When Compilers Are Mirrors

Martin Odersky

EPFL
martin.oderskyQepfl.ch
http://lampwww.epfl.ch/~odersky

Abstract. When compilers are reflective mirrors, interesting things
happen. Reflection and compilers do tantalizing similar things. Yet, in
mainstream, statically typed languages the two have been only loosely
coupled, and generally share very little code. In this talk I explore what
happens if one sets out to overcome their separation.

The first half of the talk addresses the challenge how reflection libraries
can share core data structures and algorithms with the language’s com-
piler without having compiler internals leaking into the standard library
API. It turns out that a component system based on abstract types and
path-dependent types is a good tool to solve this challenge. I'll explain
how the "multiple cake pattern” can be fruitfully applied to expose the
right kind of information.

The second half of the talk explores what one can do when strong,
mirror-based reflection is a standard tool. In particular, the compiler
itself can use reflection, leading to a particular system of low-level macros
that rewrite syntax trees. One core property of these macros is that
they can express staging, by rewriting a tree at one stage to code that
produces the same tree at the next stage. Staging lets us implement type
and abstract syntax tree reification. What’s more, staging can also be
applied to the macro system itself, with the consequence that a simple
low-level macro system can produce a high-level hygienic one, without
any extra effort from the language or compiler.

J. Noble (Ed.): ECOOP 2012, LNCS 7313, p. 1, 2012.
© Springer-Verlag Berlin Heidelberg 2012





