking (spinlocking, atomic integers) and
thread management.

3.1 Spinlocking

Spinlocking, or busy-waiting on a semaphore, is a fun-
damental technique for ensuring mutual exclusion on
a shared-memory multiprocessor. On most concurrent
programming systems, all locking operations cause a
thread to be queued when a lock request finds the lock
busy, thus permitting another thread to run. Note,
however, that the enqueueing of a thread requires a
queue manipulation operation that must be protected
by a spinlock; therefore, spinlocks are always required
at some level, either by the thread system or for use by
the application programmer.

Spinlocking is often criticized as a potential waste
of CPU cycles. Certain applications, however, can
achieve noticeable performance improvements when
busy-waiting for a lock rather than relinquishing the
processor. For example, if critical sections are small,
then the average time spent busy-waiting for the
semaphore may be smaller than the time needed to en-
queue the thread in a wait queue. Also, if a thread relin-
quishes its processor to wait for a lock, it may resume
execution on a different processor. Numerous cache
misses will then be incurred on the new processor, even
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though the data may still be “hot” in the cache on the
original processor. Spinlocking allows for more effec-
tive utilization of the cache, since the thread remains
on the processor where its data and instructions have
been cached. :

The original version of Presto provides spinlocking
functionality based on a test-and-set strategy. Proces-
sors spin on a single, shared location until they success-
fully acquire the lock. The problem with this approach
is that the normal memory requests of the processor
currently holding the lock are delayed dramatically by
the cache coherency traffic caused by the test-and-set
instructions generated by each spinning processor (each
“set” operation results in invalidation and refetch bus
traffic by all other processors). For short critical sec-
tions, the delay in servicing the lock holder’s memory
requests dominates overall performance [Anderson 90].

FastThreads spinlocks are both lower in latency and
more tolerant of high contention than the spinlocks
of the original version of Presto. In [Anderson 90],
five different spinlocking alternatives were evaluated.
The best overall performance was achieved by using a
queue-based locking strategy. Instead of using a single
semaphore on which all processors spin, each proces-
sor attempting to acquire a lock adds itself to the tail
of a queue and then spins on a semaphore provided
by its predecessor in the queue. When a processor
releases the lock, it dequeues itself and then sets its
private semaphore to notify the next waiting proces-
sor. Unique sequence numbers can be used to emulate
queueing without actually executing queueing instruc-
tions.

This method of spinlocking performs well when there
is high contention for the lock. Each processor spins
on a separate location instead of on a single, shared
location as in the test-and-set approach. If each pro-
cessor’s private location falls within a separate cache
block, cache coherency bus traffic related to the lock
acquisition and release is virtually eliminated. Lock
release is reduced to setting a location - a single, non-
atomic instruction. On the other hand, queue-based
spinlocking results in slightly higher lock latency when
there is low contention, since more instructions must
be executed than in the simple test-and-set case.

We modified Presto by adding queue-based spinlock-
ing as a separate C++ class (HP_Spinlock), in order
to allow both regular test-and-set spinlocks and queue-
based spinlocks to coexist. The version of queue-based
spinlocking we selected was devised by [Graunke 88].
This version creates an implicit queue by passing infor-
mation about the previous lock requestor to each new
lock requestor. The information passed allows the new
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lock requestor to locate the semaphore of its predeces-
sor in the queue.

A benchmark was prepared in order to facilitate com-
parison of spinlocking performance in Presto and Fast-
Threads. The benchmark computes the elapsed time
required for various numbers of processors (one thread
on each processor) to cooperatively execute a critical
section one million times. In the test, each thread ac-
quires the spinlock, executes a short (2-3 instruction)
critical section, releases the lock, and then computes.
The compute phase is used to ensure fairness — with-
out it, the processor that just acquired and released the
lock is the processor that is most likely to successfully
acquire the lock, because the lock is still in that proces-
sor’s cache. A compute phase length of approximately
20 psecs® was utilized for all test runs.

Figure 1 shows the results of the spinlocking bench-
mark for the three systems. The curve for the original
version of Presto shows how performance degrades due
to the delay in servicing the lock holder's memory re-
quests caused by the test-and-set based cache coherency
traffic. Note that the point at which performance be-
gins to degrade would increase with the length of the
computation phase following the critical section, since
a longer computation period would make it increas-
ingly likely that a given thread would be computing
rather than contending for the lock. In comparison,
the curves for both FastThreads and for Presto with
the high-contention spinlock (curve HP_Spinlock) show
a levelling off of performance but no degradation as
contention increases. Both curves show slightly higher
latency than the original Presto spinlock when there is
little contention for the lock, due to the greater number
of instructions executed.

3.2 Atomic Integers

Presto includes class AtomicInt to allow the program-
mer to easily utilize protected integer operations, e.g.,
incrementation of a shared integer counter. The imple-
mentation of class Atomiclnt includes an integer value,
an object of class Spinlock to protect the integer, and
a collection of member functions, all of which lock the
spinlock, perform an integer operation on the value,
and then release the lock.

FastThreads includes no such built-in functionality.
The programmer can construct the equivalent by asso-

1 This benchmark is unrealistic in that few applications would
actually be designed to request a lock 20 usecs after releasing it,
however, the objective here is to stress the spinlock implementa-
tion by providing an environment of high contention.
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Figure 1: Elapsed time to acquire one million locks.

ciating a spinlock with an integer value and providing a
collection of functions which modify the integer under
spinlock protection.

We added class HP_AtomicInt to Presto, utilizing the
high-contention spinlock described in the preceding sec-
tion to protect the integer value. Our first imple-
mentation derived class HP_Atomicint from the base
Atomiclnt class. The lock and unlock functions in the
base class were made “virtual” to allow replacements
for them to be defined in the derived class. The de-
rived class replaced these functions with equivalents
that were specific to the HP_Spinlock class.

The spinlocking benchmark from the previous section
was modified slightly (replace lock acquisition, critical
section, and lock release with atomic integer incremen-
tation). The new benchmark measures the elapsed time
for various numbers of processors (one thread runs on
each processor) to increment the atomic integer one
million times.

The curve labelled Originalin figure 2 shows the results
of the benchmark for the original AtomicInt class. The
performance degradation observed in the original im-
plementation is due to the impact of cache coherency
traffic caused by the test-and-set instruction, as dis-
cussed in the previous section. The curve labelled HP-
Derived shows that the high-contention spinlock has
eliminated this bottleneck.

Note, however, that the HP-Derived curve in figure 2
differs significantly from the HP-Spinlock curve in fig-
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ure 1. Since the benchmarks are nearly identical, the
difference must be due to the HP_Derived implementa-
tion itself. Closer examination reveals that virtualizing
the lock and unlock functions in the base AtomicInt
class prevents our version of C++ (AT&T V1.2) from
following the inline hint given for the replacement lock
and unlock functions in the derived class. The observed
performance difference is simply due to the two extra
routine calls required in the HP_Derived benchmark.

We reimplemented class HP_AtomicInt as its own base
class in order to allow the new lock and unlock functions
to be successfully inlined. The curve labelled HP-Base
in figure 2 shows the benchmark results for the new
class. Note that this curve compares favorably with
the HP_Spinlock results of figure 1.

3.3 Thread Creation and Deletion

Efficient thread implementation was one of the prin-
cipal goals of Presto’s first implementation. How-
ever, even with the care taken in this part of the de-
sign, thread creation performance suffered under heavy
loads. In order to understand the limitations of thread
creation performance, we must first describe some of
the details of Presto’s thread implementation.

A Presto thread object contains a moderate amount
of information about the state and execution context
of a thread of execution. Information stored here in-
cludes the thread ID, a pointer to the thread’s stack,
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the stack size, the current stack and frame pointers,
the thread state, etc. Dynamic thread objects, like all
dynamic objects in C-++, are allocated from the heap.
In order to avoid the overhead of heap allocation or
deallocation each time a dynamic thread object is cre-
ated or destroyed, Presto maintains a cache of thread
objects. When a thread terminates, Presto places the
thread object in this cache for potential reuse. When
a new thread object is created, Presto first checks the
cache, allocating from the heap only when the cache is
empty. A threshold value prevents a thread-intensive
application from consuming undue amounts of virtual
memory. The thread cache is implemented as a shared
queue, protected by a spinlock.

Each Presto thread object has a private stack, and
thread stacks are also cached for potential reuse. When
a stack is “deleted”, it is moved into a cache of stack
objects. Stack “creation” is a bit more complex: since
stacks can vary in size a search must be performed to
find a stack of the proper size. Allocation occurs only
when a stack of proper size is not found in the cache.
As in the thread cache, the size of the stack cache is lim-
ited by a threshold value, and the cache is implemented
as a shared, protected queue.

In [Anderson et al. 89)], locks protecting the shared
caches of threads and stacks were found to be a bottle-
neck in thread creation. To eliminate this bottleneck,
separate per-processor caches were used. Since the
caches were private to a given processor, lock protection
was no longer needed. A locked, central thread cache
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was also maintained to help keep the per-processor
caches balanced.

We modified Presto to include separate per-processor
caches of reusable thread templates. When a thread
object is created in this new version of Presto, a thread
template is pulled from the creating processor’s local
thread cache if possible. If no thread templates are
available in the local cache, an attempt is made to move
a group of threads from a central, shared cache to the
local cache. If a thread template is still not available,
then a new thread template will be allocated from the
heap. When a thread object terminates, its thread tem-
plate is placed in the executing processor’s local cache.
If the resultant cache size exceeds a threshold value, a
group of thread templates are moved to the centralized
cache. In order to improve the performance of the ini-
tial thread creation requests, threads are preallocated
and placed in the local thread caches during Presto ini-
tialization.

Per-processor caches of reusable stacks were unfortu-
nately more complex to implement. The flexibility of
variably-sized stacks makes balancing of the stack cache
more difficult and expensive to manage. Searching the
stack cache for a stack of the proper size adds to the
latency of thread creation. To avoid these problems,
stacks were forced to be of fixed size, eliminating the
search for a stack of the proper size (and allocation if
no stack is found). They were also bound to a thread
once, when the thread was originally allocated, elimi-
nating the need to maintain stack freelists and thus the
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need to balance those lists.

These changes decrease the latency of thread creation,
but they are not without a cost. Forcing all stacks to
be of one size increases memory costs, since threads
requiring less stack space are unable to specify that
a smaller stack be used. Binding a stack to a thread
when the thread is allocated may exhaust memory if
many threads are allocated before being used — in orig-
inal Presto, stacks were bound only when a thread was
about to be executed. Our modifications trade off flex-
ibility and reduced memory cost for decreased latency
in thread creation. We believe that thread creation is
now nearly fast enough to eliminate the need for the
programmer to preallocate threads that will be used
later.

A benchmark was created to measure the performance
of thread creation and deletion. The benchmark mea-
sures the elapsed time required for various numbers of
processors (one thread per processor) to cooperatively
create and delete one million threads. None of the cre-
ated threads are started, so this benchmark excludes
all activities related to thread scheduling and startup.

Figure 3 shows the benchmark results for the various
implementations. The curve for the original version
of Presto shows how performance degrades due to con-
tention for the spinlocks protecting the shared caches of
threads and stacks. The local thread cache implemen-
tation (curve LTQ) eliminates this lock contention and
demonstrates good performance for up to 13 proces-
sors. The local thread caches with fixed stacks (curve
LTQ-FSS) version shows no performance degradation.
An inverse plot of this curve, giving throughput instead
of elapsed time, would show an almost linear increase
in the rate of thread creation.

3.4 Thread Startup

In Presto, thread startup causes the specified thread
object to begin executing an operation in parallel with
the invoking thread. In order to begin execution, the
started thread must be added to the Presto sched-
uler object’s pool of ready threads and eventually dis-
patched to an available Presto processor object. In orig-
inal Presto, the pool of ready threads is implemented
as a shared queue protected by a spinlock.

Anderson found the use of a shared ready queue to
be a significant bottleneck. To avoid this bottleneck,
FastThreads utilizes separate per-processor queues of
ready threads. In this case, however, the per-processor
queues require spinlock protection, since if a processor
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finds no ready threads in its local queue, it looks in the
queues of its neighbors.

The benchmark from the preceding section was mod-
ified slightly to start the created threads. The new
benchmark measures the elapsed time required for var-
ious numbers of processors to create, start, and delete
one million “null” thread objects. Figure 4 shows the
benchmark results for three versions of Presto. The
curve for the original version of Presto shows that
performance begins to level out at about 8 proces-
sors, degrading slightly from about 11 processors on-
wards. The curve labelled LTQ-FS5S shows how the
thread creation enhancements from the preceding sec-
tion have improved performance. However, this version
also shows a levelling-off and eventual degradation in
performance. In both curves, performance is limited by
the remaining bottleneck: the use of a single, shared
thread ready queue.

We constructed a modified version of Presto which uti-
lized per-processor ready queues as in FastThreads. A
regular test-and-set based spinlock was used to protect
each local queue (it was assumed that high contention
for any one local queue would be rare, and the test-
and-set spinlock has lower latency). The curve labelled
LTQ-FSS-LRQ in figure 4 shows how per-processor
ready queues eliminate the performance degradation
caused by contention for the lock protecting the sin-
gle, shared ready queue. The figure shows improved
performance from 2 processors on upwards, indicating
that in our benchmark, contention for the single, shared
ready queue was a factor with as few as two processors!

Figure 5 contrasts the benchmark performance of this
newest version of Presto (LTQ-FSS-LR@) with that of
original Presto and with FastThreads. The figure shows
that although a large improvement of performance over
original Presto has been made, there is still quite a bit
of work to be done in order to achieve the performance
of FastThreads. While the LTQ-FSS-LRQ version of
Presto has improved throughput to within a factor of
three of FastThreads, latency is still a factor of seven
worse than that of FastThreads. Note that in figure 3
we measured the latency of thread creation and dele-
tion in modified Presto at approximately 70 usecs. In
figure 4 we find that addition of the thread startup op-
eration increases latency to 270 usecs! Thread startup
is obviously a primary contributor to the seven-time
latency difference observed above.

We suspected that the high thread startup latency was
due to the overhead of the extra layers of abstrac-
tion built in to the class hierarchy for Presto’s thread
startup operation. Execution profiling of the startup
code path showed that our suspicions were correct. For
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example, a substantial portion of thread startup time
(14%) is spent within the member functions of an object
used to temporarily store the arguments that are passed
to the routine a thread will execute. This object stores
the thread arguments until a thread stack has been allo-
cated. An additional 24% of the time spent in starting
a thread is due to the cost of adding and removing a
thread from the pool of ready threads maintained by
the Presto scheduler object. Extra layers of abstraction
are used here in order to facilitate the replacement of
the default scheduling discipline (simple FIFO queue-
ing) with whatever discipline the application requires.

Anderson achieved high-performance thread startup
by limiting generality, allowing for a minimization of
thread state and thus a reduction in thread startup la-
tency. The latency of Presto thread startup could be
decreased in the same way. For example, the thread ar-
gument storage object could be eliminated, and some of
the layers of abstraction in the Presto scheduler object
could be removed. However, one of our goals in this
work was to maintain compatibility with Presto’s orig-
inal object-oriented interface, and these changes would
not be consistent with that goal.

Constrained from further improving Presto’s perfor-
mance by our goal of interface compatibility, we de-
cided to see if we could apply Anderson’s techniques to
implement our own low latency thread startup opera-
tion. Using FastThreads as a model, we implemented
a new object-oriented threads package in C++. The
new package is less general and thus less flexible than
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Presto, but as in FastThreads, by limiting generality it
reduces thread state and thus thread management code
path length. The resultant package offers much better
thread startup performance - using the new package,
we measured the latency of thread creation, startup
and deletion at 76.74 usecs, a factor of five improve-
ment over original Presto, and within a factor of 1.9 of
the performance of FastThreads.

Presto’s flexible, object-oriented structure results in
longer code paths caused by an increase in the num-
ber of layers of abstraction. For operations such as
thread startup, the result is higher latency. Fast-
Threads demonstrated that limiting generality can im-
prove performance by reducing thread state and thus
code path length. Our work has shown that by care-
fully choosing where to limit generality, it is possible to
construct an object-oriented threads package with low
latency operations.

4 Conclusions

This paper has shown that it is possible to provide
a threads package with both an extensible, object-
oriented interface and high performance primitives.
Integration of a spinlocking strategy specifically de-
signed to reduce cache coherency bus traffic allows high-
contention spinlocking and atomic integer primitives to
be provided. Several modifications led to more effi-
cient thread creation and deletion: utilization of un-

October 21-25, 1990



locked, per-processor queues of thread templates, elim-
ination of all overhead associated with binding stacks
to threads, removal of unnecessary atomic integer oper-
ations, and general code cleanup. Use of per-processor
queues of ready threads removed the bottleneck caused
by a single shared ready queue, improving the perfor-
mance of thread startup.

These changes resulted in a noticeable performance
improvement in Presto. The new version of Presto
provides the same spinlocking performance (in terms
of both latency and throughput) as FastThreads, and
Presto’s atomic integer performance has been enhanced
as well. The new version of Presto drops thread
creation and deletion latency by 40% and increases
throughput by a factor of 19 over original Presto.
Thread startup performance has also been improved
- we have decreased latency by 28% and increased
throughput by a factor of four over original Presto.

Thread creation and startup performance in the new
version of Presto still lags behind that of FastThreads.
Throughput is within a factor of three, but latency is
still worse by a factor of seven. We implemented a new
object-oriented threads package in C++ that is much
simpler than Presto, and obtained thread startup la-
tency within a factor of 1.9 of that of FastThreads. This
experiment showed that the bulk of Presto’s thread
startup latency is due to its flexible, customizable user
interface, not to its object-orientation or its implemen-
tation in C++.

During our work the advantages of the object-oriented
approach quickly became evident. Since objects are ac-
cessible only through a predefined interface, other ob-
jects are unable to make assumptions about an object’s
implementation. The implementation of an object can
thus be changed with no impact to objects which de-
pend on that object. We made substantial changes
to the underlying implementation of multiple low-level
Presto objects. The only impact of these changes on
other objects was improved performance.

This work was constrained somewhat by our use of
AT&T C++. Since this compiler simply preprocesses
code into C, it is not well integrated with the underly-
ing optimizing C compiler. This impacts the quality of
code generated and thus impacts performance. It also
restricts the ability to inline functions containing loops
or assembler code. Conversion to a different implemen-
tation of C++ might address some of these problems.

A key area for further work is to continue to reduce
the latency of Presto thread creation and startup. Fur-
ther performance improvements in this area will require
modification of Presto’s current user interface in order
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to remove extra layers of abstraction. A different ap-
proach might be to complete the skeletal threads pack-
age used to prove that Presto’s thread startup latency
can be greatly reduced. This package could be aug-
mented to provide more of the functionality of Presto,
while still retaining the low-latency thread startup op-
eration. The result of this work would be a robust,
object-oriented threads package capable of supporting
fine-grain parallelism.

Such a package would be quite useful to programmers
of parallel applications. The object-oriented approach
would allow programmers to derive their own special-
ized subclasses from the base classes provided by the
threads package. The resultant application would be
insulated from future changes to the implementation
of any class used by the application. Support for fine-
grain parallelism would allow the programmer to use
parallelism dynamically as dictated by the application.
The package could also be incorporated into compil-
ers for languages with built-in support for parallelism.
Object-oriented packages would be particularly use-
ful in this environment, since they would would allow
thread scheduling and preemption to be tailored to sup-
port specific language requirements. Support for fine-
grain parallelism would allow such compilers to sched-
ule smaller units of work for parallel execution.

The new version of Presto described in this paper is
freely available through anonymous FTP from Univer-
sity of Washington on cs.washington.edu.
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