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Abstract

We propose a new object-oriented programming language
called RTC++ for programming real-time applications.
RTC++ is an extension of C++4 and its features are
to specify i) a real-time object which is an active en-
tity, ii) timing constraints in an operation as well as in
statements, and iii) a periodic task with rigid timing con-
straints.

In this paper, we first discuss real-time programming
issues and what language support should be provided for
building real-time applications. Then, the key features
of RTC++ are described. Some programming examples
are shown to demonstrate RTC++’s expressive power.
A comparison to other programming languages are also
discussed.

1 Introduction

Real-time computer systems play a very important role
in our society. They are used in multimedia systems,
robotics, factory automation, telecommunication sys-
tems, and in air traffic control systems. The object-
oriented concept and programming languages make it
easier to design and develop such complex real-time ap-
plication programs. However, unlike non real-time pro-
grams, real-time programs must satisfy the timing cor-
rectness as well as logical correctness. Satisfying the
timing correctness of a real-time program is difficult be-
cause of the lack of explicit specification of the timing
constraints in a program and the lack of schedulability
analysis techniques.
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For example, a real-time task must start at a speci-
fied time and complete its activity by its deadline. How-
ever, in a conventional real-time program, such timing
constraints are not explicitly described in its program,
rather described in a separate timing chart or document.
Thus, it is very difficult to enforce timing constraints or
detect timing errors during compile time or/and runtime.
Although the data encapsulation in object-oriented pro-
gramming languages will help us to confine logical errors
in a program, timing errors often penetrate the module
boundary.

The schedulability analysis of a real-time program
is also a difficult problem. By the schedulability anal-
ysis, we mean that a program designer should be able
to analyze or predict whether the given real-time tasks
having various types of system and task interactions
(e.g., memory allocation/deallocation, message commu-
nications, I/O interactions, etc) can meet their timing
constraints. For instance, if real-time tasks are inter-
acting via shared resources, prediction of the worst case
blocking time is difficult due to a possibility of having
unbounded blocking delay.

In order to eliminate such unbounded blocking delay,
a real-time system must avoid priority inversion prob-
lems. A priority inversion problem occurs when a higher
task must wait indefinitely for a lower priority task to
execute. For example, priority inversion may occur in
task scheduling: when a task attempts to get a shared
resource, it is blocked if another task is keeping the re-
source. If the task keeping the resource has a lower pri-
ority and a middle priority task can run under priority-
based preemptive scheduling, then the blocked task has
to wait for unbounded time. Thus, the system cannot
guarantee to satisfy rigid timing constraints when prior-
ity inversion occurs.

We have designed and implemented a real-time dis-
tributed operating system kernel called the ARTS kernel

289



and programming languages ARTS/C and ARTS/C++
both of which are running on the kernel{11]. The ARTS
kernel provides primitives of remote object invocation
with timing constraints, methods for specifying periodic
execution, and mechanisms.for avoiding priority inver-
sion. ARTS/C and ARTS/C++ are an extension of C
and C++ respectively. Those have a capability of defin-
ing a special object called a real-time object. A real-time
object has a set of operation with timing constraints and
threads each of which is an execution unit. Languages do
not have linguistic support for avoiding priority inversion
but they can call kernel primitives for that purpose.

Our experiment with those languages leads to de-
sign more suitable object-oriented programming language
which copes with real-time issues easily and efficiently.
What capabilities we need in a real-time language are:
i) expressions for timing constraints for statement level
in addition to operation timing constraints, ii) linguistic
support for avoiding priority inversion problem, and iii)
an inheritance mechanism in a real-time object.

In this paper, first we discuss real-time program-
ming issues and describe what language supports are re-
quired. Then, a new object-oriented programming lan-
guage called RTC++ is proposed in section 3. In section
4, some programming examples are shown in order to
demonstrate the RTC++ programming power. In sec-
tion 5, we compare RTC++ with other object-oriented
programming languages and real-time programming lan-
guages.

2 Real-Time
Issues

Programming

2.1 Timing Specification

Both ARTS/C and ARTS/C++ allow us to specify tim-
ing constraints of each operation in a real-time object.
The objective of this support is as follows[11]: In tradi-
tional real-time systems which use a cyclic executive, a
timing error often penetrates the task or module bound-
ary, so that it is very difficult to capture the error at run-
time. By using the timing specification, we can bound
the timing error at run-time as well as compile-time.

Furthermore, we need to specify timing constraints for
statement by statement in order to control execution de-
pending on an external behavior. That is, when a part of
statements (or transaction) in an operation cannot fin-
ish within the specified time, the current execution (or
transaction) is aborted and then alternative statements
are executed in order to satisfy timing constraint of the
operation.

Another construct we need is the capability of de-
scribing a periodic task. Such capability is often realized
as the duration of the waiting time by a language or an
operating system. However, this leads to the unbounded
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waiting time. For example, the following program written
in Ada is considered:

i loop

2 == ... body of cyclic activity ...
3 dtime := nexttime - currenttime;
4 delay dtime;

5 end loop

In this example, because the execution of the state-
ment at line 3 is not an atomic action the dtime variable
may have wrong value. That is, if the execution of the
program is suspended after the currenttime is evalu-
ated and then the execution is resumed later, the dtime
is calculated with the wrong value of currenttime. So
the program might sleep for wrong time at the delay
statement.

2.2 Priority Inversion Problem

Using object-oriented paradigm, the client-server model
is suitable in a distributed application. This model in-
troduces a priority inversion problem in a real-time ap-
plication. For example, suppose that there are server S
and clients A and B where A’s priority is higher than B’s
one. Suppose that when the client A sends a message
to the server S, the server is performing for a request of
the client B. In that case the request of client A is post-
poned until the server’s execution for client B is finished.
Because A’s priority is higher than B’s one but process-
ing for B is prior to A, we call this phenomena priorily
inversion in the server. In order to avoid the priority in-
version in a server, three methods can be considered: i)
preemption, ii) abort, and iil) priority inheritance.

In the preemption method, the server’s execution is
preempted at the request of client A. Then, the server
turns to perform for client A. After finishing the service
for client A the service for client B is resumed.

In the abort method, the server’s execution is aborted
at the request of client A and then the server turns to per-
form for client A. At the abort of the execution the server
must be responsible for maintaining the consistency. The
principle of the recovery scheme in ARTS appeared in [9].

If the server’s execution cannot be preempted and the
cost of the abort procedure is too high compared with
waiting for finishing the current server’s execution, wait-
ing is the best method.

However, this is not true when the server is running
with other tasks. Suppose that the server’s priority de-
pends on the client’s priority * and there is another task
C whose priority is lower than the client A’s priority but
higher than the client B’s priority. In this assumption,
when C'is ready to run, C begins to run while the server
S performing for B is suspended. Thus, priority inversion
occurs.

1 This assumption is reasonable since the server has to serve for
many clients whose priorities are different.
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To avoid such priority inversion, we use the notion of
priority inheritance [8] to propagate priority. That is, if
a task provides a service on behalf of a client, the server
should inherit the priority of the client. Furthermore, the
server should inherit the priority of the highest priority
task which is waiting for the service. Also, it is important
to use priority queue instead of FIFO queue for a message
queue.

If we apply the priority inheritance mechanism to the
above example, the server S’s priority is changed to client
A’s priority at the request from A. Thus, C could not run
even when it becomes ready to run.

2.3 Single vs Multiple Threaded Object

Model
Most  object-oriented  concurrent  programming
languages  such as  Actor[l], ABCL/1[14],

ConcurrentSmalltalk[13], and Orient84/K[4] provide an
object with a single thread model 2. The idea of an
object-oriented concurrent language is that an object is a
sequential execution entity and concurrency is expressed
by means of various message passing forms such as syn-
chronous and asynchronous communication. The concept
of sequential objects and message passing allows us to re-
duce programming complexity in a parallel application.
Let us call this model the single threaded object model.

As described in the previous subsection, a highly pre-
emptable server is required in a real-time application.
The mechanism we need is that if a request message is
coming at a server from a client during the server’s execu-
tion for a lower priority’s client, the server’s execution is
preempted or aborted and then performs for the higher
priority’s client. However, if the lower priority’s client
requests a service to the server, the request should be
enqueued.

In object-oriented concurrent languages such a server
can be implemented as follows. A server object consists
of a root object and a set of objects each of which is re-
sponsible for one of the server’s operation with a priority.
Objects have to share the server’s internal data so that
each object can access the same data. For example, if two
operations are defined in a server and the number of pos-
sible different priorities is three, then three objects each
of which has a different priority are responsible for an
operation and other three objects are responsible for the
other operation. When a client sends a request message
to the root object, the root object forwards the message
to an object according to the client’s request and priority.

Another approach to describing a preemptable server
is that the server is implemented based on the multiple
threaded object model. In the multiple threaded object
model, there are some threads of control in an object so

2 Actor and ABCL/1 support a reentrant object if the object has
no internal data.

October 21-25, 1990

ECOOP/OOPSLA '90 Praceedings

that a thread is invoked at the new client request whose
priority is higher than the current client’s priority. Be-
cause the object has multiple threads, the concurrency
control has to be employed.

Conceptually the single threaded model and multiple
threaded model have the same capability. So we have to
consider the implementation of those models. The im-
plementation of a highly preemptable server in the single
threaded model needs more resources than one in the
multiple threaded model because there are so many ob-
jects required. Moreover, if the internal data is primitive
data such as integer or character, the compiler can gen-
erate an optimum code in the multiple threaded model
while message passing forms are always needed in the
single threaded model.

Based on the above observation, we choose the multi-
ple threaded model to describe a real-time application. In
the multiple threaded model, no restrictions on dynami-
cally creating threads in an object may lead to increasing
the complexity of concurrency control. Thus, the restric-
tion we choose is that each operation may be executed
concurrently but an operation has to be executed by one
thread at a time. Moreover, the execution may be pre-
empted to realize a highly preemptable server.

3 RTCH+

In this section, we propose an object-oriented real-time
language called RTC++ which is an extension of C++.
RTC++ is designed based on the previous discussion.
The syntax and semantics are described with examples.

3.1 Real-Time Object

In addition to C++ objects, RTC++ introduces an ac-
tive object. If an active object is defined with timing
constraints, it is called a real-time object. In the follow-
ing example, the active class Examplel1 is defined.

active class Examplel {

private:
char buf[BUF_SIZE];
int count;
int background() ;
public:
int read(char* data, int size) when{count > size);
int write(char* data, int size);
int open();
int close();
activity:
slave[S] read(chars, int);
slave[5] write(chare, int);
glave open(), close();
master background() cycle(;;0t30m;);
}

An active object definition is almost the same as an
original C++ object definition except for adding the key-
word active before the class keyword in RTC++. An
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active object has a single thread of control in default. A
user can specify multiple threads of control which we call
member threads in an active object. Member threads are
defined in an activily part of a class definition. There are
two types of member threads, slave and master.

A slave thread is an execution unit related to a mem-
ber function or a group of member functions 3 . In the
following definition, one slave thread is only responsible
for the open and close requests.

slave open(), close();

A slave thread inherits the priority from a sender. If
there are some waiting messages, the priority of the slave
thread is set to the highest priority of those messages.
When a new message for those functions is comming and
the sender’s priority is higher than the current thread’s
priority, the thread’s priority is changed to the higher pri-
ority. This mechanism is called the priority inheritance
mechanism in an object.

In the following definition, the processing of the mem-
ber function read can be preempted by up to five clients
whose priorities are higher than the current execution of
the read function. We call ¢ ‘slavel5]’ a slave thread
group.

slave[5] read(char*, int);

A slave thread group does not realize just an interrupt
mechanism. In order to illustrate the concept of the slave
thread group, the following example is considered:

read(char* b, int s)

{
<non-critical region A>
<critical region B>
<nom-critical region C>
}

In this example, the read function consists of the se-
quence of the non-critical region, critical region, and non-
critical region. Suppose that one of the thread group en-
ters the critical region B and at that time a new read
request where the sender’s priority is higher than the
previous sender’s one is coming. Another new thread
begins to execute the read function with the higher pri-
ority while the former thread is suspended. Since the
critical region B is captured by the former thread, the
higher priority’s thread cannot enter the region B and is
blocked. So the former thread executes again until the
exiting critical region B. After that, the higher priority’s
thread is resumed. In this way, a slave thread group does
not just realize an interrupt mechanism but supports a
preemption mechanism.

The priority inheritance in a slave thread group is as
follows: When all slave threads of a group are employed
for clients’ requests and at that time a higher priority’s

3 A member function is called a method in Smalltalk terminology.
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request than those threads’ priorities is comming, then
the highest priority’s thread of the group changes its pri-
ority to the new highest priority.

A master thread is intended to use a background
thread within an active object. For example, we want
to specify the background thread which saves its internal
data into a back up disk every 30 minute ¢:

master background() cycle(;;0t30m;);
In this example, the cycle expression specifies that
the background thread is a cyclic task. The following is

the syntax of the cycle expression:

cycle(<start-time>; <end-time>; <period>; <deadlined);

In the example, <start-time>, <end-time>, and
<deadline> are omitted so that those constraints are free.

In RTC++, a guard expression[2] may be defined in
a member function definition in order to control con-
currency. A guard expression may consist of primitive
data types such as integer, primitive operations such
as addition, internal variables (or instance variables in
Smalltalk terminology), and message variables. For ex-
ample, the following definition specifies that iff the ex-
pression ‘‘count > size’’ is true, the ‘‘read(...)’’
member function is invoked by a request, otherwise the
invocation for the request is postponed until the expres-
sion becomes true:

int read(char» data, int size) when(count > size);

In addition to a guard expression, we can specify a
function which is invoked when a request is postponed.
For example, the definition below specifies that if the
guard expression is false then the busy function is invoked.
If the function returns 0 the request is rejected, otherwise
it is enqueued to the message queue.

int read(char* data, int size) when(count > size)

onwait (busy());

An expression for creating an active object is the same
as an original C++ new expression except for adding pri-
ority. For example, the following expression means that

an instance of class Examplet is created with priority 4
5.

Examplel #v = new Examplel priority 4;

When an instance object is created in the above expres-
sion, threads in the object have priority 4 at the first.

* An example of the notation of time is that 8 hour 20 minute
30 second and 10 millisecond 10 microsecond is specified as
“0t8h20m30s10.10".

5Priority is defined as number. Larger number represents higher
priority.
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3.2 Inheritance

Unlike the previous language ARTS/C++, RTC++ sup-
ports the inheritance mechanism in an active object. An
example below defines the Example2 active class derived
from class Examplel which we call a base class in C++
terminology ©. In class Example2 member functions read
and write are redefined and the control member func-
tion is defined. The activity parts of among a class and its
base classes are merged consistently. That is, an instance
of class Example2 has two slave thread groups defined
in class Example1l and one slave thread defined in class
Example2.

active class Example2 : public Examplel {

public:
int read(chars data, int size);
int write(chars data, int size);
int control(...);
activity:
slave open(), close(), control(...);
}

It should be noted that if there are no activity parts
of among an active class and its base classes, an instance
of the class has only one thread which is responsible for
all member functions.

3.3 Communication

RTC++ supports synchronous communication. The syn-
tax of communication among active objects is the same
as C++ syntax. An example is shown below:

Examplel #v;

n = v->read(buf, size);

RTC++ provides two means of sending a reply mes-
sage, refurn and reply statements. The semantics of a
return statement is that a reply message is sent to the
sender and the execution of the function is finished. The
semantics of a reply statement is that a reply message is
sent and the subsequent statements are executed instead
of finishing the execution of a member function.

It should be mentioned that a message has a priority
which is the same as the thread’s priority of a sender.

3.4 Exception Handling

A block started with the except keyword is called an ez-
ception handling block. An exception handling block is
led by do, within, cycle, or region blocks. The within, cy-
cle, and region blocks are described later. In an exception
handling block, we can catch and handle an exception
from an object, a thread, or a kernel. In the following
example, timeout and abort exceptions can be handled
during the execution of “<do region>":

6In Smalltalk terminology, class Example2 is a subclass of
Examplel while class Examplel is the superclass of Example2.
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do {

<do region>
} except {
case abort:

el
break;
case timeout:

ceed
break;

In order to protect a sequence of statements from ex-
ceptions such as timeout and abort, a protect region is
supported in RTC++. In the following example, a block
started with the protect keyword is a protect region.
That is, even if timeout or abort occurs while the region
is executed, the exception is postponed until exiting the
region.

protect {

}

The following example specifies that the read func-
tion is a protected region:

active class Example {
protect int read(....);

};

3.5 Timing Facilities

As described in Section 2.1, a real-time programming
language should support.i) timing specification in each
operation, ii) timing constraints for statement by state-
ment, and iii) specifying a periodic task. RTC++ sup-
ports those requirements.

3.5.1 Time Encapsulation

The time encapsulation mechanism allows us to specify
timing specification in an operation. The following defi-
nition specifies that the read function has to be finished
within 20 milliseconds, otherwise the read_abort() func-
tion is called.

active class Examplel {
private:

int read_abort();

int  write_abort();
public:
int read(chars data, int size)
when(count > size)
within(0t20) timeout(read_abort());
int write(char* data, int size)
within(0t20)

timeout(write_aboxt());
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3.5.2 Within, At, Before Statements

Statements within, at, and before express statement-level
timing constraints. A within statement expresses the du-
ration of execution. An atstatement expresses the con-
straint of starting time while a before statement expresses

the constraint of ending time.

For example, an example of a within statement is as
follows:

vithin(time) {
} except {
case timeout:

}

The time variable keeps an instance of the Time class
which is supported by the ARTS kernel. We can specify
the duration of a time 7. When the execution of state-
ments surrounded by ‘‘within(time) {’’ and ‘‘}’’
cannot be finished within the time specified by the time
value, statements led by ‘‘case timeout:’’ are exe-
cuted.

3.5.3 Cycle Statement

A cycle statement is to specify a periodic task. As shown

below, a cycle statement can be followed by an exception
handling block:

cycle(starttime; endtime; period; deadline) {
oo}

} except {

case timeout:

e

}

In this example, starttime, endtime, and deadline
specify starting time, ending time, period, and the dead-
line time of the execution respectively. Those are in-
stances of class Time.

3.6 Critical Region

A critical region is realized by implementing an object
with a guard expression. In a critical region we need a
mechanism that a thread entering a critical region can be
aborted or inherit a priority from another thread trying
to enter the region. RTC++ introduces a special class
called ActiveEntity which supports the abort and pri-
ority inheritance mechanism.

The ActiveEntity keeps an active object and mem-
ber thread information. All member functions in an
active object can refer to special variables myentity
and sender which are instances of ActiveEntity. The
myentity variable keeps own object and thread infor-
mation while the sender variable keeps the sender ob-
Ject and thread information. Class ActiveEntity has

TFor example, 0t1s20.10 means that the duration of a time is
second 20 milliseconds 10 microseconds.
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the pinherit member function to propagate priority, the
prelinquish member function to cancel the propagated
priority, and the abort member function to abort a mem-
ber thread of an object.

The ActiveEntity class allows us to define a Region
class which realizes a critical region with the abort and
priority inheritance mechanisms. The following is a part
of the class Region definition.

active class Region {

private:
int flag;
ActiveEntity  *user;
public:
protect int use() when(flag == USED)
onwait(check());
protect int release();
protect int who() ;
protect int abort();
activity:
slave use(), release(), who(), abort();
}
Region::check()
{

if (sender->prio() > user->prio()) {
user->pinherit(sender->prio);

}

}

Region::use()
flag = USED;
user = sender;

}

Region: :release()

{
user->prelinquish();
flag = FREE;

}

The Region class defines use, release, who, and
abort member functions. The use and release func-
tions are equivalent to the P and V operations in a
semaphore, respectively. The who function returns who
is currently occupying. The abort function is to abort
the execution of a thread which is currently occupying
the region.

Class Region supports the priority inheritance mech-
anism as follows. If a thread of an object has entered the
region, another thread will wait for changing the flag
variable at the use function. On waiting a message at the
use function, the check function is called. If the waiting
sender’s priority is higher than the priority of the thread
entering the region, the higher priority is propagated to
the thread by the check function.

The thread leaving the region sends the release mes-
sage to the region. The release function cancels the
propagated priority to the thread so that the thread’s
priority becomes the previous priority. In a complex
case, the prelinquish function in the ActiveEntity
class must decide the new priority of the thread because
the thread may have been inherited priorities from other
threads.
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An example of a critical region is shown below:

active class aClass {
Region *IT;

ey

}

aClass: :aFunction() {
do {
t = rr->use();

L]

t = rr->release();
} except {
case abort:

if (¢ USED) {

t = rr->release();
}
break;

}

The reader may wonder if this example is too complex
and a programmer forgets to call the release function.
We also think many critical regions are used in order to
realize a preemptable object. Thus, RTC++ provides a
critical region statement which is a kind of macro:

region (rr) {
cers

} except {

case abort:

“ey

}

The following critical region statement expresses that
if the region rr cannot be entered within tt, the timeout
exception occurs: '

within(tt) region (rr) {

} ex;;;;‘;: {

case timeout:

case abort:

sy

}

It should be noted that RTC++ predefines class :gi
Region which is the same semantics described above but |
the implementation is different. That is, functions are al- 106

4.1 Dining Touchy Philosophers

Dining Touchy Philosophers problem is an extension of
the dining philosophers problem stated by Dijkstra. The
philosophers share a common dining room where there
are a side table and a circular table surrounded by five
chairs. There are four set of chopsticks in the side table.
In the center of the circular table there is a large bowl
of spaghetti, and the table is laid with five forks. On
feeling hungry, a philosopher enters the dining room, sits
in his own chair, and tries to eat spaghetti. He prefers to
use forks but he can use chopsticks. He needs to pick up
forks on the both side. He can wait for getting both forks
for a while depending on his feeling. If he could not get
them, he gives up using forks and goes to the side table
to pick up chopsticks. When he has finished to eat, he
puts down forks or chopsticks, and leaves the room.

The following is a part of the program written in
RTC++:

78 for(;;) {

79 room.enter() ;

80 left = right = STATUS_WAITING;

81 method = FORK;

82 within(wait_t) {

83 /* gettting right fork =/

84 right = fork[n].use();

85 /% gettting left fork */

86 left = fork[(n + 1)%N].use();
87 } except {

88 case timeout:

89 if(right == STATUS_GETTING) {
S0 right = fork[n] .release();
91 }

92 if(left == STATUS_GETTING) {

93 left = fork[(n + 1)%K].release();
94 }

95 ch = chopstick.use();

96 method = CEOPSTICK;

97 } .

98 /* eating #*/

99 if{method == FORK) {

100 left = fork[(n + 1)%N].release();
101 right = fork[n].release();

102 } else {

ch = chopstick.release();
}
room.exit();
/* thinking */

most implemented by the ARTS kernel because of the effi- 107 }

cient execution. However, a programmer can program an
object which has the same semantics of class Region de-
scribed above by using instances of class ActiveEntity.

4 Examples

In this section, we demonstrate capabilities of RTC++
by three examples. One is called Dining Touchy Philoso-
phers problem and another one is called Glutions-Chef
tn Restaurani. The other one is called Dining Faithful
Philosophers problem. The full programs of examples ap-
pear in [6].
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In order to wait for getting both forks for the specified
time, the within statement is used in lines 82 to 87. If
the timeout occurs, lines 89 to 96 are executed to give up
using forks and try to use chopsticks.

4.2 Gluttons-Chef in Restaurant

An example called Gluttons-Chef in Restaurant is consid-
ered in order to show a highly preemptable object written
in RTC++.

Two gluttons go to a restaurant to eat stir-fry vegeta-
bles or pork stir-fry every lunch. They always have seats.
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Table 1: Recipe

menu

instructions

time (min)

Stir-Fry Vegetables

chopping tomato
chopping onion
chopping green pepper
chopping cucumbers
getting fry pan
making stir-fry
releasing fry pan

[

[

Pork Stir-Fry

chopping pork
chopping mushrooms
chopping onion
chopping green pepper
getting fry pan
making stir-fry
releasing fry pan

T

Table 2: Faithful Philosophers Action

Unfortunately only one chef is cooking for them. Glut-
tons A and B’s action patterns are as follows: Glutton
A’s lunch time is only 25 minutes and he decides his order
within 2 minutes. Glutton B’s lunch time is 50 minutes
and he decides his order within 1 minute.

The recipe of stir-fry vegetables and pork stir-fry is
shown in Tablel. There are one poor food processor, one
fry pan, and seasoning. The food processor is capable of
chopping one stuff at a time.

If the chef is only cooking for one order at a time
without preemption, the worst case cooking time is 23
minutes (i.e., 13 4+ 10). In this case, glutton A could not
eat. Suppose that the chef can suspend cooking while he
is using the food processor but he cannot suspend cooking
when he is using the fry pan. If the chef can suspend to
cook when glutton A orders, he starts to cook for glutton
A. In this case, the worst case cooking time is 19 minutes.

The Chef class is defined below. The request func-
tion is to accept entree from gluttons and cook it. The
activity part specifies that the request function can be
executed by two threads.

71 active clasas Chef {

period(min) | eating(min) | thinking(min)
P 15 3 10
Q 30 5 20
R 60 10 40
ealing  thinking eating  thinking
> il
p ‘Llllllllll|[lll|l|llllllllllllllllll
0 "o s 20 B5 5o (mim
eating thinking
Q
0 10 15 20 25 0 (min)
eating thinking
R
0 10 1S 20 25 0 (min)

72 public:

73 Chef () ;

74 void request(menu req);
75 private:

76 Foodprocessor #fproc;

77 Fpan sfpan;

78 Region *fp;

79 activity:

80 slave[2] request (menu req);
81 };

The following list is a part of the definition of the
request function. FEach request to an instance of the
food processor fproc is performed inside the critical re-
gion £p so that another thread cannot request the food
processor even if the thread’s priority is higher than the
running thread’s priority.
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Figure 1: Timing Chart of Faithful Philosophers

93 switch(req) {

94 case V_STIR_FRY:

95 region(fp) { fproc->chopping(Otim, "tomato"); }
96 region(fp) { fproc->chopping(Otim, "omion"); }
103 case P_STIR_FRY:

104 region(fp) { fproc->chopping(Otim, “pork"); }

105 region(fp) { fproc->chopping(Otim, "mushrooms"); }
112 }

4.3 Dining Faithful Philosophers

In order to demonstrate how to use the abort method,
another extension of the dining philosophers problem is
considered. We call it the Dining Faithful Philosophers
problem.

For simplicity, suppose only three philosophers. They
are so faithful that their action is strictly decided shown
in Table 2. For example, philosopher P eats spaghetti for
3 minutes and then thinks for 10 minutes every 15 min-
utes. He doesn’t complaint even if someone disturbs his
eating. However, because he is so faithful to his decision,
when he could not perform his action on his schedule he
might get angry and break the dining room.

As shown in Figure 1, philosopher P could not fin-
ish his second action within that period if a traditional
program is used. This is because a philosopher is al-
ways keeping forks until finishing eat. In this example,
we may preempt a fork which philosopher R is using be-
cause philosophers are so kind not to complain. This ex-
ample should be implemented by using the abort method
because the philosopher R has to give up eating by re-
questing from philosopher P.

The Tool class which is the base class of the Fork class
is implemented so that if an object tries to use a tool
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while another object having a lower priority is keeping
the tool, the keeping object is aborted. The following
list is a part of the Tool class definition. The function
abort is invoked when an object has to wait for getting
the tool. In the abort function, if the sender’s priority is

higher than the current user’s priority, then the current
user is aborted:

8 active class Tool {

9 public:

10 protect int use() when(used == 0)
11 onwait(abort);
12 protect int release();

13 private:

14 protect void abort();

15 ActiveEntity suser;

16 int used = 0;

17 )

31 Tool::abort()

32 {

33 if (sender->prio() > user->prio()) {
34 user->abort();

35 }

36 return 1;

37 }

The following program is a part of the Philosopher
class. In order to catch the abort exception, the excep-
tion handling block is defined:

67 cycle(start._t; end_t; period; worst_t) {

68 room.enter();

69 do {

70 left = right = STATUS_WAITING;

71 do {

72 /* gettting right fork */

73 right = fork[n] .use();

74 /% gettting left fork =/

75 left = fork[(n + 1)%N] .use();
76 /* eating #/

7 right = fork[n].release();

78 loft = fork[(n + 1)%¥] .release();

79 } except {

80 case abort:

81 if(right == STATUS_GETTING) {

82 right = fork[n].release();

83 }

84 if(left == STATUS_GETTING) {

85 left = fork[(n + 1)%N].release();
86 }

87 }

88 } while (/* if he needs to eat more spaghetti
89 because someone disturbs him, continue *»/ );
90 room.exit();

91 /* thinking */

92 }

5 Comparison
RTC++ has two profiles, an object-oriented concurrent

language and a real-time language. We compare RTC++
with those languages in this section.
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In object-oriented concurrent languages such as
ABCL/1[14], Actor[l], and Orient84/K[4], all objects
are active entities each of which may have a thread of
execution. That is, there are no distinction between
active and passive objects. In contrast with those lan-
guages, RTC++ introduces the notion of the active ob-
Ject which is distinct from an original C++ object. The
major reason is that we want to bound the memory re-
source and kernel resources statically when a program is
written without dynamic properties such as the dynamic
creation of active objects. If all objects are active enti-
ties, it is impossible to assign resources for a thread of
execution to all objects. So a run-time routine must de-
cide whether or not an object needs new resources for a
thread of the execution[4]. In this case, it is difficult to
bound the amount of the resource statically. In such an
unbounded behavior, it is very complex to analyse the
schedulability of a system because an object may wait
for an unbounded time to get a resource from a resource
pool when all resources are used by other objects.

In terms of communication primitives, many object-
oriented concurrent languages support both asyn-
chronous and synchronous communication facilities
which imply the reliable facilities. In RTC++, asyn-
chronous communication is not supported. This is be-
cause it is difficult for recovery from aborting in asyn-
chronous communication. Moreover, in the underlying
system only supporting reliable communication, asyn-
chronous communication is equivalent to a function which
is realized by a communication buffer object using syn-
chronous communication. If unreliable asynchronous
communication is required in a distributed environment,
the language and its kernel may support such semantics.

Real-Time languages such as Real-Time Euclid[7] and
real-time Mentat[3] provide facilities for rigid timing con-
straints such as specifying a periodic task. Real-Time
Mentat is an object-oriented real-time language which
is also an extension of C++. In Real-Time Mentat,
a programmer may specify timing constraints in state-
ment level. There are two ways of specifying timing
constraints, soff and kard deadlines. In a block with
soft deadline, the execution may be optionally skipped
if the hard real-time tasks cannot meet their deadlines.
The soft deadline constraint is currently not supported
in RTC++. In contrast with RTC++, the facilities for a
preemptable object are not supported in Real-Time Men-
tat.

Real-Time Euclid is an extension of Euclid. In order
to bound the resources statically, Real-Time Euclid re-
stricts language constructs such as recursion and dynamic
memory allocation. In addition to specifying starting
time of a task, Real-time Euclid supports facilities signal
and wait to control concurrency. The wait statement
is extended to specify a time bound. In RTC++, the
statement “within() region() {}” provides the same
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functionality which is a kind of macro and realized by
the timeout mechanism in an object.

Real-Time Euclid is a system rather than just a
language. The system consists of the language com-
piler, schedulability analyzer, and run-time system. The
schedulability analyzer allows a programmer to find if a
system is schedulable or not before the execution. This
is one of the key issues in the real-time system research
field.

In this paper, we have described on the language fea-
tures of RTC++, but we also have been developing a
schedulability analysis tool and monitoring tool for dis-
tributed real-time systems[10]. In particular, a schedula-
bility analyzer called Scheduler!28 which takes the tim-
ing specification of a real-time task set and analyzes its
schedulability based on various scheduling algorithms,
and ARM, advanced real-time monitor, have been in use
for a few years. We are currently extending the toolset
for coping with the end-to-end schedulability analysis and
designing a new timing analysis tool which extracts tim-
ing information from a RT'C++ source code and transfers
the information to Scheduler123. In order to extract tim-
ing information statically, the language constructs will be
used restrictively or more language features will be added.

6 Conclusion

In this paper, we have proposed an object-oriented real-
time language called RTC++ which supports explicit
timing constraints, highly preemptable object, periodic
task creation, and priority inheritance. We think, how-
ever, that the constructs we proposed are not only for
the extension of C++ language, but also those can be
adapted in many other object-oriented languages. We
alsointroduced interesting real-time concurrent programs
and demonstrated the usefulness of RTC++ features.

The RTC++ compiler which translates a RTC++
source program into C++ and C programs are currently
implemented. [6] described the implementation hint of
a RTC++ compiler and runtime routine. A technical
report which describes the language features and imple-
mentation will be published soon.
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